-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.py
131 lines (106 loc) · 4.71 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse, math, os, sys
from re import S
from aiohttp import ServerDisconnectedError
import numpy as np
import gym
from gym import wrappers
import matplotlib.pyplot as plt
from tools.ExperimentEnvGlobalNetworkSurvival import ExperimentEnvGlobalNetworkSurvival
from tools.MazeTurnEnvVec import MazeTurnEnvVec
import torch
from torch.autograd import Variable
import torch.autograd as autograd
import torch.nn.utils as utils
from torch.distributions import Categorical
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
parser = argparse.ArgumentParser(description='PyTorch REINFORCE example')
parser.add_argument('--gamma', type=float, default=0.98, metavar='G')
parser.add_argument('--seed', type=int, default=598, metavar='N')
parser.add_argument('--num_steps', type=int, default=500, metavar='N')
parser.add_argument('--num_episodes', type=int, default=1000, metavar='N')
parser.add_argument('--hidden_size', type=int, default=128, metavar='N')
parser.add_argument('--render', action='store_true')
args = parser.parse_args()
n_agent = 1
steps = 500
env = MazeTurnEnvVec(n_agent, n_steps=steps)
data_env = ExperimentEnvGlobalNetworkSurvival(env)
s_dim = 4
a_dim = 3
class Policy(nn.Module):
def __init__(self, hidden_size, s_dim, a_dim):
super(Policy, self).__init__()
self.lstm = nn.LSTM(s_dim, hidden_size, batch_first = True)
self.linear1 = nn.Linear(hidden_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, a_dim)
def forward(self, x,hidden):
x, hidden = self.lstm(x, hidden)
x = F.relu(self.linear1(x))
p = F.softmax(self.linear2(x),-1)
return p,hidden
class REINFORCE:
def __init__(self, hidden_size, s_dim, a_dim):
self.model = Policy(hidden_size, s_dim, a_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=1e-2) #
self.model.train()
self.pi = Variable(torch.FloatTensor([math.pi])) #
def select_action(self, state,hx,cx):
# mu, sigma_sq = self.model(Variable(state).cuda())
prob,(hx,cx) = self.model(Variable(state),(hx,cx))
dist = Categorical(probs=prob)
action = dist.sample()
log_prob = prob[0][0,action.item()].log()
# log_prob = prob.log()
entropy = dist.entropy()
return action, log_prob, entropy
def update_parameters(self, rewards, log_probs, entropies, gamma):# 更新参数
R = torch.tensor(0)
loss = 0
for i in reversed(range(len(rewards))):
R = gamma * R + rewards[i]
loss = loss - (log_probs[i]*Variable(R)) - 0.005*entropies[i][0]
loss = loss / len(rewards)
self.optimizer.zero_grad()
loss.backward()
utils.clip_grad_norm_(self.model.parameters(), 2)
self.optimizer.step()
seeds=20
for seed in range(seeds):
log_reward = []
log_smooth = []
gamma=np.linspace(0.9,1.0,100)
for g in range(100):
agent = REINFORCE(args.hidden_size,s_dim,a_dim)
result=np.zeros([100,args.num_steps])
for i_episode in range(args.num_episodes):
state = torch.tensor(data_env.reset()).unsqueeze(0)
entropies = []
log_probs = []
rewards = []
old_dis = np.ones([1,])*13
reawrd_perstep=[]
allrewards=[]
hx = torch.zeros(args.hidden_size).unsqueeze(0).unsqueeze(0)
cx = torch.zeros(args.hidden_size).unsqueeze(0).unsqueeze(0)
for t in range(args.num_steps): # 1个episode最长num_steps
action, log_prob, entropy = agent.select_action(state.unsqueeze(0).float(),hx,cx)
action = action.cpu().numpy()
next_state, envreward, done, _ = data_env.step(action[0])
entropies.append(entropy)
log_probs.append(log_prob)
state = torch.Tensor([next_state])
rewards.append(envreward[0])
agent.update_parameters(rewards, log_probs, entropies, gamma[g])
print("Episode: {}, reward: {}".format(i_episode, np.sum(rewards)))
log_reward.append(np.sum(rewards))
if i_episode == 0:
log_smooth.append(log_reward[-1])
else:
log_smooth.append(log_smooth[-1]*0.99+0.01*np.sum(rewards))
plt.plot(log_smooth)
plt.plot(log_reward)
plt.pause(1e-5)
result[g]=np.array(allrewards).squeeze(1)
np.save('./lstm.npy',result)