comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1721 |
Biweekly Contest 111 Q3 |
|
You are given an integer array nums
. Each element in nums
is 1, 2 or 3. In each operation, you can remove an element from nums
. Return the minimum number of operations to make nums
non-decreasing.
Example 1:
Input: nums = [2,1,3,2,1]
Output: 3
Explanation:
One of the optimal solutions is to remove nums[0]
, nums[2]
and nums[3]
.
Example 2:
Input: nums = [1,3,2,1,3,3]
Output: 2
Explanation:
One of the optimal solutions is to remove nums[1]
and nums[2]
.
Example 3:
Input: nums = [2,2,2,2,3,3]
Output: 0
Explanation:
nums
is already non-decreasing.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 3
Follow-up: Can you come up with an algorithm that runs in
O(n)
time complexity?
We define
We can enumerate all cases where the $i$th number is changed to
The time complexity is
class Solution:
def minimumOperations(self, nums: List[int]) -> int:
f = g = h = 0
for x in nums:
ff = gg = hh = 0
if x == 1:
ff = f
gg = min(f, g) + 1
hh = min(f, g, h) + 1
elif x == 2:
ff = f + 1
gg = min(f, g)
hh = min(f, g, h) + 1
else:
ff = f + 1
gg = min(f, g) + 1
hh = min(f, g, h)
f, g, h = ff, gg, hh
return min(f, g, h)
class Solution {
public int minimumOperations(List<Integer> nums) {
int[] f = new int[3];
for (int x : nums) {
int[] g = new int[3];
if (x == 1) {
g[0] = f[0];
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else if (x == 2) {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]);
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2]));
}
f = g;
}
return Math.min(f[0], Math.min(f[1], f[2]));
}
}
class Solution {
public:
int minimumOperations(vector<int>& nums) {
vector<int> f(3);
for (int x : nums) {
vector<int> g(3);
if (x == 1) {
g[0] = f[0];
g[1] = min(f[0], f[1]) + 1;
g[2] = min({f[0], f[1], f[2]}) + 1;
} else if (x == 2) {
g[0] = f[0] + 1;
g[1] = min(f[0], f[1]);
g[2] = min(f[0], min(f[1], f[2])) + 1;
} else {
g[0] = f[0] + 1;
g[1] = min(f[0], f[1]) + 1;
g[2] = min(f[0], min(f[1], f[2]));
}
f = move(g);
}
return min({f[0], f[1], f[2]});
}
};
func minimumOperations(nums []int) int {
f := make([]int, 3)
for _, x := range nums {
g := make([]int, 3)
if x == 1 {
g[0] = f[0]
g[1] = min(f[0], f[1]) + 1
g[2] = min(f[0], min(f[1], f[2])) + 1
} else if x == 2 {
g[0] = f[0] + 1
g[1] = min(f[0], f[1])
g[2] = min(f[0], min(f[1], f[2])) + 1
} else {
g[0] = f[0] + 1
g[1] = min(f[0], f[1]) + 1
g[2] = min(f[0], min(f[1], f[2]))
}
f = g
}
return min(f[0], min(f[1], f[2]))
}
function minimumOperations(nums: number[]): number {
let f: number[] = new Array(3).fill(0);
for (const x of nums) {
const g: number[] = new Array(3).fill(0);
if (x === 1) {
g[0] = f[0];
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else if (x === 2) {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]);
g[2] = Math.min(f[0], Math.min(f[1], f[2])) + 1;
} else {
g[0] = f[0] + 1;
g[1] = Math.min(f[0], f[1]) + 1;
g[2] = Math.min(f[0], Math.min(f[1], f[2]));
}
f = g;
}
return Math.min(...f);
}
class Solution:
def minimumOperations(self, nums: List[int]) -> int:
f = [0] * 3
for x in nums:
g = [0] * 3
if x == 1:
g[0] = f[0]
g[1] = min(f[:2]) + 1
g[2] = min(f) + 1
elif x == 2:
g[0] = f[0] + 1
g[1] = min(f[:2])
g[2] = min(f) + 1
else:
g[0] = f[0] + 1
g[1] = min(f[:2]) + 1
g[2] = min(f)
f = g
return min(f)