comments | difficulty | edit_url | rating | source | tags | ||
---|---|---|---|---|---|---|---|
true |
Medium |
1417 |
Weekly Contest 276 Q2 |
|
You are playing a game with integers. You start with the integer 1
and you want to reach the integer target
.
In one move, you can either:
- Increment the current integer by one (i.e.,
x = x + 1
). - Double the current integer (i.e.,
x = 2 * x
).
You can use the increment operation any number of times, however, you can only use the double operation at most maxDoubles
times.
Given the two integers target
and maxDoubles
, return the minimum number of moves needed to reach target
starting with 1
.
Example 1:
Input: target = 5, maxDoubles = 0 Output: 4 Explanation: Keep incrementing by 1 until you reach target.
Example 2:
Input: target = 19, maxDoubles = 2 Output: 7 Explanation: Initially, x = 1 Increment 3 times so x = 4 Double once so x = 8 Increment once so x = 9 Double again so x = 18 Increment once so x = 19
Example 3:
Input: target = 10, maxDoubles = 4 Output: 4 Explanation: Initially, x = 1 Increment once so x = 2 Double once so x = 4 Increment once so x = 5 Double again so x = 10
Constraints:
1 <= target <= 109
0 <= maxDoubles <= 100
Let's start by backtracking from the final state. Assuming the final state is
If
If
If
If
The time complexity is
We can also change the above process to an iterative way to avoid the space overhead of recursion.
class Solution:
def minMoves(self, target: int, maxDoubles: int) -> int:
if target == 1:
return 0
if maxDoubles == 0:
return target - 1
if target % 2 == 0 and maxDoubles:
return 1 + self.minMoves(target >> 1, maxDoubles - 1)
return 1 + self.minMoves(target - 1, maxDoubles)
class Solution {
public int minMoves(int target, int maxDoubles) {
if (target == 1) {
return 0;
}
if (maxDoubles == 0) {
return target - 1;
}
if (target % 2 == 0 && maxDoubles > 0) {
return 1 + minMoves(target >> 1, maxDoubles - 1);
}
return 1 + minMoves(target - 1, maxDoubles);
}
}
class Solution {
public:
int minMoves(int target, int maxDoubles) {
if (target == 1) {
return 0;
}
if (maxDoubles == 0) {
return target - 1;
}
if (target % 2 == 0 && maxDoubles > 0) {
return 1 + minMoves(target >> 1, maxDoubles - 1);
}
return 1 + minMoves(target - 1, maxDoubles);
}
};
func minMoves(target int, maxDoubles int) int {
if target == 1 {
return 0
}
if maxDoubles == 0 {
return target - 1
}
if target%2 == 0 && maxDoubles > 0 {
return 1 + minMoves(target>>1, maxDoubles-1)
}
return 1 + minMoves(target-1, maxDoubles)
}
function minMoves(target: number, maxDoubles: number): number {
if (target === 1) {
return 0;
}
if (maxDoubles === 0) {
return target - 1;
}
if (target % 2 === 0 && maxDoubles) {
return 1 + minMoves(target >> 1, maxDoubles - 1);
}
return 1 + minMoves(target - 1, maxDoubles);
}
class Solution:
def minMoves(self, target: int, maxDoubles: int) -> int:
ans = 0
while maxDoubles and target > 1:
ans += 1
if target % 2 == 1:
target -= 1
else:
maxDoubles -= 1
target >>= 1
ans += target - 1
return ans
class Solution {
public int minMoves(int target, int maxDoubles) {
int ans = 0;
while (maxDoubles > 0 && target > 1) {
++ans;
if (target % 2 == 1) {
--target;
} else {
--maxDoubles;
target >>= 1;
}
}
ans += target - 1;
return ans;
}
}
class Solution {
public:
int minMoves(int target, int maxDoubles) {
int ans = 0;
while (maxDoubles > 0 && target > 1) {
++ans;
if (target % 2 == 1) {
--target;
} else {
--maxDoubles;
target >>= 1;
}
}
ans += target - 1;
return ans;
}
};
func minMoves(target int, maxDoubles int) (ans int) {
for maxDoubles > 0 && target > 1 {
ans++
if target&1 == 1 {
target--
} else {
maxDoubles--
target >>= 1
}
}
ans += target - 1
return
}
function minMoves(target: number, maxDoubles: number): number {
let ans = 0;
while (maxDoubles && target > 1) {
++ans;
if (target & 1) {
--target;
} else {
--maxDoubles;
target >>= 1;
}
}
ans += target - 1;
return ans;
}