Module Name | food_classification |
---|---|
Category | image classification |
Network | ResNet50_vd_ssld |
Dataset | Food Dataset |
Fine-tuning supported or not | No |
Module Size | 91MB |
Latest update date | - |
Data indicators | - |
-
- This module can be used for food classification.
-
-
paddlehub >= 2.0.0 | How to install PaddleHub
-
paddlex >= 1.3.7
-
-
-
$ hub install food_classification
- In case of any problems during installation, please refer to: Windows_Quickstart | Linux_Quickstart | Mac_Quickstart
-
-
-
$ hub run food_classification --input_path /PATH/TO/IMAGE
- If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
-
-
-
import paddlehub as hub import cv2 classifier = hub.Module(name="food_classification") images = [cv2.imread('/PATH/TO/IMAGE')] results = classifier.predict(images=images) for result in results: print(result)
-
-
-
def predict(images)
-
classification API.
-
Parameters
- images (list[numpy.ndarray]): image data, ndarray.shape is in the format [H, W, C], BGR;
-
Return
- result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability
- category_id (int): category id;
- category(str): category name;
- score(float): probability
- result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability
-
-
-
1.0.0
First release
-
$ hub install food_classification==1.0.0
-