-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsetup_cifar.py
167 lines (134 loc) · 5.27 KB
/
setup_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
## setup_cifar.py -- cifar data and model loading code
##
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
import tensorflow as tf
import numpy as np
import os
import pickle
import gzip
import pickle
import urllib.request
from tensorflow.contrib.keras.api.keras.models import Sequential
from tensorflow.contrib.keras.api.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.contrib.keras.api.keras.layers import Conv2D, MaxPooling2D
from tensorflow.contrib.keras.api.keras.layers import Lambda
from tensorflow.contrib.keras.api.keras.models import load_model
from tensorflow.contrib.keras.api.keras import backend as K
def load_batch(fpath, label_key='labels'):
f = open(fpath, 'rb')
d = pickle.load(f, encoding="bytes")
for k, v in d.items():
del(d[k])
d[k.decode("utf8")] = v
f.close()
data = d["data"]
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
final = np.zeros((data.shape[0], 32, 32, 3),dtype=np.float32)
final[:,:,:,0] = data[:,0,:,:]
final[:,:,:,1] = data[:,1,:,:]
final[:,:,:,2] = data[:,2,:,:]
final /= 255
final -= .5
labels2 = np.zeros((len(labels), 10))
labels2[np.arange(len(labels2)), labels] = 1
return final, labels
def load_batch(fpath):
f = open(fpath,"rb").read()
size = 32*32*3+1
labels = []
images = []
for i in range(10000):
arr = np.fromstring(f[i*size:(i+1)*size],dtype=np.uint8)
lab = np.identity(10)[arr[0]]
img = arr[1:].reshape((3,32,32)).transpose((1,2,0))
labels.append(lab)
images.append((img/255)-.5)
return np.array(images),np.array(labels)
class CIFAR:
def __init__(self):
train_data = []
train_labels = []
if not os.path.exists("cifar-10-batches-bin"):
urllib.request.urlretrieve("https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz",
"cifar-data.tar.gz")
os.popen("tar -xzf cifar-data.tar.gz").read()
for i in range(5):
r,s = load_batch("cifar-10-batches-bin/data_batch_"+str(i+1)+".bin")
train_data.extend(r)
train_labels.extend(s)
train_data = np.array(train_data,dtype=np.float32)
train_labels = np.array(train_labels)
self.test_data, self.test_labels = load_batch("cifar-10-batches-bin/test_batch.bin")
VALIDATION_SIZE = 5000
self.validation_data = train_data[:VALIDATION_SIZE, :, :, :]
self.validation_labels = train_labels[:VALIDATION_SIZE]
self.train_data = train_data[VALIDATION_SIZE:, :, :, :]
self.train_labels = train_labels[VALIDATION_SIZE:]
class CIFARModel:
def __init__(self, restore=None, session=None, use_log=False, use_brelu = False):
def bounded_relu(x):
return K.relu(x, max_value=1)
if use_brelu:
activation = bounded_relu
else:
activation = 'relu'
self.num_channels = 3
self.image_size = 32
self.num_labels = 10
model = Sequential()
model.add(Conv2D(64, (3, 3),
input_shape=(32, 32, 3)))
model.add(Activation(activation))
model.add(Conv2D(64, (3, 3)))
model.add(Activation(activation))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3)))
model.add(Activation(activation))
model.add(Conv2D(128, (3, 3)))
model.add(Activation(activation))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(256))
model.add(Activation(activation))
model.add(Dense(256))
model.add(Activation(activation))
model.add(Dense(10))
if use_log:
model.add(Activation('softmax'))
if restore:
model.load_weights(restore)
layer_outputs = []
for layer in model.layers:
if isinstance(layer, Conv2D) or isinstance(layer, Dense):
layer_outputs.append(K.function([model.layers[0].input], [layer.output]))
self.layer_outputs = layer_outputs
self.model = model
def predict(self, data):
return self.model(data)
class TwoLayerCIFARModel:
def __init__(self, restore = None, session=None, use_log=False):
self.num_channels = 3
self.image_size = 32
self.num_labels = 10
model = Sequential()
model.add(Flatten(input_shape=(32, 32, 3)))
model.add(Dense(1024))
model.add(Activation('softplus'))
model.add(Dense(10))
# output log probability, used for black-box attack
if use_log:
model.add(Activation('softmax'))
if restore:
model.load_weights(restore)
layer_outputs = []
for layer in model.layers:
if isinstance(layer, Conv2D) or isinstance(layer, Dense):
layer_outputs.append(K.function([model.layers[0].input], [layer.output]))
self.layer_outputs = layer_outputs
self.model = model
def predict(self, data):
return self.model(data)