-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
35 lines (28 loc) · 1.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from Load_Save_Data import Load_Data, Save_Data
from Data_Process import Data_Process
from Train_Predict import Train_Predict
import numpy as np
from datetime import datetime
if __name__ == "__main__":
#1. 加载数据
print( '加载数据=======', datetime.now() )
data_train, data_test = Load_Data()
power_mean = np.mean( data_train['实际功率'] )
power_std = np.std( data_train['实际功率'] )
#2. 特征工程
print( '处理数据=======', datetime.now() )
data_train, data_test = Data_Process( data_train, data_test )
#测试代码 begin
#data_train = data_train.iloc[ :10000, : ] #test
#data_test = data_test.iloc[ :10000, : ] #test
#测试代码 end
#3. 训练模型, 预测功率
print( '启动预测=======', datetime.now() )
power_predict = Train_Predict( data_train, data_test )
#将归一化数据恢复为正常值
power_predict = power_predict * power_std + power_mean
print( '预测完成=======', datetime.now() )
#4. 保存结果数据
print( '保存预测结果=======', datetime.now() )
Save_Data( power_predict )
print( '保存完成,退出程序=======', datetime.now() )