-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
799 lines (645 loc) · 37.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
import datetime
from ARKitScenes.arkitscenes_dataset import ARKitSceneDataset
from models.dump_helper import dump_results, dump_pc
from models.dump_helper_quad import dump_results_quad
from models.utils.arkit_loss_util import get_arkit_pc_loss
from models.utils.gamma_mixture_loss_util import gamma_mixture_guide_criterion
from models.utils.mean_teacher_consistency_util import get_consistency_loss
import os
import sys
import time
import numpy as np
import json
import argparse
import random
import torch
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
RUN_NAME = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
torch.autograd.set_detect_anomaly(True)
FLAGS = None
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
sys.path.append(os.path.join(ROOT_DIR, 'models'))
from utils.lr_scheduler import get_scheduler
from utils.logger import setup_logger
from models.pq_transformer import PQ_Transformer
from models.loss_helper_pq import get_loss
from models.ap_helper_pq import APCalculator, parse_predictions, parse_groundtruths,QUADAPCalculator, parse_quad_predictions,parse_quad_groundtruths
def parse_option():
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--num_target', type=int, default=256, help='Proposal number [default: 256]')
parser.add_argument('--quad_num_target', type=int, default=256, help='Quad proposal number [default: 256]')
parser.add_argument('--sampling', default='vote', type=str, help='Query points sampling method (kps, fps)')
# Transformer
parser.add_argument('--nhead', default=8, type=int, help='multi-head number')
parser.add_argument('--num_decoder_layers', default=6, type=int, help='number of decoder layers')
parser.add_argument('--dim_feedforward', default=2048, type=int, help='dim_feedforward')
parser.add_argument('--transformer_dropout', default=0.1, type=float, help='transformer_dropout')
parser.add_argument('--transformer_activation', default='relu', type=str, help='transformer_activation')
# Data
parser.add_argument('--batch_size', type=int, default=3, help='Batch Size during training [default: 8]')
parser.add_argument('--dataset', default='scannet', help='Dataset name. [default: scannet]')
parser.add_argument('--num_point', type=int, default=40000, help='Point Number [default: 50000]')
parser.add_argument('--use_height', action='store_true', help='Use height signal in input.')
parser.add_argument('--use_color', action='store_true', help='Use RGB color in input.')
parser.add_argument('--num_workers', type=int, default=4, help='num of workers to use')
parser.add_argument('--arkit', action="store_true", help="Whether or not to use ARKitScenes dataset.")
# Dataset Splitting
parser.add_argument('--start_proportion', default=0.0, type=float, help='Start proportion of the dataset')
parser.add_argument('--end_proportion', default=0.1, type=float, help='End proportion of the dataset')
# Training
parser.add_argument('--start_epoch', type=int, default=1, help='Epoch to run [default: 1]')
parser.add_argument('--max_epoch', type=int, default=600, help='Epoch to run [default: 180]')
parser.add_argument('--optimizer', type=str, default='adamW', help='optimizer')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum for SGD')
parser.add_argument('--weight_decay', type=float, default=0.0005,
help='Optimization L2 weight decay [default: 0.0005]')
parser.add_argument('--learning_rate', type=float, default=0.002,
help='Initial learning rate for all except decoder [default: 0.004]')
parser.add_argument('--decoder_learning_rate', type=float, default=0.0001,
help='Initial learning rate for decoder [default: 0.0004]')
parser.add_argument('--lr-scheduler', type=str, default='cosine',
choices=["step", "cosine"], help="learning rate scheduler")
parser.add_argument('--warmup-epoch', type=int, default=-1, help='warmup epoch')
parser.add_argument('--warmup-multiplier', type=int, default=100, help='warmup multiplier')
parser.add_argument('--lr_decay_epochs', type=int, default=[900,1000], nargs='+',
help='for step scheduler. where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='for step scheduler. decay rate for learning rate')
parser.add_argument('--clip_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--bn_momentum', type=float, default=0.1, help='Default bn momeuntum')
parser.add_argument('--syncbn', action='store_true', help='whether to use sync bn')
# Weak loss
parser.add_argument("--gamma_mixture", action="store_true", help="Whether to enable gamma mixture loss.")
parser.add_argument("--ema", action='store_true', help="whether to enable Mean Teacher strategy.")
parser.add_argument('--ema_decay', type=float, default=0.999, metavar='ALPHA', help='ema variable decay rate (default: 0.999)')
parser.add_argument('--consistency_weight', type=float, default=0.05, metavar='WEIGHT', help='use consistency loss with given weight (default: None)')
parser.add_argument('--consistency_rampup', type=int, default=1, metavar='EPOCHS', help='length of the consistency loss ramp-up')
parser.add_argument('--lambda_metric_normal', type=float, default=0.0010)
parser.add_argument('--lambda_metric_vertical', type=float, default=0.0010)
parser.add_argument('--lambda_metric_size', type=float, default=0.0010)
parser.add_argument('--lambda_metric_score', type=float, default=0.0010)
parser.add_argument('--lambda_arkit_pc_loss', type=float, default=0.0000)
# io
parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint path [default: None]')
parser.add_argument('--log_dir', default=f'log/{RUN_NAME}', help='Dump dir to save model checkpoint [default: log]')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=10, help='save frequency')
parser.add_argument('--val_freq', type=int, default=1, help='val frequency')
parser.add_argument('--step_freq', type=int, default=1, help='step frequency')
# others
parser.add_argument("--local_rank", type=int, help='local rank for DistributedDataParallel')
parser.add_argument('--ap_iou_thresholds', type=float, default=[0.25], nargs='+', #0.5
help='A list of AP IoU thresholds [default: 0.25,0.5]')
parser.add_argument("--rng_seed", type=int, default=0, help='manual seed')
parser.add_argument("--pc_loss", action='store_true', help='pc_loss')
parser.add_argument("--dump_result", action='store_true', help='pc_loss')
parser.add_argument("--is_eval_debug", action="store_true", help="Enter evaluation mode and embed.")
parser.add_argument("--is_train_debug", action="store_true", help="Enter train mode and embed.")
# Eval
parser.add_argument("--nms_iou_quad", type=float, default=0.25, help="NMS threshold for quad.")
args = parser.parse_args()
# args, unparsed = parser.parse_known_args()
args.print_freq = int(args.print_freq / args.end_proportion)
args.save_freq = int(args.save_freq / args.end_proportion)
args.val_freq = int(args.val_freq / args.end_proportion)
args.max_epoch = int(args.max_epoch / args.end_proportion)
args.consistency_rampup = int(args.consistency_rampup / args.end_proportion)
global FLAGS
FLAGS = {}
FLAGS['args'] = args
return args
def initiate_environment(args):
'''
initiate randomness.
:param config:
:return:
'''
torch.manual_seed(args.rng_seed)
torch.cuda.manual_seed_all(args.rng_seed)
np.random.seed(args.rng_seed)
random.seed(args.rng_seed)
def load_checkpoint(args, model, optimizer, scheduler, **kwargs):
logger.info("=> loading checkpoint '{}'".format(args.checkpoint_path))
checkpoint = torch.load(args.checkpoint_path, map_location='cpu')
if checkpoint['epoch'] == 'last':
checkpoint['epoch'] = 600
if checkpoint['epoch'] == 'best':
checkpoint['epoch'] = 0
args.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
if args.ema:
if 'ema_model' in kwargs.keys():
if 'ema_model' in checkpoint.keys():
kwargs['ema_model'].load_state_dict(checkpoint['ema_model'])
else:
logger.info("Loading for ema_model...")
kwargs['ema_model'].load_state_dict({k[len("module."):]:v for k, v in checkpoint['model'].items()})
logger.info("=> loaded successfully '{}' (epoch {})".format(args.checkpoint_path, checkpoint['epoch']))
del checkpoint
torch.cuda.empty_cache()
def save_checkpoint(args, epoch, model, optimizer, scheduler, save_cur=False, **kwargs):
logger.info('==> Saving...')
state = {
'config': args,
'save_path': '',
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'epoch': epoch,
}
if args.ema and 'ema_model' in kwargs.keys():
state['ema_model'] = kwargs['ema_model']
if save_cur:
state['save_path'] = os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')
torch.save(state, os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth'))
logger.info("Saved in {}".format(os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')))
elif epoch % args.save_freq == 0:
state['save_path'] = os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')
torch.save(state, os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth'))
logger.info("Saved in {}".format(os.path.join(args.log_dir, f'ckpt_epoch_{epoch}.pth')))
else:
# state['save_path'] = 'current.pth'
# torch.save(state, os.path.join(args.log_dir, 'current.pth'))
print("not saving checkpoint")
pass
LOADER_WK = None
def get_loader(args):
# Init datasets and dataloaders
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Create Dataset and Dataloader
if args.dataset == 'scannet':
sys.path.append(os.path.join(ROOT_DIR, 'scannet'))
from scannet.scannet_detection_dataset import ScannetDetectionDataset
from scannet.model_util_scannet import ScannetDatasetConfig
DATASET_CONFIG = ScannetDatasetConfig()
AUGMENT = False
TRAIN_DATASET = ScannetDetectionDataset('train', num_points=args.num_point,
augment=AUGMENT,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
start_proportion=args.start_proportion,
end_proportion=args.end_proportion,)
if args.arkit:
TRAIN_DATASET_WK = ARKitSceneDataset('train', num_points=args.num_point,
augment=AUGMENT,
start_proportion=0.0,
end_proportion=1.0,)
else:
TRAIN_DATASET_WK = ScannetDetectionDataset('train', num_points=args.num_point,
augment=AUGMENT,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
start_proportion=0.0,
end_proportion=1.0,)
TEST_DATASET = ScannetDetectionDataset('val', num_points=args.num_point,
augment=False,
use_color=True if args.use_color else False,
use_height=True if args.use_height else False,
start_proportion=0.0,
end_proportion=1.0)
TEST_DATASET_ARKIT = ARKitSceneDataset('valid', num_points=args.num_point,
augment=False,
start_proportion=0.0,
end_proportion=1.0,)
else:
raise NotImplementedError(f'Unknown dataset {args.dataset}. Exiting...')
print(f"train_len: {len(TRAIN_DATASET)}, test_len: {len(TEST_DATASET)}")
train_sampler = torch.utils.data.distributed.DistributedSampler(TRAIN_DATASET)
train_loader = torch.utils.data.DataLoader(TRAIN_DATASET,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
worker_init_fn=my_worker_init_fn,
pin_memory=True,
sampler=train_sampler,
drop_last=True)
# train_sampler_wk = torch.utils.data.distributed.DistributedSampler(TRAIN_DATASET_WK)
train_loader_wk = torch.utils.data.DataLoader(TRAIN_DATASET_WK,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
worker_init_fn=my_worker_init_fn,
pin_memory=True, \
# sampler=train_sampler_wk,
drop_last=True)
global LOADER_WK
LOADER_WK = train_loader_wk
test_sampler = torch.utils.data.distributed.DistributedSampler(TEST_DATASET, shuffle=False)
test_loader = torch.utils.data.DataLoader(TEST_DATASET,
batch_size=16,
shuffle=False,
num_workers=args.num_workers,
worker_init_fn=my_worker_init_fn,
pin_memory=True,
sampler=test_sampler,
drop_last=False)
test_loader_arkit = torch.utils.data.DataLoader(TEST_DATASET_ARKIT,
batch_size=16,
shuffle=False,
num_workers=args.num_workers,
worker_init_fn=my_worker_init_fn,
pin_memory=True, \
# sampler=train_sampler_wk,
drop_last=False)
if args.arkit:
test_loader = test_loader_arkit
print(f"train_loader_len: {len(train_loader)}, train_loader_wk_len: {len(train_loader_wk)}, test_loader_len: {len(test_loader)}")
return train_loader, train_loader_wk, test_loader, DATASET_CONFIG
LOADER_WK_ITER = None
def get_next_weak_batch():
global LOADER_WK
global LOADER_WK_ITER
try:
nxt = LOADER_WK_ITER.__next__()
except:
LOADER_WK_ITER = LOADER_WK.__iter__()
nxt = LOADER_WK_ITER.__next__()
return nxt
def get_model(args, DATASET_CONFIG, ema=False):
if args.use_height:
num_input_channel = int(args.use_color) * 3 + 1
else:
num_input_channel = int(args.use_color) * 3
model = PQ_Transformer(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
input_feature_dim=num_input_channel,
num_proposal=args.num_target,
num_quad_proposal=args.quad_num_target,
sampling=args.sampling
)
criterion = get_loss
if ema:
for param in model.parameters():
param.detach_()
return model, criterion
ema_model = None
def main(args):
train_loader, train_wk_loader, test_loader, DATASET_CONFIG = get_loader(args)
n_data = len(train_loader.dataset)
logger.info(f"length of training dataset: {n_data}")
n_data = len(test_loader.dataset)
logger.info(f"length of testing dataset: {n_data}")
model, criterion = get_model(args, DATASET_CONFIG)
if args.ema:
global ema_model
ema_model, _ = get_model(args, DATASET_CONFIG, ema=True)
if dist.get_rank() == 0:
pass
# logger.info(str(model))
# optimizer
if args.optimizer == 'adamW':
param_dicts = [
{"params": [p for n, p in model.named_parameters() if "decoder" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "decoder" in n and p.requires_grad],
"lr": args.decoder_learning_rate,
},
]
optimizer = optim.AdamW(param_dicts,
lr=args.learning_rate,
weight_decay=args.weight_decay)
else:
raise NotImplementedError
scheduler = get_scheduler(optimizer, len(train_loader), args)
model = model.cuda()
if args.ema:
ema_model = ema_model.cuda()
model = DistributedDataParallel(model, device_ids=[args.local_rank], broadcast_buffers=False)
if args.checkpoint_path:
assert os.path.isfile(args.checkpoint_path)
if args.ema:
load_checkpoint(args, model, optimizer, scheduler, ema_model=ema_model)
else:
load_checkpoint(args, model, optimizer, scheduler, )
# Used for AP calculation
CONFIG_DICT = {'remove_empty_box': False, 'use_3d_nms': True,
'nms_iou': 0.25, 'use_old_type_nms': False, 'cls_nms': True,
'per_class_proposal': True, 'conf_thresh': 0.0,'quad_thresh':0.5,
'dataset_config': DATASET_CONFIG, 'num_iou_quad': args.nms_iou_quad}
f1, ema_f1, max_f1, max_ema_f1 = 0.00, 0.20, 0.00, 0.20
if not args.is_eval_debug:
for epoch in range(args.start_epoch, args.max_epoch + 1):
train_loader.sampler.set_epoch(epoch)
# train_wk_loader.sampler.set_epoch(epoch)
tic = time.time()
train_one_epoch(epoch, train_loader, DATASET_CONFIG, CONFIG_DICT, model, criterion, optimizer, scheduler, args)
logger.info('epoch {}, total time {:.2f}, '
'lr_base {:.5f}, lr_decoder {:.5f}'.format(epoch, (time.time() - tic),
optimizer.param_groups[0]['lr'],
optimizer.param_groups[1]['lr']))
if epoch % args.val_freq == 1 or args.val_freq == 1:
f1 = evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds, model, criterion, args)
ema_f1 = evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds, ema_model, criterion, args, ema=True)
if f1 > max_f1:
save_checkpoint(args, 'best', model, optimizer, scheduler, save_cur=True)
max_f1 = f1
if ema_f1 > max_ema_f1:
save_checkpoint(args, 'ema_best', model, optimizer, scheduler, save_cur=True, ema_model=ema_model)
max_ema_f1 = ema_f1
if dist.get_rank() == 0:
# save model
save_checkpoint(args, epoch, model, optimizer, scheduler)
save_checkpoint(args, 'last', model, optimizer, scheduler, save_cur=True)
evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds, model, criterion, args)
evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, args.ap_iou_thresholds, ema_model, criterion, args, ema=True)
logger.info("Saved in {}".format(os.path.join(args.log_dir, f'ckpt_epoch_last.pth')))
return os.path.join(args.log_dir, f'ckpt_epoch_last.pth')
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def get_current_consistency_weight(epoch):
global FLAGS
args = FLAGS['args']
def sigmoid_rampup(current, rampup_length):
"""Exponential rampup from https://arxiv.org/abs/1610.02242"""
if rampup_length == 0:
return 1.0
else:
current = np.clip(current, 0.0, rampup_length)
phase = 1.0 - current / rampup_length
return float(np.exp(-5.0 * phase * phase))
# Consistency ramp-up from https://arxiv.org/abs/1610.02242
return args.consistency_weight * sigmoid_rampup(epoch, args.consistency_rampup)
def train_one_epoch(epoch, train_loader, DATASET_CONFIG, CONFIG_DICT, model, criterion, optimizer, scheduler, config):
stat_dict = {} # collect statistics
start_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
if config.ema:
global ema_model
ema_model.train()
model.train() # set model to training mode
for batch_idx, batch_data_label in enumerate(train_loader):
batch_size = config.batch_size
for key in batch_data_label:
if key == 'scan_name':
continue
batch_data_label[key] = batch_data_label[key].cuda(non_blocking=True)
batch_data_unlabeled = get_next_weak_batch()
for key in batch_data_unlabeled:
if key == "scan_name":
continue
batch_data_unlabeled[key] = batch_data_unlabeled[key].cuda(non_blocking=True)
inputs = {'point_clouds': torch.concat(
[batch_data_label['point_clouds'], batch_data_unlabeled['point_clouds']], dim=0
)}
ema_inputs = {'point_clouds': torch.concat(
[batch_data_label['ema_point_clouds'], batch_data_unlabeled['ema_point_clouds']], dim=0
)}
# Forward pass
end_points = model(inputs)
with torch.no_grad():
ema_end_points = ema_model(ema_inputs)
if batch_idx % config.step_freq == 0:
optimizer.zero_grad()
# 1. Detector Ground Truth Loss for the part of first half of end_points
gt_end_points = {}
for key in end_points:
gt_end_points[key] = end_points[key][:batch_size, ...]
for key in batch_data_label:
assert (key not in gt_end_points)
gt_end_points[key] = batch_data_label[key]
loss, gt_end_points = criterion(gt_end_points, DATASET_CONFIG, pc_loss = config.pc_loss)
if config.gamma_mixture:
# 2. Filter points according to gamma mixture for the last half part of the point clouds
gamma_mixture_end_points = {}
for key in end_points:
gamma_mixture_end_points[key] = end_points[key][batch_size:, ...]
for key in batch_data_unlabeled:
assert (key not in gamma_mixture_end_points)
gamma_mixture_end_points[key] = batch_data_unlabeled[key]
metric_normal, metric_vertical, metric_size, metric_score = gamma_mixture_guide_criterion(
gamma_mixture_end_points, DATASET_CONFIG, config=config, CONFIG_DICT=CONFIG_DICT
)
gamma_mixture_filter_loss = config.lambda_metric_normal * metric_normal \
+ config.lambda_metric_vertical * metric_vertical \
+ config.lambda_metric_size * metric_size \
+ config.lambda_metric_score * metric_score
else:
metric_normal, metric_vertical, metric_size, metric_score = 0.0, 0.0, 0.0, 0.0
gamma_mixture_filter_loss = 0.0
if config.ema:
# 3. Mean Teacher Loss for the consistency of end_points and ema_inputs
for key in ['flip_x_axis', 'flip_y_axis', "rot_mat", "scale"]:
end_points[key] = torch.concat([
batch_data_label[key], batch_data_unlabeled[key]
], dim=0)
consistency_weight = get_current_consistency_weight(epoch)
consistency_loss, end_points = get_consistency_loss(end_points, ema_end_points, DATASET_CONFIG)
consistency_loss *= consistency_weight
else:
consistency_loss = 0.0
if config.arkit:
arkit_pc_loss, collisions = get_arkit_pc_loss(end_points, batch_data_unlabeled, DATASET_CONFIG)
arkit_pc_loss *= config.lambda_arkit_pc_loss
else:
arkit_pc_loss, collisions = 0.0, 0
# Sum all of the losses up
total_loss = loss + consistency_loss + gamma_mixture_filter_loss + arkit_pc_loss
# Save for print
end_points['consistency_loss'] = consistency_loss
end_points['metric_normal'] = metric_normal
end_points['metric_vertical'] = metric_vertical
end_points['metric_size'] = metric_size
end_points['metric_score'] = metric_score
end_points['gamma_mixture_filter_loss'] = gamma_mixture_filter_loss
end_points['arkit_pc_loss'] = arkit_pc_loss
end_points['arkit_collisions'] = collisions
end_points['total_loss'] = total_loss
total_loss.backward()
if batch_idx % config.step_freq == config.step_freq - 1:
if config.clip_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.clip_norm)
optimizer.step()
scheduler.step()
try:
model.module.i += 1
I = model.module.i
except:
model.i += 1
I = model.i
ema_model.i = I
update_ema_variables(model, ema_model, config.ema_decay, I)
stat_dict['grad_norm'] = grad_total_norm
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
if isinstance(end_points[key], float):
stat_dict[key] += end_points[key]
else:
stat_dict[key] += end_points[key].item()
if (batch_idx + 1) % config.print_freq == 0:
logger.info(f'Train: [{epoch}][{batch_idx + 1}/{len(train_loader)}] ' + ''.join(
[f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if 'loss' not in key]))
logger.info(f"grad_norm: {stat_dict['grad_norm']}")
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if
'loss' in key and 'proposal_' not in key and 'last_' not in key and 'head_' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if 'last_' in key]))
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if 'proposal_' in key]))
for ihead in range(config.num_decoder_layers - 2, -1, -1):
logger.info(''.join([f'{key} {stat_dict[key] / config.print_freq:.4f} \t'
for key in sorted(stat_dict.keys()) if f'{ihead}head_' in key]))
for key in sorted(stat_dict.keys()):
stat_dict[key] = 0
def evaluate_one_epoch(test_loader, DATASET_CONFIG, CONFIG_DICT, AP_IOU_THRESHOLDS, model, criterion, config, ema=False):
stat_dict = {}
start_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
try:
I = model.module.i
except:
I = model.i
if config.num_decoder_layers > 0:
prefixes = ['last_'] #, 'proposal_'] + [f'{i}head_' for i in range(config.num_decoder_layers - 1)]
else:
prefixes = ['proposal_'] # only proposal
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
for iou_thresh in AP_IOU_THRESHOLDS]
quad_ap_calculator_list = [QUADAPCalculator(iou_thresh, DATASET_CONFIG.class2quad, logger, I) \
for iou_thresh in AP_IOU_THRESHOLDS]
mAPs = [[iou_thresh, {k: 0 for k in prefixes}] for iou_thresh in AP_IOU_THRESHOLDS]
model.eval() # set model to eval mode (for bn and dp)
batch_pred_map_cls_dict = {k: [] for k in prefixes}
batch_gt_map_cls_dict = {k: [] for k in prefixes}
batch_pred_quad_map_cls_dict = {k: [] for k in prefixes}
batch_gt_quad_map_cls_dict = {k: [] for k in prefixes}
batch_pred_corner_dict = {k: [] for k in prefixes}
batch_gt_corner_dict = {k: [] for k in prefixes}
batch_gt_horizontal_dict = {k: [] for k in prefixes}
for batch_idx, batch_data_label in enumerate(test_loader):
for key in batch_data_label:
if key == 'scan_name':
continue
batch_data_label[key] = batch_data_label[key].cuda(non_blocking=True)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
with torch.no_grad():
end_points = model(inputs)
# Compute loss
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
if not config.arkit:
loss, end_points = criterion(end_points, DATASET_CONFIG, pc_loss = config.pc_loss)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key:
if key not in stat_dict: stat_dict[key] = 0
if isinstance(end_points[key], float):
stat_dict[key] += end_points[key]
else:
stat_dict[key] += end_points[key].item()
for prefix in prefixes:
if not config.arkit:
batch_pred_map_cls, pred_mask = parse_predictions(end_points, CONFIG_DICT, prefix)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
batch_pred_map_cls_dict[prefix].append(batch_pred_map_cls)
batch_gt_map_cls_dict[prefix].append(batch_gt_map_cls)
end_points['pred_mask']=pred_mask
batch_pred_quad_map_cls,pred_quad_mask,batch_pred_quad_corner = parse_quad_predictions(end_points, CONFIG_DICT, prefix)
batch_gt_quad_map_cls,batch_gt_quad_corner = parse_quad_groundtruths(end_points, CONFIG_DICT)
batch_pred_quad_map_cls_dict[prefix].append(batch_pred_quad_map_cls)
batch_gt_quad_map_cls_dict[prefix].append(batch_gt_quad_map_cls)
batch_pred_corner_dict[prefix].append(batch_pred_quad_corner)
batch_gt_corner_dict[prefix].append(batch_gt_quad_corner)
batch_gt_horizontal_dict[prefix].append(end_points['horizontal_quads'])
end_points['pred_quad_mask']=pred_quad_mask
if (not config.arkit) and (batch_idx + 1) % config.print_freq == 0:
logger.info(f'Eval: [{batch_idx + 1}/{len(test_loader)}] ' + ''.join(
[f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'loss' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if
'loss' in key and 'proposal_' not in key and 'last_' not in key and 'head_' not in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'last_' in key]))
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if 'proposal_' in key]))
for ihead in range(config.num_decoder_layers - 2, -1, -1):
logger.info(''.join([f'{key} {stat_dict[key] / (float(batch_idx + 1)):.4f} \t'
for key in sorted(stat_dict.keys()) if f'{ihead}head_' in key]))
if not config.arkit:
#objects:
mAP = 0.0
for prefix in prefixes:
for (batch_pred_map_cls, batch_gt_map_cls) in zip(batch_pred_map_cls_dict[prefix],
batch_gt_map_cls_dict[prefix]):
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
# Evaluate average precision
for i, ap_calculator in enumerate(ap_calculator_list):
metrics_dict = ap_calculator.compute_metrics()
logger.info(f'=====================>{prefix} IOU THRESH: {AP_IOU_THRESHOLDS[i]}<=====================')
for key in metrics_dict:
logger.info(f'{key} {metrics_dict[key]}')
if prefix == 'last_' and ap_calculator.ap_iou_thresh > 0.3:
mAP = metrics_dict['mAP']
mAPs[i][1][prefix] = metrics_dict['mAP']
ap_calculator.reset()
for mAP in mAPs:
logger.info(f'IoU[{mAP[0]}]:\t' + ''.join([f'{key}: {mAP[1][key]:.4f} \t' for key in sorted(mAP[1].keys())]))
object_map = mAP[1]['last_']
#quad
mAP_ = 0.0
for prefix in prefixes:
for (batch_pred_map_cls, batch_gt_map_cls,batch_pred_corner,batch_gt_corner,batch_gt_horizontal) in zip(batch_pred_quad_map_cls_dict[prefix],
batch_gt_quad_map_cls_dict[prefix],batch_pred_corner_dict[prefix],batch_gt_corner_dict[prefix],batch_gt_horizontal_dict[prefix]):
for ap_calculator in quad_ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls,batch_pred_corner,batch_gt_corner,batch_gt_horizontal)
# Evaluate average precision
for i, ap_calculator in enumerate(quad_ap_calculator_list):
metrics_dict = ap_calculator.compute_metrics()
if ema:
f1 = ap_calculator.compute_F1(calculated=True, is_ema=True)
else:
f1 = ap_calculator.compute_F1(calculated=True)
logger.info(f'=====================>Layout Estimation<=====================')
logger.info(f'F1 scores: {f1}')
# logger.info(f'=====================>{prefix} IOU THRESH: {AP_IOU_THRESHOLDS[i]}<=====================')
# for key in metrics_dict:
# logger.info(f'{key} {metrics_dict[key]}')
if prefix == 'last_' and ap_calculator.ap_iou_thresh > 0.3:
mAP_ = metrics_dict['mAP']
mAPs[i][1][prefix] = metrics_dict['mAP']
ap_calculator.reset()
for mAP_ in mAPs:
logger.info(f'IoU[{mAP_[0]}]:\t' + ''.join([f'{key}: {mAP_[1][key]:.4f} \t' for key in sorted(mAP_[1].keys())]))
return f1
if __name__ == '__main__':
opt = parse_option()
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
initiate_environment(opt)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
import time
LOG_DIR = os.path.join(opt.log_dir, 'pq-transformer',
f'{opt.dataset}_{RUN_NAME}')
while os.path.exists(LOG_DIR):
LOG_DIR = os.path.join(opt.log_dir, 'pq-transformer',
f'{opt.dataset}_{RUN_NAME}')
opt.log_dir = LOG_DIR
os.makedirs(opt.log_dir, exist_ok=True)
logger = setup_logger(output=opt.log_dir, distributed_rank=dist.get_rank(), name="pq-transformer")
if dist.get_rank() == 0:
path = os.path.join(opt.log_dir, "config.json")
with open(path, 'w') as f:
json.dump(vars(opt), f, indent=2)
logger.info("Full config saved to {}".format(path))
logger.info(str(vars(opt)))
ckpt_path = main(opt)