-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcompute_results.py
606 lines (551 loc) · 35.1 KB
/
compute_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import argparse
import os
import json
import shutil
from datetime import datetime
import numpy as np
from distutils.util import strtobool as boolean
from pprint import PrettyPrinter
import wandb
import torch
import torch.optim
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.utils.data.distributed
import torchvision.models as models
from MBM.better_mistakes.util.rand import make_deterministic
from MBM.better_mistakes.util.folders import get_expm_folder
from MBM.better_mistakes.util.label_embeddings import create_embedding_layer
from MBM.better_mistakes.util.devise_and_bd import generate_sorted_embedding_tensor
from MBM.better_mistakes.util.config import load_config
from MBM.better_mistakes.data.softmax_cascade import SoftmaxCascade
from MBM.better_mistakes.model.init import init_model_on_gpu
from MBM.better_mistakes.model.run_xent import run
from MBM.better_mistakes.model.run_nn import run_nn
from MBM.better_mistakes.model.labels import make_all_soft_labels
from MBM.better_mistakes.model.losses import HierarchicalCrossEntropyLoss, CosineLoss, RankingLoss, CosinePlusXentLoss, YOLOLoss
from MBM.better_mistakes.trees import load_hierarchy, get_weighting, load_distances, get_classes
from CRM.src import compute_results
from util import data_loader, logger
from util.data_loader import is_sorted
import copy
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
TASKS = ["training", "testing"]
CUSTOM_MODELS = ["custom_resnet18", "wide_resnet"]
MODEL_NAMES = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name]))
MODEL_NAMES.extend(CUSTOM_MODELS)
LOSS_NAMES = ["cross-entropy", "soft-labels", "hierarchical-cross-entropy", "cosine-distance", "ranking-loss", "cosine-plus-xent", "yolo-v2",
"flamingo-l3", "flamingo-l5", "flamingo-l7","flamingo-l12", "ours-l3", "ours-l5", "ours-l7", "ours-l12", "ours-flamingo-l7", "vanilla-single",
"ours-l12-cejsd", "ours-l12-cejsd-wtconst", "ours-l7-cejsd", "ours-l7-cejsd-wtconst"]
OPTIMIZER_NAMES = ["adagrad", "adam", "adam_amsgrad", "rmsprop", "SGD", "custom_sgd"]
DATASET_NAMES = ["tiered-imagenet-84", "inaturalist19-84", "tiered-imagenet-224", "inaturalist19-224", "cifar-100"]
# config = None
def cosine_anneal_schedule(t, nb_epoch):
cos_inner = np.pi * (t % nb_epoch) # t - 1 is used when t has 1-based indexing.
cos_inner /= nb_epoch
cos_out = np.cos(cos_inner) + 1
return float( 0.1 / 2 * cos_out)
def main_worker(gpus_per_node, opts):
# Worker setup
if opts.gpu is not None:
print("Use GPU: {} for training".format(opts.gpu))
# if opts.if_sweep:
# # logger.init(project='cifar-100-sweep', entity='hierarchical-classification', config=opts)
# config = wandb.config
# opts.lr_backbone = config.lr_backbone
# opts.lr_classifier = opts.classifier
# Enables the cudnn auto-tuner to find the best algorithm to use for your hardware
cudnn.benchmark = True
# pretty printer for cmd line options
pp = PrettyPrinter(indent=4)
# Setup data loaders --------------------------------------------------------------------------------------------------------------------------------------
train_dataset, val_dataset, train_loader, val_loader = data_loader.train_data_loader(opts)
test_dataset, test_loader = data_loader.test_data_loader(opts)
# Load hierarchy and classes ------------------------------------------------------------------------------------------------------------------------------
distances = load_distances(opts.data, 'ilsvrc', opts.data_dir)
hierarchy = load_hierarchy(opts.data, opts.data_dir)
if opts.loss == "yolo-v2":
classes, _ = get_classes(hierarchy, output_all_nodes=True)
else:
if opts.data == "cifar-100":
classes = train_dataset.class_to_idx
classes = ["L3_" + str(classes[i]) for i in classes]
else:
classes = train_dataset.classes
# Adjust the number of epochs to the size of the dataset
num_batches = len(train_loader)
if opts.epochs == None:
opts.epochs = int(round(opts.num_training_steps / num_batches))
opts.num_classes = len(classes)
print("num_classes: ", opts.num_classes)
# shuffle hierarchy nodes
if opts.shuffle_classes:
np.random.shuffle(classes)
# Model, loss, optimizer ----------------------------------------------------------------------------------------------------------------------------------
# more setup for devise and b+d
if opts.devise:
assert not opts.barzdenzler
assert opts.loss == "cosine-distance" or opts.loss == "ranking-loss"
embeddings_mat, sorted_keys = generate_sorted_embedding_tensor(opts)
embeddings_mat = embeddings_mat / np.linalg.norm(embeddings_mat, axis=1, keepdims=True)
emb_layer, _, opts.embedding_size = create_embedding_layer(embeddings_mat)
assert is_sorted(sorted_keys)
if opts.barzdenzler:
assert not opts.devise
assert opts.loss in ["cosine-distance", "ranking-loss", "cosine-plus-xent"]
embeddings_mat, sorted_keys = generate_sorted_embedding_tensor(opts)
embeddings_mat = embeddings_mat / np.linalg.norm(embeddings_mat, axis=1, keepdims=True)
emb_layer, _, opts.embedding_size = create_embedding_layer(embeddings_mat)
assert is_sorted(sorted_keys)
# setup model
model = init_model_on_gpu(gpus_per_node, opts)
# setup optimizer
optimizer = _select_optimizer(model, opts)
# load from checkpoint if existing
steps = _load_checkpoint(opts, model, optimizer)
# setup loss
if opts.loss == "cross-entropy":
loss_function = nn.CrossEntropyLoss().cuda(opts.gpu)
elif opts.loss == "soft-labels":
loss_function = nn.KLDivLoss().cuda(opts.gpu)
elif opts.loss == "hierarchical-cross-entropy":
weights = get_weighting(hierarchy, "exponential", value=opts.alpha)
loss_function = HierarchicalCrossEntropyLoss(hierarchy, classes, weights).cuda(opts.gpu)
elif opts.loss == "yolo-v2":
cascade = SoftmaxCascade(hierarchy, classes).cuda(opts.gpu)
num_leaf_classes = len(hierarchy.treepositions("leaves"))
weights = get_weighting(hierarchy, "exponential", value=opts.alpha)
loss_function = YOLOLoss(hierarchy, classes, weights).cuda(opts.gpu)
def yolo2_corrector(output):
return cascade.final_probabilities(output)[:, :num_leaf_classes]
elif opts.loss == "cosine-distance":
loss_function = CosineLoss(emb_layer).cuda(opts.gpu)
elif opts.loss == "ranking-loss":
loss_function = RankingLoss(emb_layer, opts.batch_size, opts.devise_single_negative, margin=0.1).cuda(opts.gpu)
elif opts.loss == "cosine-plus-xent":
loss_function = CosinePlusXentLoss(emb_layer).cuda(opts.gpu)
elif opts.loss in LOSS_NAMES:
loss_function = None
else:
raise RuntimeError("Unkown loss {}".format(opts.loss))
# for yolo, we need to decode the output of the classifier as it outputs the conditional probabilities
corrector = yolo2_corrector if opts.loss == "yolo-v2" else lambda x: x
# create the solft labels
soft_labels = make_all_soft_labels(distances, classes, opts.beta)
# Training/evaluation -------------------------------------------------------------------------------------------------------------------------------------
requires_grad_to_set = True
# best_accuracy = 0
# opts.start_epoch = 0
opts.epochs = opts.start_epoch + opts.epochs
crm_opts = copy.copy(opts)
for epoch in range(opts.start_epoch, opts.epochs):
# do we validate at this epoch?
if opts.data == "inaturalist19-224":
if opts.loss == "cross-entropy": #or opts.loss == "soft-labels" or opts.loss == "hierarchical-cross-entropy":
if opts.arch == "custom_resnet18":
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
# elif opts.arch == "custom_resnet18_default":
# optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
# optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
elif (opts.loss == "ours-l7" or opts.loss == "flamingo-l7" or opts.loss == "ours-flamingo-l7" \
or opts.loss == "ours-l7-cejsd" or opts.loss == "ours-l7-cejsd-wtconst"):
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[3]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[4]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[5]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[6]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[7]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[8]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
elif opts.loss == "ours-l5" or opts.loss == "flamingo-l5":
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[3]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[4]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[5]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[6]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) /10
elif opts.loss == "ours-l3" or opts.loss == "flamingo-l3":
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[3]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[4]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
if opts.data == "tiered-imagenet-224":
if opts.loss == "cross-entropy" and opts.optimizer == "custom_sgd":
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
elif (opts.loss == "flamingo-l12" and opts.optimizer == "custom_sgd") or \
(opts.loss == "ours-l12" and opts.optimizer == "custom_sgd"):
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[3]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[4]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[5]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[6]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[7]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[8]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[9]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[10]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[11]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[12]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[13]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
else:
print("Other losses are not integrated yet for TieredImagenet.")
if opts.data == "cifar-100":
if opts.optimizer == "custom_sgd" :
if opts.loss == "cross-entropy": #or opts.loss == "soft-labels" or opts.loss == "hierarchical-cross-entropy":
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
# optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs)
# optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10
if opts.loss == "flamingo-l3" or opts.loss == "ours-l3":
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) # level 1
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) # level 2
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) # level 3
optimizer.param_groups[3]['lr'] = cosine_anneal_schedule(epoch, opts.epochs) / 10 # backbone
# TRAINING
if opts.devise or opts.barzdenzler:
# two-stage training for devise and b+d
if requires_grad_to_set and steps > opts.train_backbone_after:
for param in model.parameters():
param.requires_grad = True
requires_grad_to_set = False
summary_train, steps = run_nn(
train_loader, model, loss_function, distances, classes, opts, epoch, steps, emb_layer, embeddings_mat, optimizer, is_inference=False,
)
else:
summary_train, steps = run(
train_loader, model, loss_function, distances, soft_labels, classes, opts, epoch, steps, optimizer, is_inference=False, corrector=corrector,
)
logger.log(opts.out_folder, summary_train, epoch, is_training=True, save_log=True)
# print summary of the epoch and save checkpoint
model.eval()
state = {"epoch": epoch + 1, "steps": steps, "arch": opts.arch, "state_dict": model.state_dict(), "optimizer": optimizer.state_dict()}
_save_checkpoint(state, opts.out_folder, epoch+1)
model.train()
print("\nSummary for epoch %04d (for train set):" % epoch)
pp.pprint(summary_train)
# VALIDATION MBM
# if opts.devise or opts.barzdenzler:
# summary_val, steps = run_nn(
# val_loader, model, loss_function, distances, classes, opts, epoch, steps, emb_layer, embeddings_mat, is_inference=True,
# )
# else:
# summary_val, steps = run(
# val_loader, model, loss_function, distances, soft_labels, classes, opts, epoch, steps, is_inference=True, corrector=corrector,
# )
# logger.log(opts.out_folder, summary_val, epoch, is_validation=True, save_log=True)
# _save_best_checkpoint(state, epoch, opts.out_folder)
# print("\nSummary for epoch %04d (for val set):" % epoch)
# pp.pprint(summary_val)
# print("\n\n")
#
# # TESTING MBM
# if opts.devise or opts.barzdenzler:
# summary_test, steps = run_nn(
# test_loader, model, loss_function, distances, classes, opts, 0, 0, emb_layer, embeddings_mat, is_inference=True,
# )
# else:
# summary_test, steps = run(
# test_loader, model, loss_function, distances, soft_labels, classes, opts, 0, 0, is_inference=True, corrector=corrector,
# )
# logger.log(opts.out_folder, summary_test, epoch, is_testing=True, save_log=True)
# print("\nSummary for epoch %04d (for test set):" % epoch)
# pp.pprint(summary_test)
# print("\n\n")
# VAL AND TEST CRM
crm_opts.out_folder = os.path.join(opts.out_folder, f"{epoch}")
logger._print("CRM Test Results >>>>>>>>>>", os.path.join(crm_opts.out_folder, "logs.txt"))
compute_results.main(crm_opts, crm_opts.out_folder)
def _load_checkpoint(opts, model, optimizer):
if os.path.isfile(os.path.join(opts.out_folder, "best.checkpoint.pth.tar")):
print("=> loading checkpoint '{}'".format(opts.out_folder))
checkpoint = torch.load(os.path.join(opts.out_folder, "best.checkpoint.pth.tar"))
opts.start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
# steps = checkpoint["steps"]
steps = 0
print("=> loaded checkpoint '{}' (epoch {})".format(opts.out_folder, checkpoint["epoch"]))
elif opts.pretrained_folder is not None:
if os.path.exists(opts.pretrained_folder):
print("=> loading pretrained checkpoint '{}'".format(opts.pretrained_folder))
if os.path.isdir(opts.pretrained_folder):
checkpoint = torch.load(os.path.join(opts.pretrained_folder, "best.checkpoint.pth.tar"))
else:
checkpoint = torch.load(opts.pretrained_folder)
if opts.devise or opts.barzdenzler:
model_dict = model.state_dict()
pretrained_dict = checkpoint["state_dict"]
# filter out FC layer
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k not in ["fc.1.weight", "fc.1.bias"]}
# overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# load the new state dict
model.load_state_dict(pretrained_dict, strict=False)
else:
model.load_state_dict(checkpoint["state_dict"], strict=False)
steps = 0
print("=> loaded pretrained checkpoint '{}' (epoch {})".format(opts.pretrained_folder, checkpoint["epoch"]))
else:
raise FileNotFoundError("Can not find {}".format(opts.pretrained_folder))
else:
steps = 0
print("=> no checkpoint found at '{}'".format(opts.out_folder))
return steps
def _save_checkpoint(state, out_folder, epoch):
filename = os.path.join(out_folder, f"checkpoint.pth.tar")
torch.save(state, filename)
def _save_best_checkpoint(state, epoch, out_folder):
filename = os.path.join(out_folder, f"{epoch}", "best.checkpoint.pth.tar")
if not os.path.exists(os.path.join(out_folder, f"{epoch}")):
os.makedirs(os.path.join(out_folder, f"{epoch}"))
torch.save(state, filename)
def _select_optimizer(model, opts):
if opts.optimizer == "adagrad":
return torch.optim.Adagrad(model.parameters(), opts.lr, weight_decay=opts.weight_decay)
elif opts.optimizer == "adam":
return torch.optim.Adam(model.parameters(), opts.lr, weight_decay=opts.weight_decay, amsgrad=False)
elif opts.optimizer == "adam_amsgrad":
if opts.devise or opts.barzdenzler:
return torch.optim.Adam(
[
{"params": model.conv1.parameters()},
{"params": model.layer1.parameters()},
{"params": model.layer2.parameters()},
{"params": model.layer3.parameters()},
{"params": model.layer4.parameters()},
{"params": model.fc.parameters(), "lr": opts.lr_fc, "weight_decay": opts.weight_decay_fc},
],
lr=opts.lr,
weight_decay=opts.weight_decay,
amsgrad=True,
)
else:
return torch.optim.Adam(model.parameters(), opts.lr, weight_decay=opts.weight_decay, amsgrad=True, )
elif opts.optimizer == "rmsprop":
return torch.optim.RMSprop(model.parameters(), opts.lr, weight_decay=opts.weight_decay, momentum=0)
elif opts.optimizer == "SGD":
return torch.optim.SGD(model.parameters(), opts.lr, weight_decay=opts.weight_decay, momentum=0, nesterov=False, )
elif opts.optimizer == "custom_sgd":
if opts.data == "cifar-100": #or opts.loss == "soft-labels" or opts.loss == "hierarchical-cross-entropy":
if opts.loss == "cross-entropy": #or opts.loss == "soft-labels":
return torch.optim.SGD([
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
if opts.loss == "soft-labels":
return torch.optim.SGD([
{'params': model.classifier_3.parameters(), 'lr': 0.0005}, # volcanic-sweep-10 parameters.
{'params': model.features_2.parameters(), 'lr': 0.05},
], momentum=0.9, weight_decay=5e-4)
# return torch.optim.SGD([
# {'params': model.classifier_3.parameters(), 'lr': opts.lr_classifier},
# {'params': model.features_2.parameters(), 'lr': opts.lr_backbone},
# ], momentum=0.9, weight_decay=5e-4)
# return torch.optim.SGD([
# {'params': model.classifier_3.parameters(), 'lr': 0.0001}, #
# {'params': model.features_2.parameters(), 'lr': 0.1},
# ], momentum=0.9, weight_decay=5e-4)
if opts.loss == "flamingo-l3" or opts.loss == "ours-l3":
return torch.optim.SGD([
{'params': model.classifier_1.parameters(), 'lr': 0.1},
{'params': model.classifier_2.parameters(), 'lr': 0.1},
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
if opts.data == "inaturalist19-224":
if opts.loss == "cross-entropy":
if opts.arch == "custom_resnet18":
return torch.optim.SGD([
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.features_1.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
if opts.loss == "soft-labels": #or opts.loss == "hierarchical-cross-entropy":
if opts.arch == "custom_resnet18":
return torch.optim.SGD([
{'params': model.classifier_3.parameters(), 'lr': opts.lr_classifier},
{'params': model.features_1.parameters(), 'lr': opts.lr_backbone},
{'params': model.features_2.parameters(), 'lr': opts.lr_backbone},
], momentum=0.9, weight_decay=5e-4)
# elif opts.arch == "custom_resnet18_default":
# return torch.optim.SGD([
# {'params': model.classifier_3.parameters(), 'lr': 0.1},
# {'params': model.features_2.parameters(), 'lr': 0.01},
# ], momentum=0.9, weight_decay=5e-4)
if opts.loss == "flamingo-l7" or opts.loss == "ours-l7" or opts.loss == "ours-flamingo-l7" or opts.loss == "vanilla-single":
return torch.optim.SGD([
{'params': model.classifier_1.parameters(), 'lr': 0.1},
{'params': model.classifier_2.parameters(), 'lr': 0.1},
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.classifier_4.parameters(), 'lr': 0.1},
{'params': model.classifier_5.parameters(), 'lr': 0.1},
{'params': model.classifier_6.parameters(), 'lr': 0.1},
{'params': model.classifier_7.parameters(), 'lr': 0.1},
{'params': model.features_1.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
if opts.loss == "flamingo-l5" or opts.loss == "ours-l5":
return torch.optim.SGD([
{'params': model.classifier_1.parameters(), 'lr': 0.1},
{'params': model.classifier_2.parameters(), 'lr': 0.1},
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.classifier_4.parameters(), 'lr': 0.1},
{'params': model.classifier_5.parameters(), 'lr': 0.1},
{'params': model.features_1.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
if opts.loss == "flamingo-l3" or opts.loss == "ours-l3":
return torch.optim.SGD([
{'params': model.classifier_1.parameters(), 'lr': 0.1},
{'params': model.classifier_2.parameters(), 'lr': 0.1},
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.features_1.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
],
momentum=0.9, weight_decay=5e-4)
if opts.data == "tiered-imagenet-224":
if opts.loss == "cross-entropy" or opts.loss == "soft-labels" or opts.loss == "hierarchical-cross-entropy":
return torch.optim.SGD([
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.features_1.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
if opts.loss == "flamingo-l12" or opts.loss == "ours-l12": # Flamingo and ours doesn't work yet.
return torch.optim.SGD([
{'params': model.classifier_1.parameters(), 'lr': 0.1},
{'params': model.classifier_2.parameters(), 'lr': 0.1},
{'params': model.classifier_3.parameters(), 'lr': 0.1},
{'params': model.classifier_4.parameters(), 'lr': 0.1},
{'params': model.classifier_5.parameters(), 'lr': 0.1},
{'params': model.classifier_6.parameters(), 'lr': 0.1},
{'params': model.classifier_7.parameters(), 'lr': 0.1},
{'params': model.classifier_8.parameters(), 'lr': 0.1},
{'params': model.classifier_9.parameters(), 'lr': 0.1},
{'params': model.classifier_10.parameters(), 'lr': 0.1},
{'params': model.classifier_11.parameters(), 'lr': 0.1},
{'params': model.classifier_12.parameters(), 'lr': 0.1},
{'params': model.features_1.parameters(), 'lr': 0.1},
{'params': model.features_2.parameters(), 'lr': 0.01},
], momentum=0.9, weight_decay=5e-4)
else:
raise ValueError("Unknown optimizer", opts.loss)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--arch", default="resnet18", choices=MODEL_NAMES,
help="model architecture: | ".join(MODEL_NAMES))
parser.add_argument("--loss", default="cross-entropy", choices=LOSS_NAMES, help="loss type: | ".join(LOSS_NAMES))
parser.add_argument("--optimizer", default="adam_amsgrad", choices=OPTIMIZER_NAMES,
help="loss type: | ".join(OPTIMIZER_NAMES))
parser.add_argument("--lr", default=1e-5, type=float, help="initial learning rate of optimizer")
parser.add_argument("--weight_decay", default=0.0, type=float, help="weight decay of optimizer")
parser.add_argument("--pretrained", type=boolean, default=True, help="start from ilsvrc12/imagenet model weights")
parser.add_argument("--pretrained_folder", type=str, default=None,
help="folder or file from which to load the network weights")
parser.add_argument("--dropout", default=0.0, type=float, help="Prob of dropout for network FC layer")
parser.add_argument("--data_augmentation", type=boolean, default=True, help="Train with basic data augmentation")
parser.add_argument("--epochs", default=None, type=int, help="number of epochs")
parser.add_argument("--num_training_steps", default=200000, type=int,
help="number of total steps to train for (num_batches*num_epochs)")
parser.add_argument("--start-epoch", default=0, type=int, help="manual epoch number (useful on restarts)")
parser.add_argument("--batch-size", default=256, type=int, help="total batch size")
parser.add_argument("--shuffle_classes", default=False, type=boolean, help="Shuffle classes in the hierarchy")
parser.add_argument("--beta", default=0, type=float,
help="Softness parameter: the higher, the closer to one-hot encoding")
parser.add_argument("--alpha", type=float, default=0, help="Decay parameter for hierarchical cross entropy.")
# Devise/B&D ----------------------------------------------------------------------------------------------------------------------------------------------
parser.add_argument("--devise", type=boolean, default=False, help="Use DeViSe label embeddings")
parser.add_argument("--devise_single_negative", type=boolean, default=False,
help="Use one negative per samples instead of all")
parser.add_argument("--barzdenzler", type=boolean, default=False, help="Use Barz&Denzler label embeddings")
parser.add_argument("--train_backbone_after", default=float("inf"), type=float,
help="Start training backbone too after this many steps")
parser.add_argument("--use_2fc", default=False, type=boolean, help="Use two FC layers for Devise")
parser.add_argument("--fc_inner_dim", default=1024, type=int, help="If use_2fc is True, their inner dimension.")
parser.add_argument("--lr_fc", default=1e-3, type=float, help="learning rate for FC layers")
parser.add_argument("--weight_decay_fc", default=0.0, type=float, help="weight decay of FC layers")
parser.add_argument("--use_fc_batchnorm", default=False, type=boolean, help="Batchnorm layer in network head")
# Data/paths ----------------------------------------------------------------------------------------------------------------------------------------------
parser.add_argument("--random", default=False, type=boolean, help="Use random hierarchy?")
parser.add_argument("--data", default="tiered-imagenet-224",
help="id of the dataset to use: | ".join(DATASET_NAMES))
parser.add_argument("--target_size", default=224, type=int,
help="Size of image input to the network (target resize after data augmentation)")
parser.add_argument("--data-paths-config", help="Path to data paths yaml file", default="data_paths.yml")
parser.add_argument("--data-path", default=None,
help="explicit location of the data folder, if None use config file.")
parser.add_argument("--data_dir", default="data/", help="Folder containing the supplementary data")
parser.add_argument("--output", default=None, help="path to the model folder")
parser.add_argument("--expm_id", default="", type=str,
help="Name log folder as: out/<scriptname>/<date>_<expm_id>. If empty, expm_id=time")
# Log/val -------------------------------------------------------------------------------------------------------------------------------------------------
parser.add_argument("--log_freq", default=100, type=int, help="Log every log_freq batches")
parser.add_argument("--val_freq", default=5, type=int,
help="Validate every val_freq epochs (except the first 10 and last 10)")
# Execution -----------------------------------------------------------------------------------------------------------------------------------------------
parser.add_argument("--workers", default=2, type=int, help="number of data loading workers")
parser.add_argument("--seed", default=None, type=int, help="seed for initializing training. ")
parser.add_argument("--gpu", default=0, type=int, help="GPU id to use.")
parser.add_argument("--start", default="testing", choices=TASKS, help="name of the task | ".join(TASKS))
## CRM ----------------------------------------------------------------------------------
parser.add_argument("--rerank",default=1,type=int,help='whether to use CRM or not')
parser.add_argument("--checkpoint_path",default=None,type=str,help='path to the best checkpoint file')
opts = parser.parse_args()
if opts.random:
# opts.output = os.path.join("random_hierarchy", opts.output)
opts.data_dir = os.path.join(opts.data_dir, "random_hierarchy")
# setup output folder
opts.out_folder = opts.output if opts.output else get_expm_folder(__file__, "out", opts.expm_id)
if not os.path.exists(os.path.join(opts.out_folder, "json/train")):
print("Making experiment folder and subfolders under: ", opts.out_folder)
os.makedirs(os.path.join(opts.out_folder, "json/train"))
os.makedirs(os.path.join(opts.out_folder, "json/val"))
os.makedirs(os.path.join(opts.out_folder, "json/test"))
# os.makedirs(os.path.join(opts.out_folder, "model_snapshots"))
# set if we want to output soft labels or one hot
opts.soft_labels = opts.beta != 0
# print options as dictionary and save to output
PrettyPrinter(indent=4).pprint(vars(opts))
# with open(os.path.join(opts.out_folder, "opts.json"), "w") as fp:
# json.dump(vars(opts), fp)
# setup data path from config file if needed
if opts.data_path is None:
opts.data_paths = load_config(opts.data_paths_config)
opts.data_path = opts.data_paths[opts.data]
# setup random number generation
if opts.seed is not None:
make_deterministic(opts.seed)
gpus_per_node = torch.cuda.device_count()
if opts.data == "cifar-100":
project = "cifar-100"
elif opts.data == "inaturalist19-224":
project = "iNaturalist19"
elif opts.data == "tiered-imagenet-224":
project = "TieredImagenet"
entity = "hierarchical-classification"
# project = "mbm"
# entity = "depanshu-sani"
if opts.loss == "soft-labels":
run_name = "soft-labels (β=%.1f)" % opts.beta
elif opts.loss == "cross-entropy":
run_name = "cross-entropy"
elif opts.loss == "hierarchical-cross-entropy":
run_name = "hxe (α=%f)" % opts.alpha
else:
run_name = opts.loss
if opts.random:
run_name += "(random_hier)"
run_name += " (evaluate)"
logger.init(project=project, entity=entity, config=opts, run_name=run_name)
main_worker(gpus_per_node, opts)