comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Hard |
1998 |
Weekly Contest 321 Q4 |
|
You are given an array nums
of size n
consisting of distinct integers from 1
to n
and a positive integer k
.
Return the number of non-empty subarrays in nums
that have a median equal to k
.
Note:
- The median of an array is the middle element after sorting the array in ascending order. If the array is of even length, the median is the left middle element.
<ul> <li>For example, the median of <code>[2,3,1,4]</code> is <code>2</code>, and the median of <code>[8,4,3,5,1]</code> is <code>4</code>.</li> </ul> </li> <li>A subarray is a contiguous part of an array.</li>
Example 1:
Input: nums = [3,2,1,4,5], k = 4 Output: 3 Explanation: The subarrays that have a median equal to 4 are: [4], [4,5] and [1,4,5].
Example 2:
Input: nums = [2,3,1], k = 3 Output: 1 Explanation: [3] is the only subarray that has a median equal to 3.
Constraints:
n == nums.length
1 <= n <= 105
1 <= nums[i], k <= n
- The integers in
nums
are distinct.
First, we find the position
Define an answer variable
Next, start traversing to the right from
Similarly, start traversing to the left from
Finally, return the answer variable
The time complexity is
In coding, we can directly open an array of length
$2 \times n + 1$ , used to count the difference between the "number of elements larger than$k$ " and the "number of elements smaller than$k$ " in the current array. Each time we add the difference by$n$ , we can convert the range of the difference from$[-n, n]$ to$[0, 2n]$ .
class Solution:
def countSubarrays(self, nums: List[int], k: int) -> int:
i = nums.index(k)
cnt = Counter()
ans = 1
x = 0
for v in nums[i + 1 :]:
x += 1 if v > k else -1
ans += 0 <= x <= 1
cnt[x] += 1
x = 0
for j in range(i - 1, -1, -1):
x += 1 if nums[j] > k else -1
ans += 0 <= x <= 1
ans += cnt[-x] + cnt[-x + 1]
return ans
class Solution {
public int countSubarrays(int[] nums, int k) {
int n = nums.length;
int i = 0;
for (; nums[i] != k; ++i) {
}
int[] cnt = new int[n << 1 | 1];
int ans = 1;
int x = 0;
for (int j = i + 1; j < n; ++j) {
x += nums[j] > k ? 1 : -1;
if (x >= 0 && x <= 1) {
++ans;
}
++cnt[x + n];
}
x = 0;
for (int j = i - 1; j >= 0; --j) {
x += nums[j] > k ? 1 : -1;
if (x >= 0 && x <= 1) {
++ans;
}
ans += cnt[-x + n] + cnt[-x + 1 + n];
}
return ans;
}
}
class Solution {
public:
int countSubarrays(vector<int>& nums, int k) {
int n = nums.size();
int i = find(nums.begin(), nums.end(), k) - nums.begin();
int cnt[n << 1 | 1];
memset(cnt, 0, sizeof(cnt));
int ans = 1;
int x = 0;
for (int j = i + 1; j < n; ++j) {
x += nums[j] > k ? 1 : -1;
if (x >= 0 && x <= 1) {
++ans;
}
++cnt[x + n];
}
x = 0;
for (int j = i - 1; ~j; --j) {
x += nums[j] > k ? 1 : -1;
if (x >= 0 && x <= 1) {
++ans;
}
ans += cnt[-x + n] + cnt[-x + 1 + n];
}
return ans;
}
};
func countSubarrays(nums []int, k int) int {
i, n := 0, len(nums)
for nums[i] != k {
i++
}
ans := 1
cnt := make([]int, n<<1|1)
x := 0
for j := i + 1; j < n; j++ {
if nums[j] > k {
x++
} else {
x--
}
if x >= 0 && x <= 1 {
ans++
}
cnt[x+n]++
}
x = 0
for j := i - 1; j >= 0; j-- {
if nums[j] > k {
x++
} else {
x--
}
if x >= 0 && x <= 1 {
ans++
}
ans += cnt[-x+n] + cnt[-x+1+n]
}
return ans
}
function countSubarrays(nums: number[], k: number): number {
const i = nums.indexOf(k);
const n = nums.length;
const cnt = new Array((n << 1) | 1).fill(0);
let ans = 1;
let x = 0;
for (let j = i + 1; j < n; ++j) {
x += nums[j] > k ? 1 : -1;
ans += x >= 0 && x <= 1 ? 1 : 0;
++cnt[x + n];
}
x = 0;
for (let j = i - 1; ~j; --j) {
x += nums[j] > k ? 1 : -1;
ans += x >= 0 && x <= 1 ? 1 : 0;
ans += cnt[-x + n] + cnt[-x + 1 + n];
}
return ans;
}