-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
222 lines (183 loc) · 7.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""
@author: AlbertTan
Part of the code in <utils.py> is from SimGNN@benedekrozemberczki
"""
import os
import argparse
import random
from datetime import datetime
import torch
from trainer import GEDTrainer
from utils import create_dir_if_not_exists, tab_printer, log_args
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--wandb_activate",
default=False)
parser.add_argument("--seed",
default=2022)
parser.add_argument('--norm_dist_method',
default='neg^exp')
parser.add_argument("--explain_study",
default=False)
parser.add_argument("--load_model",
default=False)
parser.add_argument('--case_study',
default=False)
parser.add_argument("--loaded_model_signature",
default="")
parser.add_argument('--dataset', type=str, help='indicate the specific data set',
default='IMDBMulti')
parser.add_argument('--gpu_index', type=str, help="gpu index to use",
default='0')
# ----- hyper parameters -------
parser.add_argument('--sim_mat_learning_ablation',
help='replace SimCNN with SimMatPooling',
default=False)
parser.add_argument('--msa_bias',
default=True)
# GCN layers
parser.add_argument("--embedding_size",
default=32)
parser.add_argument("--graph_transformer_active",
default=True)
parser.add_argument("--encoder_ffn_size",
default=128)
parser.add_argument("--GT_res",
default=True)
parser.add_argument("--share_qk",
default=True)
parser.add_argument("--use_dist",
default=True)
parser.add_argument('--dist_decay',
default=0)
parser.add_argument("--dist_start_decay", type=float,
default=0.5)
parser.add_argument('--encoder_mask',
default=False)
parser.add_argument('--interaction_mask',
default=False)
parser.add_argument('--align_mask',
default=False)
parser.add_argument('--cnn_mask',
default=False)
# GraphTransformer params
parser.add_argument("--n_heads", type=int,
default=8)
parser.add_argument('--channel_align',
default=True)
parser.add_argument("--n_channel_transformer_heads", type=int,
default=4)
parser.add_argument("--channel_ffn_size",
default=128)
# conv params
parser.add_argument("--conv_channels_0",
default=32)
parser.add_argument("--conv_channels_1",
default=64)
parser.add_argument("--conv_channels_2",
default=1)
parser.add_argument("--conv_channels_3",
default=256)
parser.add_argument("--conv_l_relu_slope",
default=0.33)
parser.add_argument("--conv_dropout",
default=0.1)
parser.add_argument("--pooling_res",
default=20)
# training parameters
parser.add_argument('--iterations', type=int, help='number of training epochs',
default=10000)
parser.add_argument('--iter_val_start', type=int,
default=9000)
parser.add_argument('--patience',
default=100)
parser.add_argument('--iter_val_every', type=int,
default=1)
parser.add_argument("--batch_size", type=int, help="Number of graph pairs per batch.",
default=128)
parser.add_argument("--lr", type=float, help="Learning rate.",
default=5e-4)
parser.add_argument("--lr_reduce_factor",
default=0.5)
parser.add_argument("--lr_schedule_patience",
default=800)
parser.add_argument("--min_lr",
default=1e-6)
parser.add_argument("--dropout", type=float, help="Dropout probability.",
default=0.1)
parser.add_argument("--weight_decay", type=float,
default=0)
parser.add_argument("--temp",
default={'cur_iter': 0})
# experiment settings
parser.add_argument('--log_path', type=str, help='path for log file',
default='./GSTLogs')
parser.add_argument('--repeat_run', type=int, help='indicated the index of repeat run',
default=0)
parser.add_argument('--data_dir', type=str, help='root directory for the data',
default='./datasets/')
parser.add_argument('--GNN',
default='GCN')
parsed_args = parser.parse_args()
if parsed_args.dataset == 'LINUX':
parsed_args.embedding_size = 32
parsed_args.n_channel_transformer_heads = 4
elif parsed_args.dataset == 'AIDS700nef':
parsed_args.embedding_size = 128
parsed_args.n_channel_transformer_heads = 4
elif parsed_args.dataset == 'IMDBMulti':
parsed_args.embedding_size = 32
parsed_args.n_channel_transformer_heads = 8
if parsed_args.load_model:
model_sig = parsed_args.loaded_model_signature
if model_sig.find('LINUX') != -1:
parsed_args.dataset = 'LINUX'
parsed_args.embedding_size = 32
parsed_args.n_channel_transformer_heads = 4
elif model_sig.find('AIDS700nef') != -1:
parsed_args.dataset = 'AIDS700nef'
parsed_args.embedding_size = 128
parsed_args.n_channel_transformer_heads = 4
else:
parsed_args.dataset = 'IMDBMulti'
parsed_args.embedding_size = 32
parsed_args.n_channel_transformer_heads = 8
return parsed_args
if __name__ == '__main__':
parsed_args = get_args()
if parsed_args.wandb_activate:
import wandb
wandb.init(project=parsed_args.dataset, entity="<YourEntityName>", config=parsed_args)
parsed_args = wandb.config
torch.manual_seed(parsed_args.seed)
if torch.cuda:
torch.cuda.manual_seed(parsed_args.seed)
parsed_args.device_count = torch.cuda.device_count()
if parsed_args.device_count == 1:
parsed_args.gpu_index = '0'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parsed_args.device = device
create_dir_if_not_exists(parsed_args.log_path)
log_root_dir = parsed_args.log_path
signature = parsed_args.dataset + '_' + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") \
+ '-' + str(random.randint(100000, 1000000))
current_run_dir = os.path.join(log_root_dir, signature)
create_dir_if_not_exists(current_run_dir)
parsed_args.model_save_path = os.path.join(current_run_dir, 'best_model.pt')
parsed_args.log_file_path = os.path.join(current_run_dir, 'log.txt')
parsed_args.dist_mat_path = os.path.join(parsed_args.data_dir, parsed_args.dataset,
parsed_args.dataset + '_distance.npy')
ged_main_dir = parsed_args.data_dir
tab_printer(parsed_args)
log_args(parsed_args.log_file_path, parsed_args)
trainer = GEDTrainer(args=parsed_args)
if parsed_args.load_model:
parsed_args.model_save_path = os.path.join(log_root_dir, parsed_args.loaded_model_signature, "best_model.pt")
else:
trainer.train()
if parsed_args.case_study:
trainer.case_study()
elif parsed_args.explain_study:
trainer.explain_study()
else:
trainer.test()