You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In order to test the usability of the code, we used a small number of samples (about 20) for testing, and the following error occurred during the operation. Please provide a solution, thank you very much.
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Input In [3], in <cell line: 5>()
3 model = ClassificationModel(cfg=cfg, trainer=trainer)
4 model.init_from_checkpoint_if_available()
----> 5 model.fit()
File ~/OpenHands/openhands/apis/classification_model.py:108, in ClassificationModel.fit(self)
104 def fit(self):
105 """
106 Method to be called to start the training.
107 """
--> 108 self.trainer.fit(self, self.datamodule)
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:552, in Trainer.fit(self, model, train_dataloaders, val_dataloaders, datamodule, train_dataloader)
546 self.data_connector.attach_data(
547 model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, datamodule=datamodule
548 )
550 self.checkpoint_connector.resume_start()
--> 552 self._run(model)
554 assert self.state.stopped
555 self.training = False
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:917, in Trainer._run(self, model)
914 self.checkpoint_connector.restore_training_state()
916 # dispatch `start_training` or `start_evaluating` or `start_predicting`
--> 917 self._dispatch()
919 # plugin will finalized fitting (e.g. ddp_spawn will load trained model)
920 self._post_dispatch()
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:985, in Trainer._dispatch(self)
983 self.accelerator.start_predicting(self)
984 else:
--> 985 self.accelerator.start_training(self)
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py:92, in Accelerator.start_training(self, trainer)
91 def start_training(self, trainer: "pl.Trainer") -> None:
---> 92 self.training_type_plugin.start_training(trainer)
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py:161, in TrainingTypePlugin.start_training(self, trainer)
159 def start_training(self, trainer: "pl.Trainer") -> None:
160 # double dispatch to initiate the training loop
--> 161 self._results = trainer.run_stage()
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:995, in Trainer.run_stage(self)
993 if self.predicting:
994 return self._run_predict()
--> 995 return self._run_train()
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1030, in Trainer._run_train(self)
1027 if not self.is_global_zero and self.progress_bar_callback is not None:
1028 self.progress_bar_callback.disable()
-> 1030 self._run_sanity_check(self.lightning_module)
1032 # enable train mode
1033 self.model.train()
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1114, in Trainer._run_sanity_check(self, ref_model)
1112 # run eval step
1113 with torch.no_grad():
-> 1114 self._evaluation_loop.run()
1116 self.on_sanity_check_end()
1118 # reset validation metrics
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/loops/base.py:111, in Loop.run(self, *args, **kwargs)
109 try:
110 self.on_advance_start(*args, **kwargs)
--> 111 self.advance(*args, **kwargs)
112 self.on_advance_end()
113 self.iteration_count += 1
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py:109, in EvaluationLoop.advance(self, *args, **kwargs)
106 dataloader_iter = enumerate(dataloader)
107 dl_max_batches = self._max_batches[self.current_dataloader_idx]
--> 109 dl_outputs = self.epoch_loop.run(
110 dataloader_iter, self.current_dataloader_idx, dl_max_batches, self.num_dataloaders
111 )
113 # store batch level output per dataloader
114 self.outputs.append(dl_outputs)
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/loops/base.py:111, in Loop.run(self, *args, **kwargs)
109 try:
110 self.on_advance_start(*args, **kwargs)
--> 111 self.advance(*args, **kwargs)
112 self.on_advance_end()
113 self.iteration_count += 1
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py:111, in EvaluationEpochLoop.advance(self, dataloader_iter, dataloader_idx, dl_max_batches, num_dataloaders)
109 # lightning module methods
110 with self.trainer.profiler.profile("evaluation_step_and_end"):
--> 111 output = self.evaluation_step(batch, batch_idx, dataloader_idx)
112 output = self.evaluation_step_end(output)
114 self.batch_progress.increment_processed()
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py:158, in EvaluationEpochLoop.evaluation_step(self, batch, batch_idx, dataloader_idx)
156 self.trainer.lightning_module._current_fx_name = "validation_step"
157 with self.trainer.profiler.profile("validation_step"):
--> 158 output = self.trainer.accelerator.validation_step(step_kwargs)
160 return output
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/accelerators/accelerator.py:211, in Accelerator.validation_step(self, step_kwargs)
199 """The actual validation step.
200
201 Args:
(...)
208 (only if multiple val dataloaders used)
209 """
210 with self.precision_plugin.val_step_context(), self.training_type_plugin.val_step_context():
--> 211 return self.training_type_plugin.validation_step(*step_kwargs.values())
File ~/miniconda3/lib/python3.8/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py:178, in TrainingTypePlugin.validation_step(self, *args, **kwargs)
177 def validation_step(self, *args, **kwargs):
--> 178 return self.model.validation_step(*args, **kwargs)
File ~/OpenHands/openhands/apis/classification_model.py:43, in ClassificationModel.validation_step(self, batch, batch_idx)
38 """
39 Lightning calls this inside the training loop with the data from the validation dataloader
40 passed in as `batch` and calculates the loss and the accuracy.
41 """
42 y_hat = self.model(batch["frames"])
---> 43 loss = self.loss(y_hat, batch["labels"])
44 preds = F.softmax(y_hat, dim=-1)
45 acc_top1 = self.accuracy_metric(preds, batch["labels"])
File ~/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py:889, in Module._call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
892 self._forward_hooks.values()):
893 hook_result = hook(self, input, result)
File ~/miniconda3/lib/python3.8/site-packages/torch/nn/modules/loss.py:1047, in CrossEntropyLoss.forward(self, input, target)
1045 def forward(self, input: Tensor, target: Tensor) -> Tensor:
1046 assert self.weight is None or isinstance(self.weight, Tensor)
-> 1047 return F.cross_entropy(input, target, weight=self.weight,
1048 ignore_index=self.ignore_index, reduction=self.reduction)
File ~/miniconda3/lib/python3.8/site-packages/torch/nn/functional.py:2693, in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction)
2691 if size_average is not None or reduce is not None:
2692 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2693 return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
File ~/miniconda3/lib/python3.8/site-packages/torch/nn/functional.py:2388, in nll_loss(input, target, weight, size_average, ignore_index, reduce, reduction)
2384 raise ValueError(
2385 "Expected input batch_size ({}) to match target batch_size ({}).".format(input.size(0), target.size(0))
2386 )
2387 if dim == 2:
-> 2388 ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
2389 elif dim == 4:
2390 ret = torch._C._nn.nll_loss2d(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
IndexError: Target 11 is out of bounds.
Looking forward to your reply, best wishes!
The text was updated successfully, but these errors were encountered:
In order to test the usability of the code, we used a small number of samples (about 20) for testing, and the following error occurred during the operation. Please provide a solution, thank you very much.
Looking forward to your reply, best wishes!
The text was updated successfully, but these errors were encountered: