This document introduces the configuration(filed in config/*.yaml
) of PaddleClas.
- Note: Some parameters do not appear in the yaml file (because they are not used for this file). During training or validation, you can use the command
-o
to update or add the specified parameters. For the example -o checkpoints=./ckp_path/ppcls
, it means that the parameter checkpoints
will be updated or added using the value ./ckp_path/ppcls
.
name |
detail |
default value |
optional value |
mode |
mode |
"train" |
["train"," valid"] |
checkpoints |
checkpoint model path for resuming training process |
"" |
Str |
last_epoch |
last epoch for the training,used with checkpoints |
-1 |
int |
pretrained_model |
pretrained model path |
"" |
Str |
load_static_weights |
whether the pretrained model is saved in static mode |
False |
bool |
model_save_dir |
model stored path |
"" |
Str |
classes_num |
class number |
1000 |
int |
total_images |
total images |
1281167 |
int |
save_interval |
save interval |
1 |
int |
validate |
whether to validate when training |
TRUE |
bool |
valid_interval |
valid interval |
1 |
int |
epochs |
epoch |
|
int |
topk |
K value |
5 |
int |
image_shape |
image size |
[3,224,224] |
list, shape: (3,) |
use_mix |
whether to use mixup |
False |
['True', 'False'] |
ls_epsilon |
label_smoothing epsilon value |
0 |
float |
use_distillation |
whether to use SSLD distillation training |
False |
bool |
name |
detail |
default value |
optional value |
name |
model name |
"ResNet50_vd" |
one of 23 architectures |
params |
model parameters |
{} |
extra dictionary for the model structure, parameters such as padding_type in EfficientNet can be set here |
name |
detail |
default value |
Optional value |
function |
decay type |
"Linear" |
["Linear", "Cosine", "Piecewise", "CosineWarmup"] |
params.lr |
initial learning rate |
0.1 |
float |
params.decay_epochs |
milestone in piecewisedecay |
|
list |
params.gamma |
gamma in piecewisedecay |
0.1 |
float |
params.warmup_epoch |
warmup epoch |
5 |
int |
parmas.steps |
decay steps in lineardecay |
100 |
int |
params.end_lr |
end lr in lineardecay |
0 |
float |
name |
detail |
default value |
optional value |
function |
optimizer name |
"Momentum" |
["Momentum", "RmsProp"] |
params.momentum |
momentum value |
0.9 |
float |
regularizer.function |
regularizer method name |
"L2" |
["L1", "L2"] |
regularizer.factor |
regularizer factor |
0.0001 |
float |
name |
detail |
batch_size |
batch size |
num_workers |
worker number |
file_list |
train list path |
data_dir |
train dataset path |
shuffle_seed |
seed |
processing
function name |
attribute name |
detail |
DecodeImage |
to_rgb |
decode to RGB |
|
to_np |
to numpy |
|
channel_first |
Channel first |
RandCropImage |
size |
random crop |
RandFlipImage |
|
random flip |
NormalizeImage |
scale |
normalize image |
|
mean |
mean |
|
std |
std |
|
order |
order |
ToCHWImage |
|
to CHW |
CropImage |
size |
crop size |
ResizeImage |
resize_short |
resize according to short size |
mix preprocessing
name |
detail |
MixupOperator.alpha |
alpha value in mixup |