-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathweighted_server.py
245 lines (231 loc) · 12.7 KB
/
weighted_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import copy
from collections import OrderedDict
import numpy as np
import ray
import torch
class WeightedServer:
def __init__(self, global_model, rate, dataset_ref, cfg_id):
self.tau = 1e-2
self.v_t = None
self.beta_1 = 0.9
self.beta_2 = 0.99
self.eta = 1e-2
self.m_t = None
self.user_idx = None
self.param_idx = None
self.dataset_ref = dataset_ref
self.cfg_id = cfg_id
self.cfg = ray.get(cfg_id)
self.global_model = global_model
self.global_parameters = global_model.state_dict()
self.rate = rate
self.label_split = ray.get(dataset_ref['label_split'])
self.make_model_rate()
self.num_model_partitions = 50
self.model_idxs = {}
self.rounds = 0
self.tmp_counts = {}
for k, v in self.global_parameters.items():
self.tmp_counts[k] = torch.ones_like(v)
for k, v in self.global_parameters.items():
if 'conv1' in k or 'conv2' in k:
output_size = v.size(0)
self.model_idxs[k] = [torch.randperm(output_size, device=v.device) for _ in range(
self.num_model_partitions)]
def step(self, local_parameters):
self.combine(local_parameters, self.param_idx, self.user_idx)
self.rounds += 1
def broadcast(self, local, lr):
cfg = self.cfg
self.global_model.train(True)
num_active_users = int(np.ceil(cfg['frac'] * cfg['num_users']))
self.user_idx = copy.deepcopy(torch.arange(cfg['num_users'])
[torch.randperm(cfg['num_users'])
[:num_active_users]].tolist())
local_parameters, self.param_idx = self.distribute(self.user_idx)
# [torch.save(local_parameters[m], f'local_param_{m}') for m in range(len(local_parameters))]
# local_parameters = [{k: v.cpu().numpy() for k, v in p.items()} for p in local_parameters]
param_ids = [ray.put(local_parameter) for local_parameter in local_parameters]
# ([client.update(self.user_idx[m],
# self.dataset_ref,
# {'lr': lr,
# 'model_rate': self.model_rate[self.user_idx[m]],
# 'local_params': param_ids[m]}) for m, client in enumerate(
# local)])
ray.get([client.update.remote(self.user_idx[m],
self.dataset_ref,
{'lr': lr,
'model_rate': self.model_rate[self.user_idx[m]],
'local_params': param_ids[m]})
for m, client in enumerate(local)])
return local
def make_model_rate(self):
cfg = self.cfg
if cfg['model_split_mode'] == 'dynamic':
rate_idx = torch.multinomial(torch.tensor(cfg['proportion']), num_samples=cfg['num_users'],
replacement=True).tolist()
self.model_rate = np.array(self.rate)[rate_idx]
elif cfg['model_split_mode'] == 'fix':
self.model_rate = np.array(self.rate)
else:
raise ValueError('Not valid model split mode')
return
def split_model(self, user_idx):
cfg = self.cfg
idx_i = [None for _ in range(len(user_idx))]
idx = [OrderedDict() for _ in range(len(user_idx))]
for k, v in self.global_parameters.items():
parameter_type = k.split('.')[-1]
for m in range(len(user_idx)):
if 'weight' in parameter_type or 'bias' in parameter_type:
if parameter_type == 'weight':
if v.dim() > 1:
input_size = v.size(1)
output_size = v.size(0)
if 'conv1' in k or 'conv2' in k:
if idx_i[m] is None:
idx_i[m] = torch.arange(input_size, device=v.device)
input_idx_i_m = idx_i[m]
scaler_rate = self.model_rate[user_idx[m]] / cfg['global_model_rate']
local_output_size = int(np.ceil(output_size * scaler_rate))
# model_idx = self.model_idxs[k][m % self.num_model_partitions]
# output_idx_i_m = model_idx[:local_output_size]
roll = self.rounds % output_size
# model_idx = self.model_idxs[k][self.rounds % self.num_model_partitions]
model_idx = torch.arange(output_size, device=v.device)
model_idx = torch.roll(model_idx, roll, -1)
output_idx_i_m = model_idx[:local_output_size]
idx_i[m] = output_idx_i_m
elif 'shortcut' in k:
input_idx_i_m = idx[m][k.replace('shortcut', 'conv1')][1]
output_idx_i_m = idx_i[m]
elif 'linear' in k:
input_idx_i_m = idx_i[m]
output_idx_i_m = torch.arange(output_size, device=v.device)
else:
raise ValueError('Not valid k')
idx[m][k] = (output_idx_i_m, input_idx_i_m)
else:
input_idx_i_m = idx_i[m]
idx[m][k] = input_idx_i_m
else:
input_size = v.size(0)
if 'linear' in k:
input_idx_i_m = torch.arange(input_size, device=v.device)
idx[m][k] = input_idx_i_m
else:
input_idx_i_m = idx_i[m]
idx[m][k] = input_idx_i_m
else:
pass
return idx
def distribute(self, user_idx):
self.make_model_rate()
param_idx = self.split_model(user_idx)
local_parameters = [OrderedDict() for _ in range(len(user_idx))]
for k, v in self.global_parameters.items():
parameter_type = k.split('.')[-1]
for m in range(len(user_idx)):
if 'weight' in parameter_type or 'bias' in parameter_type:
if 'weight' in parameter_type:
if v.dim() > 1:
local_parameters[m][k] = copy.deepcopy(v[torch.meshgrid(param_idx[m][k])])
else:
local_parameters[m][k] = copy.deepcopy(v[param_idx[m][k]])
else:
local_parameters[m][k] = copy.deepcopy(v[param_idx[m][k]])
else:
local_parameters[m][k] = copy.deepcopy(v)
return local_parameters, param_idx
def combine(self, local_parameters, param_idx, user_idx):
count = OrderedDict()
self.global_parameters = self.global_model.state_dict()
updated_parameters = copy.deepcopy(self.global_parameters)
tmp_counts_cpy = copy.deepcopy(self.tmp_counts)
for k, v in updated_parameters.items():
parameter_type = k.split('.')[-1]
count[k] = v.new_zeros(v.size(), dtype=torch.float32)
tmp_v = v.new_zeros(v.size(), dtype=torch.float32)
for m in range(len(local_parameters)):
if 'weight' in parameter_type or 'bias' in parameter_type:
if parameter_type == 'weight':
if v.dim() > 1:
if 'linear' in k:
label_split = self.label_split[user_idx[m]]
param_idx[m][k] = list(param_idx[m][k])
param_idx[m][k][0] = param_idx[m][k][0][label_split]
tmp_v[torch.meshgrid(param_idx[m][k])] += self.tmp_counts[k][torch.meshgrid(
param_idx[m][k])] * local_parameters[m][k][label_split]
count[k][torch.meshgrid(param_idx[m][k])] += self.tmp_counts[k][torch.meshgrid(
param_idx[m][k])]
tmp_counts_cpy[k][torch.meshgrid(param_idx[m][k])] += 1
else:
output_size = v.size(0)
scaler_rate = self.model_rate[user_idx[m]] / self.cfg['global_model_rate']
local_output_size = int(np.ceil(output_size * scaler_rate))
# K = self.tmp_counts[k][torch.meshgrid(param_idx[m][k])]
# K = local_output_size
K = local_output_size * self.tmp_counts[k][torch.meshgrid(param_idx[m][k])]
# K = 1
tmp_v[torch.meshgrid(param_idx[m][k])] += K * local_parameters[m][k]
count[k][torch.meshgrid(param_idx[m][k])] += K
tmp_counts_cpy[k][torch.meshgrid(param_idx[m][k])] += 1
else:
tmp_v[param_idx[m][k]] += self.tmp_counts[k][param_idx[m][k]] * local_parameters[m][k]
count[k][param_idx[m][k]] += self.tmp_counts[k][param_idx[m][k]]
tmp_counts_cpy[k][param_idx[m][k]] += 1
else:
if 'linear' in k:
label_split = self.label_split[user_idx[m]]
param_idx[m][k] = param_idx[m][k][label_split]
tmp_v[param_idx[m][k]] += self.tmp_counts[k][param_idx[m][k]] * local_parameters[m][k][
label_split]
count[k][param_idx[m][k]] += self.tmp_counts[k][param_idx[m][k]]
tmp_counts_cpy[k][param_idx[m][k]] += 1
else:
tmp_v[param_idx[m][k]] += self.tmp_counts[k][param_idx[m][k]] * local_parameters[m][k]
count[k][param_idx[m][k]] += self.tmp_counts[k][param_idx[m][k]]
tmp_counts_cpy[k][param_idx[m][k]] += 1
else:
tmp_v += self.tmp_counts[k] * local_parameters[m][k]
count[k] += self.tmp_counts[k]
tmp_counts_cpy[k] += 1
tmp_v[count[k] > 0] = tmp_v[count[k] > 0].div_(count[k][count[k] > 0])
v[count[k] > 0] = tmp_v[count[k] > 0].to(v.dtype)
self.tmp_counts = tmp_counts_cpy
delta_t = {k: v - self.global_parameters[k] for k, v in updated_parameters.items()}
if self.rounds in self.cfg['milestones']:
self.eta *= 0.5
if not self.m_t or self.rounds in self.cfg['milestones']:
self.m_t = {k: torch.zeros_like(x) for k, x in delta_t.items()}
self.m_t = {
k: self.beta_1 * self.m_t[k] + (1 - self.beta_1) * delta_t[k] for k in delta_t.keys()
}
if not self.v_t or self.rounds in self.cfg['milestones']:
self.v_t = {k: torch.zeros_like(x) for k, x in delta_t.items()}
self.v_t = {
k: self.beta_2 * self.v_t[k] + (1 - self.beta_2) * torch.multiply(delta_t[k], delta_t[k])
for k in delta_t.keys()
}
self.global_parameters = {
k: self.global_parameters[k] + self.eta * self.m_t[k] / (torch.sqrt(self.v_t[k]) + self.tau)
for k in self.global_parameters.keys()
}
# if not self.m_t:
# self.m_t = {k: torch.zeros_like(x) for k, x in delta_t.items()}
# self.m_t = {
# k: self.beta_1 * self.m_t[k] + (1 - self.beta_1) * delta_t[k] for k in delta_t.keys()
# }
# if not self.v_t:
# self.v_t = {k: torch.zeros_like(x) for k, x in delta_t.items()}
# self.v_t = {
# k: self.v_t[k] + torch.multiply(delta_t[k], delta_t[k])
# for k in delta_t.keys()
# }
# self.global_parameters = {
# k: self.global_parameters[k] + self.eta * self.m_t[k] / (torch.sqrt(self.v_t[k]) + self.tau)
# for k in self.global_parameters.keys()
# }
# self.global_parameters = updated_parameters
self.global_model.load_state_dict(self.global_parameters)
return