-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTrain_Predict.py
36 lines (30 loc) · 1.11 KB
/
Train_Predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
from sklearn import svm
from datetime import datetime
def Train_Predict( data_train, data_test ):
'''
1. 先预测实发辐照度
'''
#切分特征和标签
print( '1.1 切分特征和标签=======', datetime.now() )
x_train = data_train.drop( columns = ['实发辐照度', '实际功率'] )
y_train = data_train['实发辐照度']
#预测实发辐照度
print( '1.2 预测实发辐照度=======', datetime.now() )
svm_SVR = svm.SVR( gamma='auto' )
svm_SVR.fit( x_train, y_train )
y_predict_irradiance = svm_SVR.predict( data_test )
#将预测的实发辐照度放入测试集中
data_test['实发辐照度'] = y_predict_irradiance
'''
2. 再预测功率
'''
#切分特征和标签
print( '2.1 切分特征和标签=======', datetime.now() )
x_train = data_train.drop( columns = ['实际功率'] )
y_train = data_train['实际功率']
#预测功率
print( '2.2 预测功率=======', datetime.now() )
svm_SVR.fit( x_train, y_train )
y_predict_power = svm_SVR.predict( data_test )
return y_predict_power