-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_RFN.py
391 lines (316 loc) · 13.6 KB
/
train_RFN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) SenseTime. All Rights Reserved.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import os
import time
import math
import json
import random
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from torch.nn.utils import clip_grad_norm_
from torch.utils.data.distributed import DistributedSampler
from DFAT.utils.lr_scheduler import build_lr_scheduler
from DFAT.utils.log_helper import init_log, print_speed, add_file_handler
from DFAT.utils.distributed import dist_init, DistModule, reduce_gradients,\
average_reduce, get_rank, get_world_size
from DFAT.utils.model_load import load_pretrain, restore_from
from DFAT.utils.average_meter import AverageMeter
from DFAT.utils.misc import describe, commit
from DFAT.models.model_builder import ModelBuilder
from DFAT.datasets.dataset_RFN import TrkDataset
from DFAT.core.config import cfg
import pdb
logger = logging.getLogger('global')
parser = argparse.ArgumentParser(description='siamrpn tracking')
#/data/Disk_B/zhangyong/DFAT --> ..
parser.add_argument('--cfg', type=str, default='./experiments/siam_base/config.yaml',
help='configuration of tracking')
parser.add_argument('--seed', type=int, default=123456,
help='random seed')
parser.add_argument('--local_rank', type=int, default=0,
help='compulsory for pytorch launcer')
args = parser.parse_args()
def seed_torch(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False #spend some time to find the most properly inplementation of conv for the network and be faster
torch.backends.cudnn.deterministic = True #every time the conv algorithm returned is settled
def build_data_loader():
logger.info("build train dataset")
# train_dataset
train_dataset = TrkDataset()
logger.info("build dataset done")
train_sampler = None
# if get_world_size() > 1:
# train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset,
batch_size=cfg.TRAIN.BATCH_SIZE,
num_workers=cfg.TRAIN.NUM_WORKERS,
pin_memory=True,
sampler=train_sampler)
return train_loader
def build_opt_lr(model, current_epoch=0):
for param in model.backbone.parameters():
param.requires_grad = False
for m in model.backbone.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
for param in model.neck.parameters():
param.requires_grad = False
for m in model.neck.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
#############################################
for param in model.RFN.parameters():
param.requires_grad = True
for m in model.RFN.modules():
if isinstance(m, nn.BatchNorm2d):
m.train()
#############################################
for param in model.rpn_head.parameters():
param.requires_grad = False
for m in model.rpn_head.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
# set RFN trainable
trainable_params = [{'params': filter(lambda x: x.requires_grad, model.RFN.parameters()),
'lr': cfg.TRAIN.BASE_LR}]
trainable_params += [{'params': filter(lambda x: x.requires_grad, model.rpn_head.parameters()),
'lr': cfg.TRAIN.BASE_LR}]
# + \
# [{'params': filter(lambda x: x.requires_grad, model.rpn_head.parameters()),
# 'lr': cfg.TRAIN.BASE_LR}]
if current_epoch >= cfg.BACKBONE.TRAIN_EPOCH:
for layer in cfg.BACKBONE.TRAIN_LAYERS:
for param in getattr(model.backbone, layer).parameters():
param.requires_grad = True
for m in getattr(model.backbone, layer).modules():
if isinstance(m, nn.BatchNorm2d):
m.train()
for param in model.neck.parameters():
param.requires_grad = True
for m in model.neck.modules():
if isinstance(m, nn.BatchNorm2d):
m.train()
trainable_params += [{'params': list(filter(lambda x: x.requires_grad, model.neck.parameters())),
'lr': cfg.TRAIN.BASE_LR}]
optimizer = torch.optim.SGD(trainable_params, cfg.TRAIN.BASE_LR,
momentum=cfg.TRAIN.MOMENTUM,
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
lr_scheduler = build_lr_scheduler(optimizer, epochs=cfg.TRAIN.EPOCH)
lr_scheduler.step(cfg.TRAIN.START_EPOCH)
return optimizer, lr_scheduler
def log_grads(model, tb_writer, tb_index):
def weights_grads(model):
grad = {}
weights = {}
for name, param in model.named_parameters():
if param.grad is not None:
grad[name] = param.grad
weights[name] = param.data
return grad, weights
grad, weights = weights_grads(model)
feature_norm, rpn_norm = 0, 0
for k, g in grad.items():
_norm = g.data.norm(2)
weight = weights[k]
w_norm = weight.norm(2)
if 'feature' in k:
feature_norm += _norm ** 2
else:
rpn_norm += _norm ** 2
tb_writer.add_scalar('grad_all/'+k.replace('.', '/'),
_norm, tb_index)
tb_writer.add_scalar('weight_all/'+k.replace('.', '/'),
w_norm, tb_index)
tb_writer.add_scalar('w-g/'+k.replace('.', '/'),
w_norm/(1e-20 + _norm), tb_index)
tot_norm = feature_norm + rpn_norm
tot_norm = tot_norm ** 0.5
feature_norm = feature_norm ** 0.5
rpn_norm = rpn_norm ** 0.5
tb_writer.add_scalar('grad/tot', tot_norm, tb_index)
tb_writer.add_scalar('grad/feature', feature_norm, tb_index)
tb_writer.add_scalar('grad/rpn', rpn_norm, tb_index)
def BNtoFixed(m):
class_name = m.__class__.__name__
if class_name.find('BatchNorm') != -1:
m.eval()
def train(train_loader, model, optimizer, lr_scheduler, tb_writer):
cur_lr = lr_scheduler.get_cur_lr()
# rank = get_rank()
average_meter = AverageMeter()
model.train()
model.module.backbone.eval()
model.module.neck.eval()
################################
model.module.RFN.train()
################################
# model.module.rpn_head.eval()
model.module.backbone.apply(BNtoFixed)
# model.module.rpn_head.apply(BNtoFixed)
model = model.cuda()
def is_valid_number(x):
return not(math.isnan(x) or math.isinf(x) or x > 1e4)
# world_size = get_world_size()
num_per_epoch = len(train_loader.dataset) // \
cfg.TRAIN.EPOCH // cfg.TRAIN.BATCH_SIZE
start_epoch = cfg.TRAIN.START_EPOCH
epoch = start_epoch
if not os.path.exists(cfg.TRAIN.SNAPSHOT_DIR):
os.makedirs(cfg.TRAIN.SNAPSHOT_DIR)
print('******')
# print the para and its name
for name, param in model.named_parameters():
if param.requires_grad:
print(name)
print('******')
# logger.info("model\n{}".format(describe(model.module)))
end = time.time()
for idx, data in enumerate(train_loader):
# data['anchor_iou'] = anchor_iou
if epoch != idx // num_per_epoch + start_epoch:
epoch = idx // num_per_epoch + start_epoch
torch.save(
{'epoch': epoch,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict()},
cfg.TRAIN.SNAPSHOT_DIR+'/checkpoint_e%d.pth' % (epoch))
if epoch == cfg.TRAIN.EPOCH:
return
if cfg.BACKBONE.TRAIN_EPOCH == epoch:
logger.info('start training backbone.')
optimizer, lr_scheduler = build_opt_lr(model.module, epoch)
# print('******')
# # print the para and its name
# for name, param in model.named_parameters():
# if param.requires_grad:
# print(name)
# print('******')
# logger.info("model\n{}".format(describe(model.module)))
lr_scheduler.step(epoch)
cur_lr = lr_scheduler.get_cur_lr()
logger.info('epoch: {}'.format(epoch+1))
# logger.info('start training backbone.')
# optimizer, lr_scheduler = build_opt_lr(model.module, epoch)
# # logger.info("model\n{}".format(describe(model.module)))
# lr_scheduler.step(epoch)
# cur_lr = lr_scheduler.get_cur_lr()
tb_idx = idx
if idx % num_per_epoch == 0 and idx != 0:
for idx, pg in enumerate(optimizer.param_groups):
logger.info('epoch {} lr {}'.format(epoch+1, pg['lr']))
tb_writer.add_scalar('lr/group{}'.format(idx+1),
pg['lr'], tb_idx)
data_time = time.time() - end
tb_writer.add_scalar('time/data', data_time, tb_idx)
outputs = model(data)
# loss = outputs['total_loss']
loss = torch.mean(outputs['total_loss'])
if is_valid_number(loss.data.item()):
optimizer.zero_grad()
loss.backward()
# reduce_gradients(model)
if cfg.TRAIN.LOG_GRADS:
log_grads(model.module, tb_writer, tb_idx)
# clip gradient
clip_grad_norm_(model.parameters(), cfg.TRAIN.GRAD_CLIP)
optimizer.step()
batch_time = time.time() - end
batch_info = {}
batch_info['batch_time'] = batch_time
batch_info['data_time'] = data_time
for k, v in sorted(outputs.items()):
batch_info[k] = v.mean().data.item()
average_meter.update(**batch_info)
for k, v in batch_info.items():
tb_writer.add_scalar(k, v, tb_idx)
if (idx+1) % cfg.TRAIN.PRINT_FREQ == 0:
#check the weight for three RPN blocks
# weight_rpn = str(outputs['cls_w']) + '+' + str(outputs['loc_w']) + '\n'
# logger.info(weight_rpn)
# if cfg.FUSION_pred_cur.TYPE == "weights":
# weight_old_new = str(outputs['balance_cls']) + '+' + str(outputs['balance_loc']) + '\n'
# logger.info(weight_old_new)
info = "Epoch: [{}][{}/{}] lr: {:.6f}\n".format(
epoch+1, (idx+1) % num_per_epoch,
num_per_epoch, cur_lr)
for cc, (k, v) in enumerate(batch_info.items()):
if cc % 2 == 0:
info += ("\t{:s}\t").format(
getattr(average_meter, k))
else:
info += ("{:s}\n").format(
getattr(average_meter, k))
logger.info(info)
print_speed(idx+1+start_epoch*num_per_epoch,
average_meter.batch_time.avg,
cfg.TRAIN.EPOCH * num_per_epoch)
end = time.time()
def main():
# rank, world_size = dist_init()
logger.info("init done")
# load cfg
cfg.merge_from_file(args.cfg)
if not os.path.exists(cfg.TRAIN.LOG_DIR):
os.makedirs(cfg.TRAIN.LOG_DIR)
init_log('global', logging.INFO)
if cfg.TRAIN.LOG_DIR:
add_file_handler('global',
os.path.join(cfg.TRAIN.LOG_DIR, cfg.TRAIN.LOGFILE),
logging.INFO)
logger.info("Version Information: \n{}\n".format(commit()))
logger.info("config \n{}".format(json.dumps(cfg, indent=4)))
# build dataset loader
train_loader = build_data_loader()
# anchor_iou = ioum(torch.from_numpy(train_loader.dataset.anchor_target.anchors.all_anchors[0]).cuda())
# anchor_iou_index = high_iou_index(anchor_iou)
# create model
# model = ModelBuilder(anchor_iou_index).cuda()
model = ModelBuilder().cuda()
# load pretrained backbone weights
if cfg.BACKBONE.PRETRAINED:
cur_path = os.path.dirname(os.path.realpath(__file__))#__file__ is a built-in para
backbone_path = os.path.join(cur_path, cfg.BACKBONE.PRETRAINED)
load_pretrain(model.backbone, backbone_path)
# load_pretrain(model.backbone_tir, backbone_path)
# dist_model = nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda() #choose gpu from available setted before
used = [0, 1]
dist_model = nn.DataParallel(model, used).cuda()
# create tensorboard writer
tb_writer = SummaryWriter(cfg.TRAIN.LOG_DIR)
# build optimizer and lr_scheduler
optimizer, lr_scheduler = build_opt_lr(model,
cfg.TRAIN.START_EPOCH)
# resume training
if cfg.TRAIN.RESUME:
logger.info("resume from {}".format(cfg.TRAIN.RESUME))
assert os.path.isfile(cfg.TRAIN.RESUME), \
'{} is not a valid file.'.format(cfg.TRAIN.RESUME)
model, optimizer, cfg.TRAIN.START_EPOCH = \
restore_from(model, optimizer, cfg.TRAIN.RESUME)
optimizer, lr_scheduler = build_opt_lr(model,
cfg.TRAIN.START_EPOCH)
# load pretrain
elif cfg.TRAIN.PRETRAINED:
load_pretrain(model, cfg.TRAIN.PRETRAINED)
# dist_model = DistModule(model)
logger.info(lr_scheduler)
logger.info("model prepare done")
# start training
train(train_loader, dist_model, optimizer, lr_scheduler, tb_writer)
if __name__ == '__main__':
seed_torch(args.seed)
main()