-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvisualize.py
151 lines (125 loc) · 4.7 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import json
import logging
import os
import random
import numpy as np
import torch
import wandb
from datasets.eth_xgaze import get_train_loader
from trainer.gazenerf_trainer import get_trainer
from utils.logging import config_logging
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description="Train options")
add_arg = parser.add_argument
add_arg("--gpu_id", type=int, default=0)
add_arg("--batch_size", type=int, default=1)
add_arg("--num_workers", type=int, default=0)
add_arg("--num_epochs", type=int, default=100)
add_arg("--num_iterations", type=int, default=1)
add_arg("--step_decay", type=int, default=1000)
add_arg("--learning_rate", type=float, default=0.0001)
add_arg("--vgg_importance", type=float, default=1.0)
add_arg("--eye_loss_importance", type=float, default=100.0)
add_arg("--img_dir", type=str, default="data/eth_xgaze/subjects")
add_arg("--bg_type", type=str, default="white")
add_arg("--checkpoint_dir", type=str, default=None)
add_arg("--optimizer", type=str, default="adam")
add_arg("--state_dict_name", type=str, default="tmp.json")
add_arg("--model_path", type=str, default="checkpoints/2_mlp.json")
add_arg("--log", type=bool, default=False)
add_arg("--resume", type=bool, default=True)
add_arg("--verbose", type=bool, default=True)
add_arg("--use_vgg_loss", type=bool, default=True)
add_arg("--use_l1_loss", type=bool, default=True)
add_arg("--use_angular_loss", type=bool, default=False)
add_arg("--use_patch_gan_loss", type=bool, default=False)
add_arg("--include_vd", type=bool, default=False)
add_arg("--hier_sampling", type=bool, default=False)
add_arg("--enable_ffhq", type=bool, default=False)
add_arg("--enable_eth_xgaze", type=bool, default=True)
add_arg("--fit_image", type=bool, default=False)
return parser.parse_args()
def process(args, key, val=False):
train_dataloader = get_train_loader(
args.img_dir,
args.batch_size,
args.num_workers,
is_shuffle=False,
subject=key,
evaluate="landmark",
)
# Load the trainer
gpu = args.gpu_id
if gpu is not None and torch.cuda.is_available():
logging.info("Using GPU %i", gpu)
fit_image_bool = args.fit_image
if val:
fit_image_bool = False
trainer = get_trainer(
checkpoint_dir=args.checkpoint_dir,
batch_size=args.batch_size,
gpu=gpu,
resume=args.resume,
include_vd=args.include_vd,
hier_sampling=args.hier_sampling,
log=args.log,
lr=args.learning_rate,
num_iter=args.num_iterations,
optimizer=args.optimizer,
step_decay=args.step_decay,
vgg_importance=args.vgg_importance,
eye_loss_importance=args.eye_loss_importance,
fit_image=fit_image_bool,
model_path=args.model_path,
state_dict_name=args.state_dict_name,
use_vgg_loss=args.use_vgg_loss,
use_l1_loss=args.use_l1_loss,
use_angular_loss=args.use_angular_loss,
use_patch_gan_loss=args.use_patch_gan_loss,
)
# Run the training
trainer.train_single_image(train_dataloader, args.num_epochs, 0, "one_fit")
trainer.evaluate_single_image(
data_loader=train_dataloader,
key=key,
val=val,
)
def main():
"""Main function to produce images with redirected gaze"""
torch.manual_seed(45) # cpu
torch.cuda.manual_seed(55) # gpu
np.random.seed(65) # numpy
random.seed(75) # random and transforms
torch.backends.cudnn.deterministic = True # cudnn
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
torch.set_num_threads(1)
# Initialization
args = parse_args()
if args.log:
wandb.init(project="evaluation", config={"gpu_id": 0})
wandb.config.update(args)
# Setup logging
log_file = "logs"
if not os.path.exists(log_file):
os.makedirs(log_file)
log_file = os.path.join(log_file, "out_%i.log" % args.gpu_id)
config_logging(verbose=args.verbose, log_file=log_file, append=args.resume)
refer_list_file = os.path.join("data/eth_xgaze", "train_test_split.json")
with open(refer_list_file, "r") as f:
datastore = json.load(f)
train_keys = datastore["train"]
val_keys = datastore["val"]
for subject in train_keys:
process(args, subject)
#for subject in val_keys:
# process(args, subject)
# for subject in val_keys:
# process(args, subject, True)
if __name__ == "__main__":
main()