-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnCostFunction1.m
executable file
·107 lines (90 loc) · 4.15 KB
/
nnCostFunction1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
function [J grad] = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, Y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
%theta1 = uint8(theta1);
%theta2 = uint8(theta2);
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
theta1_grad = zeros(size(theta1));
theta2_grad = zeros(size(theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
X = [ones(m, 1) X];
for i=1:m
% activations for each layer
a1 = X(i,:)';
z2 = theta1 * a1;
a2 = [1; sigmoid(z2)];
z3 = theta2 * a2;
a3 = sigmoid(z3);
% final layer activation is output vector
h = a3;
% create a boolean vector from a numeric label
yVec = (1:num_labels) == Y(i);
J = J + sum(-yVec .* log(h) - (1 - yVec) .* log(1 - h));
% backpropagation
delta3 = a3 - yVec;
delta2 = theta2' * delta3 .* (a2 .* (1 - a2));
theta2_grad = theta2_grad + delta3 * a2';
theta1_grad = theta1_grad + delta2(2:end) * a1';
end;
% scaling cost function and gradients
J = J / m;
theta1_grad = theta1_grad / m;
theta2_grad = theta2_grad / m;
% regularization
new = (lambda/(2*m)) * (sum(sum(theta1(:,2:end).^2)) + sum(sum(theta2(:,2:end).^2)));
%new = (lambda / (2 * m)) * (sumsq(theta1(:, 2:end)(:)) + sumsq(theta2(:, 2:end)(:)));
J = J + new;
theta1_grad = theta1_grad + (lambda / m) * [zeros(size(theta1, 1), 1) theta1(:,2:end)];
theta2_grad = theta2_grad + (lambda / m) * [zeros(size(theta2, 1), 1) theta2(:,2:end)];
% =========================================================================
% Unroll gradients
grad = [theta1_grad(:) ; theta2_grad(:)];
end