forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 8k
/
Copy pathyolo_layer.c
576 lines (526 loc) · 22.7 KB
/
yolo_layer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#include "yolo_layer.h"
#include "activations.h"
#include "blas.h"
#include "box.h"
#include "dark_cuda.h"
#include "utils.h"
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
{
int i;
layer l = { (LAYER_TYPE)0 };
l.type = YOLO;
l.n = n;
l.total = total;
l.batch = batch;
l.h = h;
l.w = w;
l.c = n*(classes + 4 + 1);
l.out_w = l.w;
l.out_h = l.h;
l.out_c = l.c;
l.classes = classes;
l.cost = (float*)calloc(1, sizeof(float));
l.biases = (float*)calloc(total * 2, sizeof(float));
if(mask) l.mask = mask;
else{
l.mask = (int*)calloc(n, sizeof(int));
for(i = 0; i < n; ++i){
l.mask[i] = i;
}
}
l.bias_updates = (float*)calloc(n * 2, sizeof(float));
l.outputs = h*w*n*(classes + 4 + 1);
l.inputs = l.outputs;
l.max_boxes = max_boxes;
l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1);
l.delta = (float*)calloc(batch * l.outputs, sizeof(float));
l.output = (float*)calloc(batch * l.outputs, sizeof(float));
for(i = 0; i < total*2; ++i){
l.biases[i] = .5;
}
l.forward = forward_yolo_layer;
l.backward = backward_yolo_layer;
#ifdef GPU
l.forward_gpu = forward_yolo_layer_gpu;
l.backward_gpu = backward_yolo_layer_gpu;
l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
free(l.output);
if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
else {
cudaGetLastError(); // reset CUDA-error
l.output = (float*)calloc(batch * l.outputs, sizeof(float));
}
free(l.delta);
if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
else {
cudaGetLastError(); // reset CUDA-error
l.delta = (float*)calloc(batch * l.outputs, sizeof(float));
}
#endif
fprintf(stderr, "yolo\n");
srand(time(0));
return l;
}
void resize_yolo_layer(layer *l, int w, int h)
{
l->w = w;
l->h = h;
l->outputs = h*w*l->n*(l->classes + 4 + 1);
l->inputs = l->outputs;
if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float));
if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs*sizeof(float));
#ifdef GPU
if (l->output_pinned) {
cudaFreeHost(l->output);
if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
cudaGetLastError(); // reset CUDA-error
l->output = (float*)realloc(l->output, l->batch * l->outputs * sizeof(float));
l->output_pinned = 0;
}
}
if (l->delta_pinned) {
cudaFreeHost(l->delta);
if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
cudaGetLastError(); // reset CUDA-error
l->delta = (float*)realloc(l->delta, l->batch * l->outputs * sizeof(float));
l->delta_pinned = 0;
}
}
cuda_free(l->delta_gpu);
cuda_free(l->output_gpu);
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
#endif
}
box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
{
box b;
// ln - natural logarithm (base = e)
// x` = t.x * lw - i; // x = ln(x`/(1-x`)) // x - output of previous conv-layer
// y` = t.y * lh - i; // y = ln(y`/(1-y`)) // y - output of previous conv-layer
// w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer
// h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer
b.x = (i + x[index + 0*stride]) / lw;
b.y = (j + x[index + 1*stride]) / lh;
b.w = exp(x[index + 2*stride]) * biases[2*n] / w;
b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
return b;
}
ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss)
{
ious all_ious = { 0 };
// i - step in layer width
// j - step in layer height
// Returns a box in absolute coordinates
box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride);
all_ious.iou = box_iou(pred, truth);
all_ious.giou = box_giou(pred, truth);
// avoid nan in dx_box_iou
if (pred.w == 0) { pred.w = 1.0; }
if (pred.h == 0) { pred.h = 1.0; }
if (iou_loss == MSE) // old loss
{
float tx = (truth.x*lw - i);
float ty = (truth.y*lh - j);
float tw = log(truth.w*w / biases[2 * n]);
float th = log(truth.h*h / biases[2 * n + 1]);
delta[index + 0 * stride] = scale * (tx - x[index + 0 * stride]);
delta[index + 1 * stride] = scale * (ty - x[index + 1 * stride]);
delta[index + 2 * stride] = scale * (tw - x[index + 2 * stride]);
delta[index + 3 * stride] = scale * (th - x[index + 3 * stride]);
}
else {
// https://github.com/generalized-iou/g-darknet
// https://arxiv.org/abs/1902.09630v2
// https://giou.stanford.edu/
all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss);
// jacobian^t (transpose)
delta[index + 0 * stride] = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);
delta[index + 1 * stride] = (all_ious.dx_iou.dt + all_ious.dx_iou.db);
delta[index + 2 * stride] = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr));
delta[index + 3 * stride] = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db));
// predict exponential, apply gradient of e^delta_t ONLY for w,h
delta[index + 2 * stride] *= exp(x[index + 2 * stride]);
delta[index + 3 * stride] *= exp(x[index + 3 * stride]);
// normalize iou weight
delta[index + 0 * stride] *= iou_normalizer;
delta[index + 1 * stride] *= iou_normalizer;
delta[index + 2 * stride] *= iou_normalizer;
delta[index + 3 * stride] *= iou_normalizer;
}
return all_ious;
}
void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss)
{
int n;
if (delta[index + stride*class_id]){
delta[index + stride*class_id] = 1 - output[index + stride*class_id];
if(avg_cat) *avg_cat += output[index + stride*class_id];
return;
}
// Focal loss
if (focal_loss) {
// Focal Loss
float alpha = 0.5; // 0.25 or 0.5
//float gamma = 2; // hardcoded in many places of the grad-formula
int ti = index + stride*class_id;
float pt = output[ti] + 0.000000000000001F;
// http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
//float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
for (n = 0; n < classes; ++n) {
delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]);
delta[index + stride*n] *= alpha*grad;
if (n == class_id) *avg_cat += output[index + stride*n];
}
}
else {
// default
for (n = 0; n < classes; ++n) {
delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n];
if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
}
}
}
static int entry_index(layer l, int batch, int location, int entry)
{
int n = location / (l.w*l.h);
int loc = location % (l.w*l.h);
return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc;
}
static box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
void forward_yolo_layer(const layer l, network_state state)
{
int i, j, b, t, n;
memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float));
#ifndef GPU
for (b = 0; b < l.batch; ++b) {
for (n = 0; n < l.n; ++n) {
int index = entry_index(l, b, n*l.w*l.h, 0);
activate_array(l.output + index, 2 * l.w*l.h, LOGISTIC); // x,y,
scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale x,y
index = entry_index(l, b, n*l.w*l.h, 4);
activate_array(l.output + index, (1 + l.classes)*l.w*l.h, LOGISTIC);
}
}
#endif
memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
if (!state.train) return;
//float avg_iou = 0;
float tot_iou = 0;
float tot_giou = 0;
float tot_iou_loss = 0;
float tot_giou_loss = 0;
float recall = 0;
float recall75 = 0;
float avg_cat = 0;
float avg_obj = 0;
float avg_anyobj = 0;
int count = 0;
int class_count = 0;
*(l.cost) = 0;
for (b = 0; b < l.batch; ++b) {
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h);
float best_iou = 0;
int best_t = 0;
for (t = 0; t < l.max_boxes; ++t) {
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (class_id >= l.classes) {
printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
getchar();
continue; // if label contains class_id more than number of classes in the cfg-file
}
if (!truth.x) break; // continue;
float iou = box_iou(pred, truth);
if (iou > best_iou) {
best_iou = iou;
best_t = t;
}
}
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
avg_anyobj += l.output[obj_index];
l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]);
if (best_iou > l.ignore_thresh) {
l.delta[obj_index] = 0;
}
if (best_iou > l.truth_thresh) {
l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.focal_loss);
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer, l.iou_loss);
}
}
}
}
for (t = 0; t < l.max_boxes; ++t) {
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) {
printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h);
}
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
if (!truth.x) break; // continue;
float best_iou = 0;
int best_n = 0;
i = (truth.x * l.w);
j = (truth.y * l.h);
box truth_shift = truth;
truth_shift.x = truth_shift.y = 0;
for (n = 0; n < l.total; ++n) {
box pred = { 0 };
pred.w = l.biases[2 * n] / state.net.w;
pred.h = l.biases[2 * n + 1] / state.net.h;
float iou = box_iou(pred, truth_shift);
if (iou > best_iou) {
best_iou = iou;
best_n = n;
}
}
int mask_n = int_index(l.mask, best_n, l.n);
if (mask_n >= 0) {
int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer, l.iou_loss);
// range is 0 <= 1
tot_iou += all_ious.iou;
tot_iou_loss += 1 - all_ious.iou;
// range is -1 <= giou <= 1
tot_giou += all_ious.giou;
tot_giou_loss += 1 - all_ious.giou;
int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
avg_obj += l.output[obj_index];
l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
if (l.map) class_id = l.map[class_id];
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss);
++count;
++class_count;
//if(iou > .5) recall += 1;
//if(iou > .75) recall75 += 1;
//avg_iou += iou;
if (all_ious.iou > .5) recall += 1;
if (all_ious.iou > .75) recall75 += 1;
}
}
}
//*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
//printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", state.index, avg_iou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count);
float avg_iou_loss = 0;
// gIOU loss + MSE (objectness) loss
if (l.iou_loss == MSE) {
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
}
else {
// Always compute classification loss both for iou + cls loss and for logging with mse loss
// TODO: remove IOU loss fields before computing MSE on class
// probably split into two arrays
int stride = l.w*l.h;
float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float));
memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float));
for (b = 0; b < l.batch; ++b) {
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w; ++i) {
for (n = 0; n < l.n; ++n) {
int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
no_iou_loss_delta[index + 0 * stride] = 0;
no_iou_loss_delta[index + 1 * stride] = 0;
no_iou_loss_delta[index + 2 * stride] = 0;
no_iou_loss_delta[index + 3 * stride] = 0;
}
}
}
}
float classification_loss = l.cls_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2);
free(no_iou_loss_delta);
if (l.iou_loss == GIOU) {
avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0;
}
else {
avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0;
}
*(l.cost) = avg_iou_loss + classification_loss;
}
printf("v3 (%s loss, Normalizer: (iou: %f, cls: %f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.cls_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count);
}
void backward_yolo_layer(const layer l, network_state state)
{
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
{
int i;
int new_w=0;
int new_h=0;
if (letter) {
if (((float)netw / w) < ((float)neth / h)) {
new_w = netw;
new_h = (h * netw) / w;
}
else {
new_h = neth;
new_w = (w * neth) / h;
}
}
else {
new_w = netw;
new_h = neth;
}
for (i = 0; i < n; ++i){
box b = dets[i].bbox;
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
b.w *= (float)netw/new_w;
b.h *= (float)neth/new_h;
if(!relative){
b.x *= w;
b.w *= w;
b.y *= h;
b.h *= h;
}
dets[i].bbox = b;
}
}
int yolo_num_detections(layer l, float thresh)
{
int i, n;
int count = 0;
for (i = 0; i < l.w*l.h; ++i){
for(n = 0; n < l.n; ++n){
int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4);
if(l.output[obj_index] > thresh){
++count;
}
}
}
return count;
}
void avg_flipped_yolo(layer l)
{
int i,j,n,z;
float *flip = l.output + l.outputs;
for (j = 0; j < l.h; ++j) {
for (i = 0; i < l.w/2; ++i) {
for (n = 0; n < l.n; ++n) {
for(z = 0; z < l.classes + 4 + 1; ++z){
int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
float swap = flip[i1];
flip[i1] = flip[i2];
flip[i2] = swap;
if(z == 0){
flip[i1] = -flip[i1];
flip[i2] = -flip[i2];
}
}
}
}
}
for(i = 0; i < l.outputs; ++i){
l.output[i] = (l.output[i] + flip[i])/2.;
}
}
int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
{
//printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n);
int i,j,n;
float *predictions = l.output;
if (l.batch == 2) avg_flipped_yolo(l);
int count = 0;
for (i = 0; i < l.w*l.h; ++i){
int row = i / l.w;
int col = i % l.w;
for(n = 0; n < l.n; ++n){
int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4);
float objectness = predictions[obj_index];
//if(objectness <= thresh) continue; // incorrect behavior for Nan values
if (objectness > thresh) {
//printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n);
int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h);
dets[count].objectness = objectness;
dets[count].classes = l.classes;
for (j = 0; j < l.classes; ++j) {
int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j);
float prob = objectness*predictions[class_index];
dets[count].prob[j] = (prob > thresh) ? prob : 0;
}
++count;
}
}
}
correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
return count;
}
#ifdef GPU
void forward_yolo_layer_gpu(const layer l, network_state state)
{
//copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu);
int b, n;
for (b = 0; b < l.batch; ++b){
for(n = 0; n < l.n; ++n){
int index = entry_index(l, b, n*l.w*l.h, 0);
// y = 1./(1. + exp(-x))
// x = ln(y/(1-y)) // ln - natural logarithm (base = e)
// if(y->1) x -> inf
// if(y->0) x -> -inf
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); // x,y
scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale x,y
index = entry_index(l, b, n*l.w*l.h, 4);
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); // classes and objectness
}
}
if(!state.train || l.onlyforward){
//cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
CHECK_CUDA(cudaPeekAtLastError());
return;
}
float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float));
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float));
float *truth_cpu = 0;
if (state.truth) {
int num_truth = l.batch*l.truths;
truth_cpu = (float *)calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
}
network_state cpu_state = state;
cpu_state.net = state.net;
cpu_state.index = state.index;
cpu_state.train = state.train;
cpu_state.truth = truth_cpu;
cpu_state.input = in_cpu;
forward_yolo_layer(l, cpu_state);
//forward_yolo_layer(l, state);
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
free(in_cpu);
if (cpu_state.truth) free(cpu_state.truth);
}
void backward_yolo_layer_gpu(const layer l, network_state state)
{
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
}
#endif