-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
AUTHORS
139 lines (112 loc) · 6.51 KB
/
AUTHORS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
DeepLabCut (www.deeplabcut.org) was initially developed by
Alexander & Mackenzie Mathis in collaboration with Matthias Bethge in 2017.
It is actively developed by Alexander & Mackenzie Mathis (steering council and owners).
DeepLabCut is an open-source tool and has benefited from suggestions and edits by many
individuals: DeepLabCut/graphs/contributors
############################################################################################################
DeepLabCut 1.0 Toolbox
A Mathis, [email protected] | https://github.com/DeepLabCut/DeepLabCut
M Mathis, [email protected] | https://github.com/MMathisLab
Specific external contributors:
E Insafutdinov and co-authors of DeeperCut (see README) for feature detectors: https://github.com/eldar
- Thus, code in this subdirectory at the time of April 2018, deeplabcut/pose_estimation_tensorflow
was adapted from: https://github.com/eldar/pose-tensorflow.
Products:
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 2018.
https://doi.org/10.1038/s41593-018-0209-y
A. Mathis, P. Mamidanna, K.M. Cury, T. Abe, V.N. Murthy, M.W. Mathis* & M. Bethge*
Contributions:
Conceptualization: A.M., M.W.M. and M.B.
Software: A.M. and M.W.M.
Formal analysis: A.M.
Experiments: A.M. and V.N.M. (trail-tracking), M.W.M. (mouse reaching), K.M.C. (Drosophila).
Image Labeling: P.M., K.M.C., T.A., M.W.M., A.M.
Writing: A.M. and M.W.M. with input from all authors.
These authors jointly directed this work: M. Mathis, M. Bethge
############################################################################################################
DeepLabCut 2.0 Toolbox
A Mathis, [email protected] | https://github.com/DeepLabCut/DeepLabCut
T Nath, [email protected] | https://github.com/meet10may
M Mathis, [email protected] | https://github.com/MMathisLab
Products:
Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature Protocols, 2019.
https://www.nature.com/articles/s41596-019-0176-0
T. Nath*, A. Mathis*, AC. Chen, A. Patel, M. Bethge, M. Mathis
Contributions:
Conceptualization: AM, TN, MWM.
Software: AM, TN and MWM.
Dataset (cheetah): AP.
Image Labeling: ACC.
Formal analysis: ACC, AM and AP analyzed the cheetah data.
Writing: MWM, AM and TN with inputs from all authors.
############################################################################################################
DeepLabCut 2.1 major additions:
A Mathis, [email protected] | https://github.com/DeepLabCut/DeepLabCut
T Nath, [email protected] | https://github.com/meet10may
M Yüksekgönül, [email protected] | https://github.com/mertyg
M Mathis, [email protected] | https://github.com/MMathisLab
Specific external contributors:
Tensorpack augmentation: https://github.com/DeepLabCut/DeepLabCut/pull/409 by Katie Rupp
Products:
Pretraining boosts out-of-domain robustness for pose estimation. WACV, 2021.
http://www.mackenziemathislab.org/horse10
A. Mathis, T. Biasi, S. Schneider, M. Yüksekgönül, B. Rogers, M. Bethge, M. Mathis
############################################################################################################
DeepLabCut 2.1 - 2.2 additions:
A Mathis, [email protected] | https://github.com/AlexEMG
J Lauer, [email protected] | https://github.com/jeylau
M Mathis, [email protected] | https://github.com/MMathisLab
M Zhou, https://github.com/zhoumu53
S Ye, https://github.com/yeshaokai
S Schneider, https://github.com/stes
T Biasi, https://github.com/tbiasi
G Kane, https://github.com/gkane26
M Yüksekgönül, https://github.com/mertyg
T Nath, https://github.com/meet10may
Preprint:
Multi-animal pose estimation and tracking with DeepLabCut
J Lauer, M Zhou, S Ye, W Menegas, S Schneider, T Nath, MM Rahman, V Di Santo,
D Soberanes, G Feng, VN Murthy, G Lauder, C Dulac, M Mathis, A Mathis (2021).
https://www.biorxiv.org/content/10.1101/2021.04.30.442096v1
Publication:
Multi-animal pose estimation, identification and tracking with DeepLabCut
Lauer, J., Zhou, M., Ye, S., Menegas, W., Schneider, S., Nath, T., Rahman, M.M.,
Di Santo, V., Soberanes, D., Feng, G., Murthy, V.N., Lauder, G.V., Dulac, C.,
Mathis, M.W., & Mathis, A. (2022).
Nature Methods, 19, 496 - 504.
Conceptualization was done by A.M. and M.W.M. Formal analysis and code were done by J.L., A.M. and M.W.M.
New deep architectures were designed by M.Z., S.Y. and A.M. GUIs were done by J.L., M.W.M. and T.N.
Benchmark was set by S.S., M.W.M., A.M. and J.L. Marmoset data were gathered by W.M. and G.F.
Marmoset behavioral analysis was carried out by W.M. Parenting data were gathered by M.M.R., A.M. and C.D.
Tri-mouse data were gathered by D.S., A.M. and V.N.M. Fish data were gathered by V.D.S. and G.L.
The article was written by A.M., M.W.M. and J.L. with input from all authors.
M.W.M. and A.M. co-supervised the project.
############################################################################################################
DeepLabCut 2.2 - 3.0 additions:
A Mathis, [email protected] | https://github.com/AlexEMG
M Mathis, [email protected] | https://github.com/MMathisLab
J Lauer, [email protected] | https://github.com/jeylau
N Poulsen, [email protected] | https://github.com/n-poulsen
S Schneider, [email protected] | https://github.com/stes
S Ye, [email protected] | https://github.com/yeshaokai
Preprint:
Ye, S., Filippova, A., Lauer, J., Schneider, S., Vidal, M., Qiu, T., Mathis, A., & Mathis, M.W. (2023).
SuperAnimal pretrained pose estimation models for behavioral analysis. https://arxiv.org/abs/2203.07436
############################################################################################################
DeepLabCut 3.0 Toolbox
M Mathis, [email protected] | https://github.com/MMathisLab
A Mathis, [email protected] | https://github.com/AlexEMG
N Poulsen, [email protected] | https://github.com/n-poulsen
S Ye, [email protected] | https://github.com/yeshaokai
A Filippova, [email protected] | https://github.com/nastya236
Q Macé | https://github.com/QuentinJGMace
J Lauer, [email protected] | https://github.com/jeylau
L Stoffl, [email protected] | https://github.com/LucZot
We also greatly thank the 2023 DeepLabCut AI Residents who contributed:
Anna Teruel-Sanchis | https://github.com/anna-teruel
Riza Rae Pineda | https://github.com/rizarae-p
Konrad Danielewski | https://github.com/KonradDanielewski
Products:
PyTorch backend for DeepLabCut
Expanded SuperAnimal capabilities
New model architectures (WIP: stay tuned, but includes BUCTD)