-
Notifications
You must be signed in to change notification settings - Fork 248
/
BipartiteMatchingKuhn.cpp
75 lines (62 loc) · 1.7 KB
/
BipartiteMatchingKuhn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/**************************************************************************************
Kuhn algorithm for maximum matching in bipartite graph. Works in O(N * M)
More about it: http://e-maxx.ru/algo/kuhn_matching
Based on problem 1683 from informatics.mccme.ru:
http://informatics.mccme.ru/moodle/mod/statements/view.php?chapterid=1683
**************************************************************************************/
#include <iostream>
#include <fstream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cstring>
#include <cassert>
#include <utility>
#include <iomanip>
using namespace std;
const int MAXN = 105;
int n, m;
vector <int> g[MAXN];
bool used[MAXN];
int mt[MAXN];
int ans;
bool kuhn(int v) {
if (used[v])
return false;
used[v] = true;
for (int i = 0; i < (int) g[v].size(); i++) {
int to = g[v][i];
if (mt[to] == 0 || kuhn(mt[to])) {
mt[to] = v;
return true;
}
}
return false;
}
int main() {
//assert(freopen("input.txt","r",stdin));
//assert(freopen("output.txt","w",stdout));
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int can;
scanf("%d", &can);
if (can)
g[i].push_back(j);
}
}
for (int i = 1; i <= n; i++) {
memset(used, 0, sizeof(used));
if (kuhn(i))
ans++;
}
printf("%d\n", ans);
return 0;
}