-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnoise_prior_inference.py
executable file
·329 lines (256 loc) · 15.8 KB
/
noise_prior_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
### Noise Prior for Diffusion-based Semantic Synthesis
### Imports
import os
import random
import numpy as np
import torch
from tqdm import tqdm
import argparse
from ldm.util import default
from cldm.model import create_model, load_state_dict
from torch.nn.functional import interpolate
from cldm.ddim_hacked import DDIMSampler
import einops
from PIL import Image
### constants
DATASETS = ["cityscapes", "ade20k", "coco-stuff"]
def get_statistics_result(args):
return {
"spatial": os.path.join(args.stat_dir, args.dataset, args.stat_name + "_spatial_mean_std.npy"),
"categorical": os.path.join(args.stat_dir, args.dataset, args.stat_name + "_categorical_mean_std.npy"),
"spatial_raw": os.path.join(args.stat_dir, args.dataset, args.stat_name + "_spatial_raw.npy"),
"categorical_raw": os.path.join(args.stat_dir, args.dataset, args.stat_name + "_categorical_raw.npy"),
"spatial_class_joint": os.path.join(args.stat_dir, args.dataset, args.stat_name + "_spatial_class_mean_std.npy"),
}
PROMPT = {
"cityscapes": "Realistic city road scenes",
"ade20k": "diverse images depicting various scenes",
"coco-stuff": "Realistic image",
}
### inference function
def sample_spatial_prior(args, model, dataset, term, prior_dict, return_mean_std_map=False, noise=None):
# prior sampling
spatial_prior = prior_dict['spatial'].item()
spatial_prior_mean = torch.tensor(spatial_prior['mean']).to(model.device)
spatial_prior_std = torch.tensor(spatial_prior['std']).to(model.device)
if return_mean_std_map:
return spatial_prior_mean, spatial_prior_std
if noise is None:
noise = torch.randn((args.batch_size, 4, args.resolution[0] // 8, args.resolution[1] // 8)).to(model.device)
final_prior_map = noise * spatial_prior_std + spatial_prior_mean
return final_prior_map
def sample_class_prior(args, model, dataset, term, prior_dict, return_mean_std_map=False, noise=None):
class_prior = prior_dict['class'].item()
# get label map for the image
label_map = term["label"]
downsampled_label = interpolate(torch.tensor(label_map)[None, None, ...], size=(args.resolution[0] // 8, args.resolution[1] // 8), mode='nearest')[0][0]
# set all keys that not in class_prior.keys() to 255
downsampled_label[~torch.isin(downsampled_label.long(), torch.tensor(list(class_prior.keys())))] = 255
# assemble class map
if noise is None:
noise = torch.randn((args.batch_size, 4, args.resolution[0] // 8, args.resolution[1] // 8)).to(model.device)
label_indices = torch.unique(downsampled_label).tolist()
label_means = {k: class_prior[k]['mean'][None, :, None, None] for k in label_indices}
label_stds = {k: class_prior[k]['std'][None, :, None, None] for k in label_indices}
label_mask_maps = {k: (downsampled_label == k).float()[None, None, ...].to(model.device) for k in label_indices}
mean_map = sum([torch.tensor(label_means[k]).to(model.device) * label_mask_maps[k] for k in label_indices])
std_map = sum([torch.tensor(label_stds[k]).to(model.device) * label_mask_maps[k] for k in label_indices])
if return_mean_std_map:
return mean_map, std_map
gaussian_map = noise * std_map + mean_map
return gaussian_map
def sample_spatial_class_prior(args, model, dataset, term, prior_dict, return_mean_std_map=False, noise=None, fallback="spatial"):
joint_prior = prior_dict['spatial_class_joint'].item()
# get label map for the image
label_map = term["label"]
downsampled_label = interpolate(torch.tensor(label_map)[None, None, ...], size=(args.resolution[0] // 8, args.resolution[1] // 8), mode='nearest')[0][0]
# assemble map
if noise is None:
noise = torch.randn((args.batch_size, 4, args.resolution[0] // 8, args.resolution[1] // 8)).to(model.device)
label_indices = torch.unique(downsampled_label).tolist()
label_spatial_mean_maps = {class_id: joint_prior['mean'][class_id] for class_id in label_indices}
label_spatial_std_maps = {class_id: joint_prior['std'][class_id] for class_id in label_indices}
# label_spatial_maps = {class_id: noise * torch.tensor(label_spatial_std_maps[class_id]).to(model.device) + torch.tensor(label_spatial_mean_maps[class_id]).to(model.device) for class_id in label_indices}
label_count_maps = {class_id: joint_prior['count'][class_id] for class_id in label_indices}
label_mask_maps = {k: (downsampled_label == k).float()[None, None, ...].to(model.device) for k in label_indices}
mean_map = sum([torch.tensor(label_spatial_mean_maps[k]).to(model.device) * label_mask_maps[k] for k in label_indices])
std_map = sum([torch.tensor(label_spatial_std_maps[k]).to(model.device) * label_mask_maps[k] for k in label_indices])
count_map = sum([torch.tensor(label_count_maps[k]).to(model.device) * label_mask_maps[k] for k in label_indices])
# if count map reaches 0, use fallback
replace_region = (count_map == 0).float()
if replace_region.sum() == 0:
new_mean_map = mean_map
new_std_map = std_map
else:
if fallback == "spatial":
replace_prior = prior_dict['spatial'].item()
replace_prior_mean = torch.tensor(replace_prior['mean']).to(model.device)
replace_prior_std = torch.tensor(replace_prior['std']).to(model.device)
elif fallback == "class":
replace_prior_mean, replace_prior_std = sample_class_prior(args, model, dataset, term, prior_dict, return_mean_std_map=True)
else:
raise NotImplementedError
new_mean_map = replace_region * replace_prior_mean + (1 - replace_region) * mean_map
new_std_map = replace_region * replace_prior_std + (1 - replace_region) * std_map
if return_mean_std_map:
return new_mean_map, new_std_map
gaussian_map = noise * new_std_map + new_mean_map
return gaussian_map
def sample_prior(args, model, dataset, term, prior_dict):
if args.prior_type == "normal":
assert args.diffusion_steps == 999, "diffusion_steps must be 999 for normal prior"
return torch.randn((args.batch_size, 4, args.resolution[0] // 8, args.resolution[1] // 8)).to(model.device)
elif args.prior_type == "spatial":
final_prior_map = sample_spatial_prior(args, model, dataset, term, prior_dict)
# add noise
noise = torch.randn_like(final_prior_map)
diffusion_step = torch.tensor([args.diffusion_steps]).long().to(model.device)
x_noisy = model.q_sample(x_start=final_prior_map, t=diffusion_step, noise=noise)
return x_noisy
elif args.prior_type == "class":
final_reduced_map = sample_class_prior(args, model, dataset, term, prior_dict)
# add noise
noise = torch.randn_like(final_reduced_map)
diffusion_step = torch.tensor([args.diffusion_steps]).long().to(model.device)
x_noisy = model.q_sample(x_start=final_reduced_map, t=diffusion_step, noise=noise)
return x_noisy
elif args.prior_type == "spatial-class":
# prior construction
spatial_mean, spatial_std = sample_spatial_prior(args, model, dataset, term, prior_dict, return_mean_std_map=True)
class_mean, class_std = sample_class_prior(args, model, dataset, term, prior_dict, return_mean_std_map=True)
alpha = args.spatial_scale
beta = args.class_scale
new_mean = alpha * spatial_mean + beta * class_mean
new_std = torch.sqrt(1 / (alpha + beta) * (alpha * spatial_std ** 2 + beta * class_std ** 2 + alpha * (spatial_mean - new_mean) ** 2 + beta * (class_mean - new_mean) ** 2))
final_reduced_map = torch.randn_like(new_mean) * new_std + new_mean
# add noise
noise = torch.randn((args.batch_size, 4, args.resolution[0] // 8, args.resolution[1] // 8)).to(model.device)
diffusion_step = torch.tensor([args.diffusion_steps]).long().to(model.device)
x_noisy = model.q_sample(x_start=final_reduced_map, t=diffusion_step, noise=noise)
return x_noisy
elif args.prior_type == "spatial-class-joint":
final_reduced_map = sample_spatial_class_prior(args, model, dataset, term, prior_dict, fallback="spatial")
# add noise
noise = torch.randn_like(final_reduced_map)
diffusion_step = torch.tensor([args.diffusion_steps]).long().to(model.device)
x_noisy = model.q_sample(x_start=final_reduced_map, t=diffusion_step, noise=noise)
return x_noisy
elif args.prior_type == "class-spatial-joint":
final_reduced_map = sample_spatial_class_prior(args, model, dataset, term, prior_dict, fallback="class")
# add noise
noise = torch.randn_like(final_reduced_map)
diffusion_step = torch.tensor([args.diffusion_steps]).long().to(model.device)
x_noisy = model.q_sample(x_start=final_reduced_map, t=diffusion_step, noise=noise)
return x_noisy
elif args.prior_type == "x0":
term['jpg'] = torch.tensor(term['jpg']).unsqueeze(0).cuda()
term['hint'] = torch.tensor(term['hint']).unsqueeze(0).cuda()
term['txt'] = [term['txt']]
x, c = model.get_input(term, 'jpg')
noise = torch.randn((args.batch_size, *x.shape[1:])).to(x.device)
diffusion_step = torch.tensor([args.diffusion_steps]).long().to(x.device)
x_noisy = model.q_sample(x_start=x, t=diffusion_step, noise=noise)
return x_noisy
def inference(args, model, dataset):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# inference hyperparameters
ddim_sampler = DDIMSampler(model)
device = ddim_sampler.model.betas.device
num_samples = args.batch_size
ddim_steps = 20
scale = args.scale
eta = 0.0
strength = 1.0
prompt = PROMPT[args.dataset]
a_prompt = "best quality, extremely detailed"
n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
# load prior
statistic_result = get_statistics_result(args)
prior_dict = {}
prior_dict['spatial'] = np.load(statistic_result['spatial'], allow_pickle=True)
prior_dict['class'] = np.load(statistic_result['categorical'], allow_pickle=True)
prior_dict['spatial_raw'] = np.load(statistic_result['spatial_raw'], allow_pickle=True)
prior_dict['class_raw'] = np.load(statistic_result['categorical_raw'], allow_pickle=True)
prior_dict['spatial_class_joint'] = np.load(statistic_result['spatial_class_joint'], allow_pickle=True)
# prepare output path `SAVE_DIR/args.dataset/args.save_name/{real/sample/gt_label}/{000000,000001,...}.png`
save_path = os.path.join(args.save_dir, args.dataset, f"{args.dataset}_{args.sample_size}_{args.diffusion_steps}_{args.prior_type}")
os.makedirs(save_path, exist_ok=True)
os.makedirs(os.path.join(save_path, "real"), exist_ok=True)
os.makedirs(os.path.join(save_path, "sample"), exist_ok=True)
os.makedirs(os.path.join(save_path, "gt_label"), exist_ok=True)
ddim_sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=eta)
with torch.no_grad():
current_samples = 0
sample_indices = random.choices(range(len(dataset)), k=args.sample_size // num_samples)
for idx in tqdm(sample_indices):
term = dataset[idx]
control = torch.stack([torch.tensor(term['hint']).cuda() for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
H, W = control.shape[2:]
shape = (4, H // 8, W // 8)
C, H, W = shape
size = (num_samples, C, H, W)
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
model.control_scales = ([strength] * 13)
x_start = sample_prior(args, model, dataset, term, prior_dict)
# find the indices where ddim_sampler.ddim_timesteps > args.diffusion_steps
if args.diffusion_steps == 999:
sample_index = len(ddim_sampler.ddim_timesteps)
else:
sample_index = torch.where(torch.tensor(ddim_sampler.ddim_timesteps) >= args.diffusion_steps)[0][0] + 2
samples, intermediates = ddim_sampler.ddim_sampling(cond, size, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond, x_T=x_start, timesteps=sample_index)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
for b in x_samples:
# save sampled
Image.fromarray(b).save(f"{save_path}/sample/{current_samples:06d}.png")
# save real (soft link)
os.symlink(term['orig_img_path'], f"{save_path}/real/{current_samples:06d}.png")
# save gt_label
os.symlink(term['orig_label_path'], f"{save_path}/gt_label/{current_samples:06d}.png")
current_samples += 1
### functions for calculating statistics
def init_diffusion(args):
model = create_model(args.config).cpu()
model.load_state_dict(load_state_dict(args.ckpt, location='cpu'))
model = model.cuda()
return model
def init_dataset(args):
if args.dataset == "cityscapes":
from datasets.cityscapes import CityscapesDataset
dataset = CityscapesDataset(split='val')
elif args.dataset == "ade20k":
from datasets.ade20k import ADE20KDataset
dataset = ADE20KDataset(split='val')
elif args.dataset == "coco-stuff":
from datasets.cocostuff import CocostuffDataset
dataset = CocostuffDataset(split='val')
else:
raise NotImplementedError
return dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="cityscapes", choices=DATASETS)
parser.add_argument("--sample_size", type=int, default=50000, help="number of samples to use for statistics")
parser.add_argument("--diffusion_steps", type=int, default=999, help="number of steps for DDPM")
parser.add_argument("--seed", type=int, default=42, help="seed for random number generator")
parser.add_argument("--save_dir", type=str, default="./temp", help="directory to save results")
parser.add_argument("--resolution", type=int, nargs=2, help="resolution of the images")
parser.add_argument("--ckpt", type=str, help="checkpoint to use for model")
parser.add_argument("--config", type=str, help="config file to use for model", default="./models/cldm_v21.yaml")
parser.add_argument("--stat_dir", type=str, default="./statistics", help="directory to save statistics")
parser.add_argument("--stat_name", type=str, help="name of statistics")
parser.add_argument("--scale", type=float, default=7.5, help="scale for unconditional guidance")
parser.add_argument("--prior_type", type=str, default="normal", choices=["normal", "spatial", "class", "spatial-class", "spatial-class-joint", "class-spatial-joint", "x0"], help="type of prior to use")
parser.add_argument("--spatial_scale", type=float, default=1.00, help="scale for spatial prior")
parser.add_argument("--class_scale", type=float, default=1.00, help="scale for class prior")
parser.add_argument("--batch_size", type=int, default=5, help="batch size for inference")
args = parser.parse_args()
assert args.sample_size <= 50000, "sample size must be less than 50000"
model = init_diffusion(args)
dataset = init_dataset(args)
inference(args, model, dataset)