comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
Medium |
|
You are given a 2D integer array edges
representing a tree with n
nodes, numbered from 0
to n - 1
, rooted at node 0
, where edges[i] = [ui, vi]
means there is an edge between the nodes vi
and ui
.
You are also given a 0-indexed integer array colors
of size n
, where colors[i]
is the color assigned to node i
.
We want to find a node v
such that every node in the subtree of v
has the same color.
Return the size of such subtree with the maximum number of nodes possible.
Example 1:
Input: edges = [[0,1],[0,2],[0,3]], colors = [1,1,2,3] Output: 1 Explanation: Each color is represented as: 1 -> Red, 2 -> Green, 3 -> Blue. We can see that the subtree rooted at node 0 has children with different colors. Any other subtree is of the same color and has a size of 1. Hence, we return 1.
Example 2:
Input: edges = [[0,1],[0,2],[0,3]], colors = [1,1,1,1] Output: 4 Explanation: The whole tree has the same color, and the subtree rooted at node 0 has the most number of nodes which is 4. Hence, we return 4.
Example 3:
Input: edges = [[0,1],[0,2],[2,3],[2,4]], colors = [1,2,3,3,3] Output: 3 Explanation: Each color is represented as: 1 -> Red, 2 -> Green, 3 -> Blue. We can see that the subtree rooted at node 0 has children with different colors. Any other subtree is of the same color, but the subtree rooted at node 2 has a size of 3 which is the maximum. Hence, we return 3.
Constraints:
n == edges.length + 1
1 <= n <= 5 * 104
edges[i] == [ui, vi]
0 <= ui, vi < n
colors.length == n
1 <= colors[i] <= 105
- The input is generated such that the graph represented by
edges
is a tree.
First, according to the edge information given in the problem, we construct an adjacency list
Next, we design a function
- First, we use a variable
$ok$ to record whether the subtree with node$a$ as the root meets the requirements of the problem, and initially$ok$ is$true$ . - Then, we traverse all adjacent nodes
$b$ of node$a$ . If$b$ is not the parent node$fa$ of$a$ , then we recursively call$dfs(b, a)$ , save the return value into the variable$t$ , and update$ok$ to the value of$ok$ and$colors[a] = colors[b] \land t$ , where$\land$ represents logical AND operation. Then, we update$size[a] = size[a] + size[b]$ . - After that, we judge the value of
$ok$ . If$ok$ is$true$ , then we update the answer$ans = \max(ans, size[a])$ . - Finally, we return the value of
$ok$ .
We call
The time complexity is
class Solution:
def maximumSubtreeSize(self, edges: List[List[int]], colors: List[int]) -> int:
def dfs(a: int, fa: int) -> bool:
ok = True
for b in g[a]:
if b != fa:
t = dfs(b, a)
ok = ok and colors[a] == colors[b] and t
size[a] += size[b]
if ok:
nonlocal ans
ans = max(ans, size[a])
return ok
n = len(edges) + 1
g = [[] for _ in range(n)]
size = [1] * n
for a, b in edges:
g[a].append(b)
g[b].append(a)
ans = 0
dfs(0, -1)
return ans
class Solution {
private List<Integer>[] g;
private int[] colors;
private int[] size;
private int ans;
public int maximumSubtreeSize(int[][] edges, int[] colors) {
int n = edges.length + 1;
g = new List[n];
size = new int[n];
this.colors = colors;
Arrays.fill(size, 1);
Arrays.setAll(g, i -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
dfs(0, -1);
return ans;
}
private boolean dfs(int a, int fa) {
boolean ok = true;
for (int b : g[a]) {
if (b != fa) {
boolean t = dfs(b, a);
ok = ok && colors[a] == colors[b] && t;
size[a] += size[b];
}
}
if (ok) {
ans = Math.max(ans, size[a]);
}
return ok;
}
}
class Solution {
public:
int maximumSubtreeSize(vector<vector<int>>& edges, vector<int>& colors) {
int n = edges.size() + 1;
vector<int> g[n];
vector<int> size(n, 1);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].push_back(b);
g[b].push_back(a);
}
int ans = 0;
function<bool(int, int)> dfs = [&](int a, int fa) {
bool ok = true;
for (int b : g[a]) {
if (b != fa) {
bool t = dfs(b, a);
ok = ok && colors[a] == colors[b] && t;
size[a] += size[b];
}
}
if (ok) {
ans = max(ans, size[a]);
}
return ok;
};
dfs(0, -1);
return ans;
}
};
func maximumSubtreeSize(edges [][]int, colors []int) (ans int) {
n := len(edges) + 1
g := make([][]int, n)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
size := make([]int, n)
var dfs func(int, int) bool
dfs = func(a, fa int) bool {
size[a] = 1
ok := true
for _, b := range g[a] {
if b != fa {
t := dfs(b, a)
ok = ok && t && colors[a] == colors[b]
size[a] += size[b]
}
}
if ok {
ans = max(ans, size[a])
}
return ok
}
dfs(0, -1)
return
}
function maximumSubtreeSize(edges: number[][], colors: number[]): number {
const n = edges.length + 1;
const g: number[][] = Array.from({ length: n }, () => []);
for (const [a, b] of edges) {
g[a].push(b);
g[b].push(a);
}
const size: number[] = Array(n).fill(1);
let ans = 0;
const dfs = (a: number, fa: number): boolean => {
let ok = true;
for (const b of g[a]) {
if (b !== fa) {
const t = dfs(b, a);
ok = ok && t && colors[a] === colors[b];
size[a] += size[b];
}
}
if (ok) {
ans = Math.max(ans, size[a]);
}
return ok;
};
dfs(0, -1);
return ans;
}