-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparams.py
executable file
·79 lines (61 loc) · 2.51 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from utils.logger import setup_logger
from data import make_dataloader
from modeling import make_model
import random
import torch
import numpy as np
import os
import argparse
from config import cfg
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="EDITOR Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.MODEL.CLIP_FROZEN = False
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
if cfg.MODEL.DIST_TRAIN:
torch.cuda.set_device(args.local_rank)
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("EDITOR", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DIST_TRAIN:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
model = make_model(cfg, num_class=50, camera_num=8)
model.cuda()
model.eval()
print(sum(p.numel() / 1000000 for p in model.parameters() if p.requires_grad))
# Here is the code for testing the trainable parameters of the basic CNN model, different modality do not share the same parameters
# if __name__ == '__main__':
# from modeling.backbones.basic_cnn_params import build_model as cnn_build_model
# name = 'cal'
# model = cnn_build_model(name, 50, use_gpu = True)
# print("Now is ", name)
# Here the 3 means unshared parameters
# print(3* sum(p.numel() / 1000000 for p in model.parameters() if p.requires_grad))