-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathASCAD_generate.py
398 lines (353 loc) · 19.1 KB
/
ASCAD_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import os
import sys
import h5py
import numpy as np
import random
from tqdm import tqdm
def check_file_exists(file_path):
if os.path.exists(file_path) == False:
print("Error: provided file path '%s' does not exist!" % file_path)
sys.exit(-1)
return
# The AES SBox that we will use to generate our labels
AES_Sbox = np.array([
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
])
# G auxiliary function that is used to generate the permution of indices
G = np.array([0x0C, 0x05, 0x06, 0x0b, 0x09, 0x00, 0x0a, 0x0d, 0x03, 0x0e, 0x0f, 0x08, 0x04, 0x07, 0x01, 0x02])
# The permution function on the 16 indices i. The function is defined from the masks m0, m1, m2, and m3.
def permIndices(i,m0,m1,m2,m3):
x0,x1,x2,x3 = m0&0x0f, m1&0x0f, m2&0x0f, m3&0x0f
return G[G[G[G[(15-i)^x0]^x1]^x2]^x3]
# Two Tables to process a field multplication over GF(256): a*b = alog (log(a) + log(b) mod 255)
log_table=[ 0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120,
101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142,
150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56,
102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16,
126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186,
43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87,
175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232,
44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160,
127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183,
204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157,
151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209,
83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171,
68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165,
103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7 ]
alog_table =[1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53,
95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49,
83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205,
76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136,
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154,
181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163,
254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160,
251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65,
195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117,
159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128,
155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84,
252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202,
69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14,
18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23,
57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1 ]
# Multiplication function in GF(2^8)
def multGF256(a,b):
if (a==0) or (b==0):
return 0
else:
return alog_table[(log_table[a]+log_table[b]) %255]
# The single labelization function used for ASCADv1:
# It is as simple as the computation of the result of Sbox(p[2] + k[2]) (see the White Paper)
# Note: you can of course adapt the labelization here (say if you want to attack the first byte Sbox(p[0] + k[0])
# or if you want to attack another round of the algorithm).
def labelize(plaintexts, keys):
return np.uint8(AES_Sbox[plaintexts[:, 2] ^ keys[:, 2]])
# The multi labelization function used for ASCADv2:
# It computes :
# - the multiplative mask value alpha which correpond to r_m
# - the additive mask value beta wich correspnd to rout
# - the result of maskedSbox(p[i]^k[i]) for each i in [0..15]
# - the result of maskedSbox(p[permInd[i]]^k[permInd[i]]) for each i in [0..15]
# - the permuted indice value permInd[i] for each i in [0..15]
def multilabelize(metadata):
def mult_sbox_mask_f(data, target_byte):
ind = permIndices(target_byte,data["masks"][0],data["masks"][1],data["masks"][2],data["masks"][3])
alpha = data["masks"][18]
beta = data["masks"][17]
S = AES_Sbox[data["plaintext"][ind]^data["key"][ind]]
return multGF256(alpha,S)^beta
def mult_sbox_mask_with_perm_f(data, target_byte):
alpha = data["masks"][18]
beta = data["masks"][17]
S = AES_Sbox[data["plaintext"][target_byte]^data["key"][target_byte]]
return multGF256(alpha,S)^beta
def permind_f(data, target_byte):
ind = permIndices(target_byte,data["masks"][0],data["masks"][1],data["masks"][2],data["masks"][3])
return ind
def alpha_mask_f(data):
alpha = data["masks"][18]
return alpha
def beta_mask_f(data):
beta = data["masks"][17]
return beta
y_alpha = np.array([alpha_mask_f(d) for d in metadata])
y_beta = np.array([beta_mask_f(d) for d in metadata])
y_sbox = []
y_sbox_with_perm = []
y_permind = []
for i in range(16):
y_sbox.append(np.array([mult_sbox_mask_f(d, i) for d in metadata]))
y_sbox_with_perm.append(np.array([mult_sbox_mask_with_perm_f(d, i) for d in metadata]))
y_permind.append(np.array([permind_f(d, i) for d in metadata]))
y_sbox = np.transpose(y_sbox)
y_sbox_with_perm = np.transpose(y_sbox_with_perm)
y_permind = np.transpose(y_permind)
multilabel_type = np.dtype([("alpha_mask", np.uint8, (1,)),
("beta_mask", np.uint8, (1,)),
("sbox_masked", np.uint8, (16,)),
("sbox_masked_with_perm", np.uint8, (16,)),
("perm_index", np.uint8, (16,))])
multilabel = np.array([(y_alpha[n], y_beta[n], y_sbox[n], y_sbox_with_perm[n], y_permind[n]) for n in range(len(metadata))], dtype=multilabel_type)
return multilabel
# TODO: sanity checks on the parameters
# This function extract the POIs of the traces contained in a single file and labelized them.
def extract_traces(traces_file, labeled_traces_file, profiling_index, attack_index, target_points, profiling_desync=0, attack_desync=0, multilabel=0):
print("Begin extraction")
traces_file = os.path.normpath(traces_file)
check_file_exists(traces_file)
check_file_exists(os.path.dirname(labeled_traces_file))
# Open the raw traces HDF5 for reading
try:
in_file = h5py.File(traces_file, "r")
except:
print("Error2: can't open HDF5 file '%s' for reading (it might be malformed) ..." % traces_file)
sys.exit(-1)
raw_traces = in_file['traces']
raw_data = in_file['metadata']
raw_plaintexts = raw_data['plaintext']
raw_keys = raw_data['key']
raw_masks = raw_data['masks']
#TODO: deal with the case where "ciphertext" entry is there
# Extract a larger set of points to handle desynchronization
min_target_point = min(target_points)
max_target_point = max(target_points)
target_points = np.array(target_points)
#we look for consecutive values in the target points, which would allow for a huge speed increase in the extraction
diff = np.ediff1d(target_points)
consecutive_indices = np.split(target_points,np.where(diff !=1)[0]+1)
#######################################
print("Processing profiling traces...")
#######################################
raw_traces_profiling = np.zeros([len(profiling_index), len(target_points)], raw_traces.dtype)
profiling_desync_metadata = np.zeros(len(profiling_index), np.uint32)
curr_trace = 0
for trace in tqdm(profiling_index):
if attack_desync !=0 or profiling_desync !=0:
r_desync = random.randint(0, profiling_desync)
else:
r_desync = 0
profiling_desync_metadata[curr_trace] = r_desync
curr_point = 0
for cons_chunk in consecutive_indices:
raw_traces_profiling[curr_trace,curr_point:curr_point+len(cons_chunk)] = raw_traces[trace,cons_chunk[0]+r_desync:cons_chunk[len(cons_chunk)-1]+r_desync+1]
curr_point += len(cons_chunk)
curr_trace += 1
####################################
print("Processing attack traces...")
####################################
raw_traces_attack = np.zeros([len(attack_index), len(target_points)], raw_traces.dtype)
attack_desync_metadata = np.zeros(len(attack_index))
curr_trace = 0
for trace in tqdm(attack_index):
if attack_desync !=0 or profiling_desync !=0:
r_desync = random.randint(0,attack_desync)
else:
r_desync = 0
attack_desync_metadata[curr_trace] = r_desync
curr_point = 0
for cons_chunk in consecutive_indices:
raw_traces_attack[curr_trace, curr_point:curr_point+len(cons_chunk)] = raw_traces[trace, cons_chunk[0]+r_desync:cons_chunk[len(cons_chunk)-1]+r_desync+1]
curr_point += len(cons_chunk)
curr_trace += 1
############################
print("Computing labels...")
############################
# Compute our labels
if multilabel == 1:
labels_profiling = multilabelize(raw_data[profiling_index])
labels_attack = multilabelize(raw_data[attack_index])
else:
labels_profiling = labelize(raw_plaintexts[profiling_index], raw_keys[profiling_index])
labels_attack = labelize(raw_plaintexts[attack_index], raw_keys[attack_index])
print("Creating output_file...")
# Open the output labeled file for writing
try:
out_file = h5py.File(labeled_traces_file, "w")
except:
print("Error3: can't open HDF5 file '%s' for writing ..." % labeled_traces_file)
sys.exit(-1)
# Create our HDF5 hierarchy in the output file:
# - Profilinging traces with their labels
# - Attack traces with their labels
profiling_traces_group = out_file.create_group("Profiling_traces")
attack_traces_group = out_file.create_group("Attack_traces")
# Datasets in the groups
profiling_traces_group.create_dataset(name="traces", data=raw_traces_profiling, dtype=raw_traces_profiling.dtype)
attack_traces_group.create_dataset(name="traces", data=raw_traces_attack, dtype=raw_traces_attack.dtype)
# Labels in the groups
profiling_traces_group.create_dataset(name="labels", data=labels_profiling, dtype=labels_profiling.dtype)
attack_traces_group.create_dataset(name="labels", data=labels_attack, dtype=labels_attack.dtype)
#TODO: deal with the case where "ciphertext" entry is there
# Put the metadata (plaintexts, keys, ...) so that one can check the key rank
metadata_type = np.dtype([("plaintext", raw_plaintexts.dtype, (len(raw_plaintexts[0]),)),
("key", raw_keys.dtype, (len(raw_keys[0]),)),
("masks", raw_masks.dtype, (len(raw_masks[0]),)),
("desync", np.uint32, (1,)),
])
profiling_metadata = np.array([(raw_plaintexts[n], raw_keys[n], raw_masks[n], profiling_desync_metadata[k]) for n, k in zip(profiling_index, range(0, len(profiling_desync_metadata)))], dtype=metadata_type)
profiling_traces_group.create_dataset("metadata", data=profiling_metadata, dtype=metadata_type)
attack_metadata = np.array([(raw_plaintexts[n], raw_keys[n], raw_masks[n], attack_desync_metadata[k]) for n, k in zip(attack_index, range(0, len(attack_desync_metadata)))], dtype=metadata_type)
attack_traces_group.create_dataset("metadata", data=attack_metadata, dtype=metadata_type)
out_file.flush()
out_file.close()
in_file.close()
# This function concatenates two h5 groups f1_gp and f2_gp in a single group fout_gp. It assumes that the groups are formed of arrays of the same name.
# For each entry name k in f1_gp and f2_gp, an array that results in the concatenation of the arrays f1_gp[k] and f2_gp[k] is created in fout_gp.
# The arrays are concatenated along their first axis.
def h5_concatenate_group(f1_gp, f2_gp, fout_gp):
keys = f1_gp.keys()
dtypes = {}
shapes = {}
for k in keys:
dtypes[k] = f1_gp[k].dtype
shapes[k] = (f1_gp[k].shape[0] + f2_gp[k].shape[0], ) + f1_gp[k].shape[1:]
for k in keys:
fout_gp.create_dataset(k, shapes[k], dtype=dtypes[k])
for i in tqdm(range(shapes[k][0])):
if i<f1_gp[k].shape[0]:
fout_gp[k][i] = f1_gp[k][i]
else:
fout_gp[k][i] = f2_gp[k][i-f1_gp[k].shape[0]]
# This function concatenates the arrays contained in the h5 files file1 and file2, resulting in a ew h5 file fileout.
# The arrays are concatenated along their first axis.
def h5_concatenate_file(file1, file2, fileout):
f1 = h5py.File(file1, "r")
f2 = h5py.File(file2, "r")
fout = h5py.File(fileout, "w")
print("Concatenation Profiling_traces")
fout_profile_gp = fout.create_group("Profiling_traces")
h5_concatenate_group(f1["Profiling_traces"], f2["Profiling_traces"], fout_profile_gp)
print("Concatenation Attack_traces")
fout_attack_gp = fout.create_group("Attack_traces")
h5_concatenate_group(f1["Attack_traces"], f2["Attack_traces"], fout_attack_gp)
fout.flush()
fout.close()
f1.close()
f2.close()
# This function concatenates a list of files.
def h5_concatenate_file_list(file_list, fileout):
if (len(file_list)<2):
print("Error: traces_file_list shall contain at least two files")
sys.exit(-1)
fileout_tmp= fileout+ ".tmp"
fileout_bis_tmp= fileout+ "_bis.tmp"
print("Concatenation 1/{}".format(len(file_list)-1))
h5_concatenate_file(file_list[0], file_list[1], fileout_tmp)
for i,file_i in enumerate(file_list[2:]):
print("Concatenation {}/{}".format(i+2, len(file_list)-1))
h5_concatenate_file(fileout_tmp, file_i, fileout_bis_tmp)
os.rename(fileout_bis_tmp, fileout_tmp)
os.rename(fileout_tmp, fileout)
# This function extracts the POIs of the traces contained in different h5 files and labelized them.
# A temporary labelized file is created for each file of the input list.
# Then the temporary labelized files are concatenated to form a single file.
def extract_multiple_files(traces_files_list, labeled_traces_file, profiling_index, attack_index, target_points, profiling_desync=0, attack_desync=0, multilabel=0):
last_window_offset = 0
labeled_traces_files_list = [labeled_traces_file + "_part_{}.tmp".format(i) for i in range(len(traces_files_list))]
for i, traces_file_i in enumerate(traces_files_list):
try:
in_file_i = h5py.File(traces_file_i, "r")
except:
print("Error1: can't open HDF5 file '%s' for reading (it might be malformed) ..." % traces_file_i)
sys.exit(-1)
l = len(in_file_i['traces'])
in_file_i.close()
window_i = np.arange(last_window_offset, last_window_offset+l)
labeled_traces_file_i = labeled_traces_files_list[i]
profiling_intersect_index_i = np.intersect1d(profiling_index,window_i)
profiling_index_i = [x-last_window_offset for x in profiling_intersect_index_i]
attack_intersect_index_i = np.intersect1d(attack_index,window_i)
attack_index_i = [x-last_window_offset for x in attack_intersect_index_i]
print("Extraction of file {}".format(traces_file_i))
extract_traces(traces_file_i, labeled_traces_file_i, profiling_index_i, attack_index_i, target_points, profiling_desync, attack_desync, multilabel)
last_window_offset += l
h5_concatenate_file_list(labeled_traces_files_list, labeled_traces_file)
for labeled_traces_file in labeled_traces_files_list:
os.remove(labeled_traces_file)
def read_parameters_file(param_filename):
#read parameters for the extract_traces function from given filename
#TODO: sanity checks on parameters
param_file = open(param_filename,"r")
#FIXME: replace eval() by ast.linear_eval()
my_parameters= eval(param_file.read())
files_splitted = 0
traces_file = ""
traces_files_list = []
if ("files_splitted" in my_parameters):
files_splitted = my_parameters["files_splitted"]
if ("traces_files_list" not in my_parameters):
print("Error: traces_files_list parameter must be defined when files_splitted option is activated ...")
sys.exit(-1)
traces_files_list = my_parameters["traces_files_list"]
if ("traces_file" in my_parameters):
traces_file = my_parameters["traces_file"]
multilabel = 0
if ("multilabel" in my_parameters):
multilabel = my_parameters["multilabel"]
labeled_traces_file = my_parameters["labeled_traces_file"]
profiling_index = my_parameters["profiling_index"]
attack_index = my_parameters["attack_index"]
target_points = my_parameters["target_points"]
profiling_desync = my_parameters["profiling_desync"]
attack_desync = my_parameters["attack_desync"]
param_file.close()
return files_splitted, traces_file, traces_files_list, labeled_traces_file, profiling_index, attack_index, target_points, profiling_desync, attack_desync, multilabel
if __name__ == "__main__":
if len(sys.argv)!=2:
#default parameters values
ascad_data_folder = "ATMEGA_AES_v1/ATM_AES_v1_fixed_key/ASCAD_data/"
ascad_databases_folder = ascad_data_folder + "ASCAD_databases/"
original_raw_traces_file = ascad_databases_folder + "ATMega8515_raw_traces.h5"
profiling_index = [n for n in range(0, 50000)]
attack_index = [n for n in range(50000, 60000)]
target_points=[n for n in range(45400, 46100)]
profiling_desync=0
attack_desync=0
extract_traces(original_raw_traces_file, ascad_databases_folder + "ASCAD.h5" , profiling_index, attack_index, target_points, profiling_desync=0, attack_desync=0)
extract_traces(original_raw_traces_file, ascad_databases_folder + "ASCAD_desync50.h5" , profiling_index, attack_index, target_points, profiling_desync=0, attack_desync = 50)
extract_traces(original_raw_traces_file, ascad_databases_folder + "ASCAD_desync100.h5", profiling_index, attack_index, target_points, profiling_desync=0, attack_desync = 100)
else:
#get parameters from user input
files_splitted, traces_file, traces_files_list, labeled_traces_file, profiling_index, attack_index, target_points, profiling_desync, attack_desync, multilabel = read_parameters_file(sys.argv[1])
#execute the extraction function
if (files_splitted !=1 ):
extract_traces(traces_file, labeled_traces_file, profiling_index, attack_index, target_points, profiling_desync, attack_desync, multilabel)
else:
extract_multiple_files(traces_files_list, labeled_traces_file, profiling_index, attack_index, target_points, profiling_desync, attack_desync, multilabel)