-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patheval.py
173 lines (141 loc) · 5.6 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import json
import argparse
import torch
from tqdm import tqdm
import numpy as np
import random
# root directory of evaluation dimension 1-9
cc3m_dir = "/YOUR_PATH_TO/seed_bench_image"
# root directory of evaluation dimension 10
dimension10_dir = "/YOUR_PATH_TO/SSV2/videos"
# root directory of evaluation dimension 11
dimension11_dir = "/YOUR_PATH_TO/EPIC-KITCHENS/3h91syskeag572hl6tvuovwv4d/videos/test"
# root directory of evaluation dimension 12
dimension12_dir = "/YOUR_PATH_TO/BreakfastII_15fps_qvga_sync"
seed = 0
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def is_integer_string(s):
try:
int(s)
return True
except ValueError:
return False
def filter_questions(data, task='all'):
if task == "image":
return [q for q in data if 1 <= q["question_type_id"] <= 9]
elif task == "video":
return [q for q in data if 10 <= q["question_type_id"] <= 12]
elif task == "all":
return data
elif is_integer_string(task):
return [q for q in data if q["question_type_id"] == int(task)]
else:
raise ValueError(f"Invalid task: {task}")
def build_model(model_name):
if model_name == 'instruct_blip':
from model.instruct_blip_interface import build
if model_name == 'huggingface_instruct_blip':
from model.huggingface_instructblip_interface import build
model = build()
return model
def is_integer_string(s):
try:
int(s)
return True
except ValueError:
return False
def filter_questions(data, task='all'):
if task == "image":
return [q for q in data if 1 <= q["question_type_id"] <= 9]
elif task == "video":
return [q for q in data if 10 <= q["question_type_id"] <= 12]
elif task == "all":
return data
elif is_integer_string(task):
return [q for q in data if q["question_type_id"] == int(task)]
else:
raise ValueError(f"Invalid task: {task}")
def run_inference(model, qa_anno, output_dir):
total_qa_num = len(qa_anno)
answer_list = []
output_f = open(os.path.join(output_dir, "results.json"), "a")
step = 0
for qa_item in tqdm(qa_anno):
data_info = {
'question': qa_item['question'],
'choices': [qa_item['choice_a'], qa_item['choice_b'], qa_item['choice_c'], qa_item['choice_d']],
'data_type': qa_item['data_type'],
}
if qa_item['data_type'] == 'image':
data_path = os.path.join(cc3m_dir, qa_item['data_id'])
elif qa_item['data_type'] == 'video':
if qa_item['question_type_id'] == 10:
data_path = os.path.join(dimension10_dir, qa_item['data_id'])
elif qa_item['question_type_id'] == 11:
data_path = os.path.join(dimension11_dir, qa_item['data_id'])
data_info['segment'] = qa_item['segment']
elif qa_item['question_type_id'] == 12:
data_path = os.path.join(dimension12_dir, qa_item['data_id'])
data_info['segment'] = qa_item['segment']
else:
raise ValueError("The question type id is not valid.")
else:
raise ValueError("The data type is not valid.")
data_info['data_path'] = data_path
# losses: loss values of 4 choices, torch tensor, shape=[4]
with torch.no_grad():
losses = model(data_info)
class_ranks = torch.argsort(losses, dim=-1).cpu()
pred_id = ['A', 'B', 'C', 'D'][class_ranks[0]]
gt = qa_item['answer']
answer_record = {
'question_id': qa_item['question_id'],
'prediction': pred_id
}
answer_list.append(answer_record)
# output prediction record for each question
output_f.write(json.dumps(answer_record) + "\n")
step += 1
print("evaluation finished! Calculating accuracy...")
type_counts = {}
correct_counts = {}
for item in answer_list:
pred, gt, data_type = item['prediction'], item['gt'], item['q_type_id']
type_counts[data_type] = type_counts.get(data_type, 0) + 1
if pred == gt:
correct_counts[data_type] = correct_counts.get(data_type, 0) + 1
print("Accuracy for each data type:")
total_count = 0
total_correct = 0
for data_type in type_counts.keys():
accuracy = correct_counts[data_type] / type_counts[data_type] * 100
print(f"Data type {data_type}: {accuracy:.2f}%")
total_count += type_counts[data_type]
total_correct += correct_counts[data_type]
total_accuracy = total_correct / total_count * 100
print(f"Total accuracy: {total_accuracy:.2f}%")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Arg Parser')
parser.add_argument('--model', type=str, default='instruct_blip')
parser.add_argument('--anno_path', type=str, default='SEED-Bench.json')
parser.add_argument('--output_dir', type=str, default='results')
parser.add_argument('--task', type=str, default='all')
args = parser.parse_args()
args = parser.parse_args()
qa_anno = json.load(open(args.anno_path, 'rb'))
if 'questions' in qa_anno.keys():
qa_anno = qa_anno['questions']
qa_anno = filter_questions(qa_anno, args.task)
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
print(f'evaluating.. {args.model}')
# The interface for testing MLLMs
model = build_model(args.model).cuda()
run_inference(model, qa_anno, args.output_dir)