-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkamada_kawai.cpp
425 lines (320 loc) · 11.1 KB
/
kamada_kawai.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include "kamada_kawai.hpp"
namespace nodesoup
{
static std::vector<std::vector<vertex_id_t>> floyd_warshall_(const adj_list_t& aAdjList)
{
// build adjacency matrix (infinity = no edge, 1 = edge)
constexpr unsigned int infinity = std::numeric_limits<unsigned int>::max() / 2;
std::vector<std::vector<vertex_id_t>> distances(aAdjList.size(), std::vector<vertex_id_t>(aAdjList.size(), infinity));
for(vertex_id_t v_id=0; v_id<aAdjList.size(); v_id++)
{
distances[v_id][v_id]=0;
for(vertex_id_t adj_id : aAdjList[v_id])
{
if(adj_id>v_id)
{
distances[v_id][adj_id]=1;
distances[adj_id][v_id]=1;
}
}
}
// floyd warshall itself, find length of shortest path for each pair of vertices
for(vertex_id_t k=0; k<aAdjList.size(); k++)
{
for(vertex_id_t i=0; i<aAdjList.size(); i++)
{
for(vertex_id_t j=0; j<aAdjList.size(); j++)
{
distances[i][j]=std::min(distances[i][j],distances[i][k]+distances[k][j]);
}
}
}
return distances;
}
KamadaKawai::KamadaKawai(const adj_list_t& aAdjList,double aK,double aEnergyThreshold)
: m_AdjList(aAdjList)
, m_EnergyThreshold(aEnergyThreshold)
, m_K(aK)
, m_SteadyEnergyCount(0)
, m_MaxVertexEnergy(0.0)
, m_VertexId(0)
, m_Scale(1.0)
{
}
void KamadaKawai::Start(bool aStartCircle)
{
SetInitPositions(aStartCircle);
std::vector<std::vector<vertex_id_t>> distances=floyd_warshall_(m_AdjList);
// find biggest distance
size_t biggest_distance = 0;
for(vertex_id_t v_id=0; v_id<m_AdjList.size(); v_id++)
{
for(vertex_id_t other_id=0; other_id<m_AdjList.size(); other_id++)
{
if(distances[v_id][other_id] > biggest_distance)
{
biggest_distance = distances[v_id][other_id];
}
}
}
// Ideal length for all edges. we don't really care, the layout is going to be scaled.
// Let's chose 1.0 as the initial positions will be on a 1.0 radius circle, so we're
// on the same order of magnitude
double length=1.0/biggest_distance;
// init springs lengths and strengths matrices
m_Springs.clear();
m_Springs.reserve(m_AdjList.size());
for(vertex_id_t v_id=0; v_id<m_AdjList.size(); v_id++)
{
std::vector<Spring> v_springs;
v_springs.reserve(m_AdjList.size());
for(vertex_id_t other_id=0; other_id<m_AdjList.size(); other_id++)
{
Spring spring;
if(v_id == other_id)
{
spring.m_Length = 0.0;
spring.m_Strength = 0.0;
}
else
{
size_t distance=distances[v_id][other_id];
spring.m_Length=distance*length;
spring.m_Strength=m_K/(distance*distance);
}
v_springs.push_back(spring);
}
m_Springs.push_back(v_springs);
}
m_SteadyEnergyCount = 0;
auto res = FindMaxVertexEnergy();
m_MaxVertexEnergy=std::get<double>(res);
m_VertexId=std::get<vertex_id_t>(res);
}
#define MAX_VERTEX_ITERS_COUNT 10
#define MAX_STEADY_ENERGY_ITERS_COUNT 50
// Reduce the energy of the next vertex with most energy until all the vertices have
// a energy below energy_threshold
void KamadaKawai::Step(float aWidth,float aHeight,std::vector<NsPosition>& aPositions)
{
if(m_MaxVertexEnergy>m_EnergyThreshold && m_SteadyEnergyCount<MAX_STEADY_ENERGY_ITERS_COUNT)
{
// move vertex step by step until its energy goes below threshold
// (apparently this is equivalent to the newton raphson method)
unsigned int vertex_count = 0;
do
{
m_Positions[m_VertexId].m_Pos=ComputeNextVertexPosition(m_VertexId);
vertex_count++;
}
while (ComputeVertexEnergy(m_VertexId)>m_EnergyThreshold && vertex_count<MAX_VERTEX_ITERS_COUNT);
double max_vertex_energy_prev=m_MaxVertexEnergy;
auto res = FindMaxVertexEnergy();
m_MaxVertexEnergy=std::get<double>(res);
m_VertexId=std::get<vertex_id_t>(res);
if(std::abs(m_MaxVertexEnergy-max_vertex_energy_prev) < 1e-20)
{
m_SteadyEnergyCount++;
}
else
{
m_SteadyEnergyCount=0;
}
}
CenterAndScale(aWidth,aHeight,aPositions);
}
// Find @p max_energy_v_id with the most potential energy and @return its energy
// https://gist.github.com/terakun/b7eff90c889c1485898ec9256ca9f91d
std::tuple<double,vertex_id_t> KamadaKawai::FindMaxVertexEnergy() const noexcept
{
double max_energy=-1.0;
vertex_id_t max_energy_v_id=0;
for(vertex_id_t v_id=0; v_id<m_AdjList.size(); v_id++)
{
double energy=ComputeVertexEnergy(v_id);
if(energy>max_energy)
{
max_energy_v_id=v_id;
max_energy=energy;
}
}
return {max_energy,max_energy_v_id};
}
// @return the potential energies of springs between @p v_id and all other vertices
double KamadaKawai::ComputeVertexEnergy(vertex_id_t aVertexId) const noexcept
{
assert(aVertexId<m_Positions.size());
if(m_Positions[aVertexId].m_Fixed)
{
return 0.0f;
}
double x_energy=0.0;
double y_energy=0.0;
for(vertex_id_t other_id=0; other_id<m_AdjList.size(); other_id++)
{
if(aVertexId==other_id)
{
continue;
}
ImVec2 delta=m_Positions[aVertexId].m_Pos-m_Positions[other_id].m_Pos;
double distance=norm(delta);
// delta * k * (1 - l / distance)
Spring spring=m_Springs[aVertexId][other_id];
x_energy += delta.x*spring.m_Strength * (1.0-spring.m_Length/distance);
y_energy += delta.y*spring.m_Strength * (1.0-spring.m_Length/distance);
}
return sqrt(x_energy*x_energy+y_energy*y_energy);
}
// @returns next position for @param v_id reducing its potential energy, ie the energy in the whole graph
// caused by its position.
// The position's delta depends on K (TODO bigger K = faster?).
// This is the complicated part of the algorithm.
ImVec2 KamadaKawai::ComputeNextVertexPosition(vertex_id_t aVertexId) const noexcept
{
assert(aVertexId<m_Positions.size());
if(m_Positions[aVertexId].m_Fixed)
{
return m_Positions[aVertexId].m_Pos;
}
double xx_energy=0.0, xy_energy=0.0, yx_energy=0.0, yy_energy=0.0;
double x_energy=0.0, y_energy=0.0;
for(vertex_id_t other_id = 0; other_id < m_AdjList.size(); other_id++)
{
if(aVertexId==other_id)
{
continue;
}
ImVec2 delta=m_Positions[aVertexId].m_Pos-m_Positions[other_id].m_Pos;
double distance=norm(delta);
double cubed_distance=distance * distance * distance;
Spring spring=m_Springs[aVertexId][other_id];
x_energy += delta.x * spring.m_Strength * (1.0 - spring.m_Length / distance);
y_energy += delta.y * spring.m_Strength * (1.0 - spring.m_Length / distance);
xy_energy += spring.m_Strength * spring.m_Length * delta.x * delta.y / cubed_distance;
xx_energy += spring.m_Strength * (1.0 - spring.m_Length * delta.y * delta.y / cubed_distance);
yy_energy += spring.m_Strength * (1.0 - spring.m_Length * delta.x * delta.x / cubed_distance);
}
yx_energy = xy_energy;
ImVec2 position = m_Positions[aVertexId].m_Pos;
double denom = xx_energy * yy_energy - xy_energy * yx_energy;
position.x += static_cast<float>((xy_energy * y_energy - yy_energy * x_energy) / denom);
position.y += static_cast<float>((xy_energy * x_energy - xx_energy * y_energy) / denom);
return position;
}
void KamadaKawai::CenterAndScale(float aWidth, float aHeight,std::vector<NsPosition>& aPositions) const noexcept
{
assert(m_Positions.size()==aPositions.size());
// find current dimensions
float x_min = std::numeric_limits<float>::max();
float x_max = std::numeric_limits<float>::lowest();
float y_min = std::numeric_limits<float>::max();
float y_max = std::numeric_limits<float>::lowest();
for(vertex_id_t v_id=0; v_id<m_Positions.size(); v_id++)
{
if(m_Positions[v_id].m_Pos.x<x_min)
{
x_min=m_Positions[v_id].m_Pos.x;
}
if(m_Positions[v_id].m_Pos.x>x_max)
{
x_max=m_Positions[v_id].m_Pos.x;
}
if(m_Positions[v_id].m_Pos.y<y_min)
{
y_min=m_Positions[v_id].m_Pos.y;
}
if(m_Positions[v_id].m_Pos.y>y_max)
{
y_max=m_Positions[v_id].m_Pos.y;
}
}
float cur_width =x_max-x_min;
float cur_height=y_max-y_min;
// compute scale factor (0.9: keep some margin)
float x_scale = aWidth/cur_width;
float y_scale = aHeight/cur_height;
m_Scale = 0.9f * (x_scale<y_scale ? x_scale : y_scale);
// compute offset and apply it to every position
ImVec2 center = { x_max+x_min, y_max+y_min };
m_Offset = center/2.0 * m_Scale;
for(vertex_id_t v_id=0; v_id<m_Positions.size(); v_id++)
{
ImVec2 pos_scaled{ m_Scale*m_Positions[v_id].m_Pos.x ,m_Scale*m_Positions[v_id].m_Pos.y };
aPositions[v_id].m_Pos=pos_scaled-m_Offset;
aPositions[v_id].m_Fixed=m_Scale*m_Positions[v_id].m_Fixed;
}
}
void KamadaKawai::MovePos(vertex_id_t aVertexId,const ImVec2& aDisp,bool aRecalculate)
{
assert(aVertexId<m_Positions.size());
if(aRecalculate)
{
if(aDisp.x==kInvalidPos && aDisp.y==kInvalidPos)
{
m_Positions[aVertexId].m_Fixed=!m_Positions[aVertexId].m_Fixed;
}
double energy=ComputeVertexEnergy(aVertexId);
m_MaxVertexEnergy=std::max(energy, m_MaxVertexEnergy);
RecalculateSprings(aVertexId);
return;
}
if(!aDisp.x && !aDisp.y)
{
return;
}
ImVec2 disp=aDisp/m_Scale;
m_Positions[aVertexId].m_Pos+=disp;
if(sq_norm(aDisp)>0.0f)
{
m_Positions[aVertexId].m_Fixed=true;
}
}
void KamadaKawai::RecalculateSprings(vertex_id_t aVertexId)
{
std::vector<std::vector<vertex_id_t>> distances=floyd_warshall_(m_AdjList);
// find biggest distance
size_t biggest_distance = 0;
for(vertex_id_t v_id=0; v_id<m_AdjList.size(); v_id++)
{
for(vertex_id_t other_id=0; other_id<m_AdjList.size(); other_id++)
{
if(distances[v_id][other_id] > biggest_distance)
{
biggest_distance = distances[v_id][other_id];
}
}
}
double length=1.0/biggest_distance;
for(vertex_id_t other_id=0; other_id<m_AdjList.size(); other_id++)
{
if(aVertexId==other_id)
{
m_Springs[aVertexId][other_id].m_Length = 0.0;
m_Springs[aVertexId][other_id].m_Strength = 0.0;
}
else
{
size_t distance=distances[aVertexId][other_id];
m_Springs[aVertexId][other_id].m_Length=distance*length;
m_Springs[aVertexId][other_id].m_Strength=m_K/(distance*distance);
}
}
m_SteadyEnergyCount=0;
auto res=FindMaxVertexEnergy();
m_MaxVertexEnergy=std::get<double>(res);
m_VertexId=std::get<vertex_id_t>(res);
}
double KamadaKawai::GetEnergy() const noexcept
{
return m_MaxVertexEnergy;
}
void KamadaKawai::SetInitPositions(bool aStartCircle)
{
m_Positions.resize(m_AdjList.size());
nodesoup::SetInitPositions(aStartCircle,m_Positions);
}
}