forked from pjreddie/darknet
-
Notifications
You must be signed in to change notification settings - Fork 8k
/
Copy pathdarknet.h
1125 lines (977 loc) · 24.7 KB
/
darknet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef DARKNET_API
#define DARKNET_API
#if defined(_MSC_VER) && _MSC_VER < 1900
#define inline __inline
#endif
#if defined(DEBUG) && !defined(_CRTDBG_MAP_ALLOC)
#define _CRTDBG_MAP_ALLOC
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
#include <pthread.h>
#ifndef LIB_API
#ifdef LIB_EXPORTS
#if defined(_MSC_VER)
#define LIB_API __declspec(dllexport)
#else
#define LIB_API __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define LIB_API
#else
#define LIB_API
#endif
#endif
#endif
#define SECRET_NUM -1234
typedef enum { UNUSED_DEF_VAL } UNUSED_ENUM_TYPE;
#ifdef GPU
#include <cuda_runtime.h>
#include <curand.h>
#include <cublas_v2.h>
#ifdef CUDNN
#include <cudnn.h>
#endif // CUDNN
#endif // GPU
#ifdef __cplusplus
extern "C" {
#endif
struct network;
typedef struct network network;
struct network_state;
typedef struct network_state network_state;
struct layer;
typedef struct layer layer;
struct image;
typedef struct image image;
struct detection;
typedef struct detection detection;
struct load_args;
typedef struct load_args load_args;
struct data;
typedef struct data data;
struct metadata;
typedef struct metadata metadata;
struct tree;
typedef struct tree tree;
extern int gpu_index;
// option_list.h
typedef struct metadata {
int classes;
char **names;
} metadata;
// tree.h
typedef struct tree {
int *leaf;
int n;
int *parent;
int *child;
int *group;
char **name;
int groups;
int *group_size;
int *group_offset;
} tree;
// activations.h
typedef enum {
LOGISTIC, RELU, RELU6, RELIE, LINEAR, RAMP, TANH, PLSE, REVLEAKY, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU, GELU, SWISH, MISH, HARD_MISH, NORM_CHAN, NORM_CHAN_SOFTMAX, NORM_CHAN_SOFTMAX_MAXVAL
}ACTIVATION;
// parser.h
typedef enum {
IOU, GIOU, MSE, DIOU, CIOU
} IOU_LOSS;
// parser.h
typedef enum {
DEFAULT_NMS, GREEDY_NMS, DIOU_NMS, CORNERS_NMS
} NMS_KIND;
// parser.h
typedef enum {
YOLO_CENTER = 1 << 0, YOLO_LEFT_TOP = 1 << 1, YOLO_RIGHT_BOTTOM = 1 << 2
} YOLO_POINT;
// parser.h
typedef enum {
NO_WEIGHTS, PER_FEATURE, PER_CHANNEL
} WEIGHTS_TYPE_T;
// parser.h
typedef enum {
NO_NORMALIZATION, RELU_NORMALIZATION, SOFTMAX_NORMALIZATION
} WEIGHTS_NORMALIZATION_T;
// image.h
typedef enum{
PNG, BMP, TGA, JPG
} IMTYPE;
// activations.h
typedef enum{
MULT, ADD, SUB, DIV
} BINARY_ACTIVATION;
// blas.h
typedef struct contrastive_params {
float sim;
float exp_sim;
float P;
int i, j;
int time_step_i, time_step_j;
} contrastive_params;
// layer.h
typedef enum {
CONVOLUTIONAL,
DECONVOLUTIONAL,
CONNECTED,
MAXPOOL,
LOCAL_AVGPOOL,
SOFTMAX,
DETECTION,
DROPOUT,
CROP,
ROUTE,
COST,
NORMALIZATION,
AVGPOOL,
LOCAL,
SHORTCUT,
SCALE_CHANNELS,
SAM,
ACTIVE,
RNN,
GRU,
LSTM,
CONV_LSTM,
HISTORY,
CRNN,
BATCHNORM,
NETWORK,
XNOR,
REGION,
YOLO,
GAUSSIAN_YOLO,
ISEG,
REORG,
REORG_OLD,
UPSAMPLE,
LOGXENT,
L2NORM,
EMPTY,
BLANK,
CONTRASTIVE,
IMPLICIT
} LAYER_TYPE;
// layer.h
typedef enum{
SSE, MASKED, L1, SEG, SMOOTH,WGAN
} COST_TYPE;
// layer.h
typedef struct update_args {
int batch;
float learning_rate;
float momentum;
float decay;
int adam;
float B1;
float B2;
float eps;
int t;
} update_args;
// layer.h
struct layer {
LAYER_TYPE type;
ACTIVATION activation;
ACTIVATION lstm_activation;
COST_TYPE cost_type;
void(*forward) (struct layer, struct network_state);
void(*backward) (struct layer, struct network_state);
void(*update) (struct layer, int, float, float, float);
void(*forward_gpu) (struct layer, struct network_state);
void(*backward_gpu) (struct layer, struct network_state);
void(*update_gpu) (struct layer, int, float, float, float, float);
layer *share_layer;
int train;
int avgpool;
int batch_normalize;
int shortcut;
int batch;
int dynamic_minibatch;
int forced;
int flipped;
int inputs;
int outputs;
float mean_alpha;
int nweights;
int nbiases;
int extra;
int truths;
int h, w, c;
int out_h, out_w, out_c;
int n;
int max_boxes;
int truth_size;
int groups;
int group_id;
int size;
int side;
int stride;
int stride_x;
int stride_y;
int dilation;
int antialiasing;
int maxpool_depth;
int maxpool_zero_nonmax;
int out_channels;
float reverse;
int coordconv;
int flatten;
int spatial;
int pad;
int sqrt;
int flip;
int index;
int scale_wh;
int binary;
int xnor;
int peephole;
int use_bin_output;
int keep_delta_gpu;
int optimized_memory;
int steps;
int history_size;
int bottleneck;
float time_normalizer;
int state_constrain;
int hidden;
int truth;
float smooth;
float dot;
int deform;
int grad_centr;
int sway;
int rotate;
int stretch;
int stretch_sway;
float angle;
float jitter;
float resize;
float saturation;
float exposure;
float shift;
float ratio;
float learning_rate_scale;
float clip;
int focal_loss;
float *classes_multipliers;
float label_smooth_eps;
int noloss;
int softmax;
int classes;
int detection;
int embedding_layer_id;
float *embedding_output;
int embedding_size;
float sim_thresh;
int track_history_size;
int dets_for_track;
int dets_for_show;
float track_ciou_norm;
int coords;
int background;
int rescore;
int objectness;
int does_cost;
int joint;
int noadjust;
int reorg;
int log;
int tanh;
int *mask;
int total;
float bflops;
int adam;
float B1;
float B2;
float eps;
int t;
float alpha;
float beta;
float kappa;
float coord_scale;
float object_scale;
float noobject_scale;
float mask_scale;
float class_scale;
int bias_match;
float random;
float ignore_thresh;
float truth_thresh;
float iou_thresh;
float thresh;
float focus;
int classfix;
int absolute;
int assisted_excitation;
int onlyforward;
int stopbackward;
int train_only_bn;
int dont_update;
int burnin_update;
int dontload;
int dontsave;
int dontloadscales;
int numload;
float temperature;
float probability;
float dropblock_size_rel;
int dropblock_size_abs;
int dropblock;
float scale;
int receptive_w;
int receptive_h;
int receptive_w_scale;
int receptive_h_scale;
char * cweights;
int * indexes;
int * input_layers;
int * input_sizes;
float **layers_output;
float **layers_delta;
WEIGHTS_TYPE_T weights_type;
WEIGHTS_NORMALIZATION_T weights_normalization;
int * map;
int * counts;
float ** sums;
float * rand;
float * cost;
int *labels;
int *class_ids;
int contrastive_neg_max;
float *cos_sim;
float *exp_cos_sim;
float *p_constrastive;
contrastive_params *contrast_p_gpu;
float * state;
float * prev_state;
float * forgot_state;
float * forgot_delta;
float * state_delta;
float * combine_cpu;
float * combine_delta_cpu;
float *concat;
float *concat_delta;
float *binary_weights;
float *biases;
float *bias_updates;
float *scales;
float *scale_updates;
float *weights_ema;
float *biases_ema;
float *scales_ema;
float *weights;
float *weight_updates;
float scale_x_y;
int objectness_smooth;
int new_coords;
int show_details;
float max_delta;
float uc_normalizer;
float iou_normalizer;
float obj_normalizer;
float cls_normalizer;
float delta_normalizer;
IOU_LOSS iou_loss;
IOU_LOSS iou_thresh_kind;
NMS_KIND nms_kind;
float beta_nms;
YOLO_POINT yolo_point;
char *align_bit_weights_gpu;
float *mean_arr_gpu;
float *align_workspace_gpu;
float *transposed_align_workspace_gpu;
int align_workspace_size;
char *align_bit_weights;
float *mean_arr;
int align_bit_weights_size;
int lda_align;
int new_lda;
int bit_align;
float *col_image;
float * delta;
float * output;
float * activation_input;
int delta_pinned;
int output_pinned;
float * loss;
float * squared;
float * norms;
float * spatial_mean;
float * mean;
float * variance;
float * mean_delta;
float * variance_delta;
float * rolling_mean;
float * rolling_variance;
float * x;
float * x_norm;
float * m;
float * v;
float * bias_m;
float * bias_v;
float * scale_m;
float * scale_v;
float *z_cpu;
float *r_cpu;
float *h_cpu;
float *stored_h_cpu;
float * prev_state_cpu;
float *temp_cpu;
float *temp2_cpu;
float *temp3_cpu;
float *dh_cpu;
float *hh_cpu;
float *prev_cell_cpu;
float *cell_cpu;
float *f_cpu;
float *i_cpu;
float *g_cpu;
float *o_cpu;
float *c_cpu;
float *stored_c_cpu;
float *dc_cpu;
float *binary_input;
uint32_t *bin_re_packed_input;
char *t_bit_input;
struct layer *input_layer;
struct layer *self_layer;
struct layer *output_layer;
struct layer *reset_layer;
struct layer *update_layer;
struct layer *state_layer;
struct layer *input_gate_layer;
struct layer *state_gate_layer;
struct layer *input_save_layer;
struct layer *state_save_layer;
struct layer *input_state_layer;
struct layer *state_state_layer;
struct layer *input_z_layer;
struct layer *state_z_layer;
struct layer *input_r_layer;
struct layer *state_r_layer;
struct layer *input_h_layer;
struct layer *state_h_layer;
struct layer *wz;
struct layer *uz;
struct layer *wr;
struct layer *ur;
struct layer *wh;
struct layer *uh;
struct layer *uo;
struct layer *wo;
struct layer *vo;
struct layer *uf;
struct layer *wf;
struct layer *vf;
struct layer *ui;
struct layer *wi;
struct layer *vi;
struct layer *ug;
struct layer *wg;
tree *softmax_tree;
size_t workspace_size;
//#ifdef GPU
int *indexes_gpu;
int stream;
int wait_stream_id;
float *z_gpu;
float *r_gpu;
float *h_gpu;
float *stored_h_gpu;
float *bottelneck_hi_gpu;
float *bottelneck_delta_gpu;
float *temp_gpu;
float *temp2_gpu;
float *temp3_gpu;
float *dh_gpu;
float *hh_gpu;
float *prev_cell_gpu;
float *prev_state_gpu;
float *last_prev_state_gpu;
float *last_prev_cell_gpu;
float *cell_gpu;
float *f_gpu;
float *i_gpu;
float *g_gpu;
float *o_gpu;
float *c_gpu;
float *stored_c_gpu;
float *dc_gpu;
// adam
float *m_gpu;
float *v_gpu;
float *bias_m_gpu;
float *scale_m_gpu;
float *bias_v_gpu;
float *scale_v_gpu;
float * combine_gpu;
float * combine_delta_gpu;
float * forgot_state_gpu;
float * forgot_delta_gpu;
float * state_gpu;
float * state_delta_gpu;
float * gate_gpu;
float * gate_delta_gpu;
float * save_gpu;
float * save_delta_gpu;
float * concat_gpu;
float * concat_delta_gpu;
float *binary_input_gpu;
float *binary_weights_gpu;
float *bin_conv_shortcut_in_gpu;
float *bin_conv_shortcut_out_gpu;
float * mean_gpu;
float * variance_gpu;
float * m_cbn_avg_gpu;
float * v_cbn_avg_gpu;
float * rolling_mean_gpu;
float * rolling_variance_gpu;
float * variance_delta_gpu;
float * mean_delta_gpu;
float * col_image_gpu;
float * x_gpu;
float * x_norm_gpu;
float * weights_gpu;
float * weight_updates_gpu;
float * weight_deform_gpu;
float * weight_change_gpu;
float * weights_gpu16;
float * weight_updates_gpu16;
float * biases_gpu;
float * bias_updates_gpu;
float * bias_change_gpu;
float * scales_gpu;
float * scale_updates_gpu;
float * scale_change_gpu;
float * input_antialiasing_gpu;
float * output_gpu;
float * output_avg_gpu;
float * activation_input_gpu;
float * loss_gpu;
float * delta_gpu;
float * cos_sim_gpu;
float * rand_gpu;
float * drop_blocks_scale;
float * drop_blocks_scale_gpu;
float * squared_gpu;
float * norms_gpu;
float *gt_gpu;
float *a_avg_gpu;
int *input_sizes_gpu;
float **layers_output_gpu;
float **layers_delta_gpu;
#ifdef CUDNN
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
cudnnTensorDescriptor_t srcTensorDesc16, dstTensorDesc16;
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
cudnnTensorDescriptor_t dsrcTensorDesc16, ddstTensorDesc16;
cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc, normDstTensorDescF16;
cudnnFilterDescriptor_t weightDesc, weightDesc16;
cudnnFilterDescriptor_t dweightDesc, dweightDesc16;
cudnnConvolutionDescriptor_t convDesc;
cudnnConvolutionFwdAlgo_t fw_algo, fw_algo16;
cudnnConvolutionBwdDataAlgo_t bd_algo, bd_algo16;
cudnnConvolutionBwdFilterAlgo_t bf_algo, bf_algo16;
cudnnPoolingDescriptor_t poolingDesc;
#else // CUDNN
void* srcTensorDesc, *dstTensorDesc;
void* srcTensorDesc16, *dstTensorDesc16;
void* dsrcTensorDesc, *ddstTensorDesc;
void* dsrcTensorDesc16, *ddstTensorDesc16;
void* normTensorDesc, *normDstTensorDesc, *normDstTensorDescF16;
void* weightDesc, *weightDesc16;
void* dweightDesc, *dweightDesc16;
void* convDesc;
UNUSED_ENUM_TYPE fw_algo, fw_algo16;
UNUSED_ENUM_TYPE bd_algo, bd_algo16;
UNUSED_ENUM_TYPE bf_algo, bf_algo16;
void* poolingDesc;
#endif // CUDNN
//#endif // GPU
};
// network.h
typedef enum {
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM, SGDR
} learning_rate_policy;
// network.h
typedef struct network {
int n;
int batch;
uint64_t *seen;
float *badlabels_reject_threshold;
float *delta_rolling_max;
float *delta_rolling_avg;
float *delta_rolling_std;
int weights_reject_freq;
int equidistant_point;
float badlabels_rejection_percentage;
float num_sigmas_reject_badlabels;
float ema_alpha;
int *cur_iteration;
float loss_scale;
int *t;
float epoch;
int subdivisions;
layer *layers;
float *output;
learning_rate_policy policy;
int benchmark_layers;
int *total_bbox;
int *rewritten_bbox;
float learning_rate;
float learning_rate_min;
float learning_rate_max;
int batches_per_cycle;
int batches_cycle_mult;
float momentum;
float decay;
float gamma;
float scale;
float power;
int time_steps;
int step;
int max_batches;
int num_boxes;
int train_images_num;
float *seq_scales;
float *scales;
int *steps;
int num_steps;
int burn_in;
int cudnn_half;
int adam;
float B1;
float B2;
float eps;
int inputs;
int outputs;
int truths;
int notruth;
int h, w, c;
int max_crop;
int min_crop;
float max_ratio;
float min_ratio;
int center;
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
int gaussian_noise;
int blur;
int mixup;
float label_smooth_eps;
int resize_step;
int attention;
int adversarial;
float adversarial_lr;
float max_chart_loss;
int letter_box;
int mosaic_bound;
int contrastive;
int contrastive_jit_flip;
int contrastive_color;
int unsupervised;
float angle;
float aspect;
float exposure;
float saturation;
float hue;
int random;
int track;
int augment_speed;
int sequential_subdivisions;
int init_sequential_subdivisions;
int current_subdivision;
int try_fix_nan;
int gpu_index;
tree *hierarchy;
float *input;
float *truth;
float *delta;
float *workspace;
int train;
int index;
float *cost;
float clip;
//#ifdef GPU
//float *input_gpu;
//float *truth_gpu;
float *delta_gpu;
float *output_gpu;
float *input_state_gpu;
float *input_pinned_cpu;
int input_pinned_cpu_flag;
float **input_gpu;
float **truth_gpu;
float **input16_gpu;
float **output16_gpu;
size_t *max_input16_size;
size_t *max_output16_size;
int wait_stream;
void *cuda_graph;
void *cuda_graph_exec;
int use_cuda_graph;
int *cuda_graph_ready;
float *global_delta_gpu;
float *state_delta_gpu;
size_t max_delta_gpu_size;
//#endif // GPU
int optimized_memory;
int dynamic_minibatch;
size_t workspace_size_limit;
} network;
// network.h
typedef struct network_state {
float *truth;
float *input;
float *delta;
float *workspace;
int train;
int index;
network net;
} network_state;
//typedef struct {
// int w;
// int h;
// float scale;
// float rad;
// float dx;
// float dy;
// float aspect;
//} augment_args;
// image.h
typedef struct image {
int w;
int h;
int c;
float *data;
} image;
//typedef struct {
// int w;
// int h;
// int c;
// float *data;
//} image;
// box.h
typedef struct box {
float x, y, w, h;
} box;
// box.h
typedef struct boxabs {
float left, right, top, bot;
} boxabs;
// box.h
typedef struct dxrep {
float dt, db, dl, dr;
} dxrep;
// box.h
typedef struct ious {
float iou, giou, diou, ciou;
dxrep dx_iou;
dxrep dx_giou;
} ious;
// box.h
typedef struct detection{
box bbox;
int classes;
int best_class_idx;
float *prob;
float *mask;
float objectness;
int sort_class;
float *uc; // Gaussian_YOLOv3 - tx,ty,tw,th uncertainty
int points; // bit-0 - center, bit-1 - top-left-corner, bit-2 - bottom-right-corner
float *embeddings; // embeddings for tracking
int embedding_size;
float sim;
int track_id;
} detection;
// network.c -batch inference
typedef struct det_num_pair {
int num;
detection *dets;
} det_num_pair, *pdet_num_pair;
// matrix.h
typedef struct matrix {
int rows, cols;
float **vals;
} matrix;
// data.h
typedef struct data {
int w, h;
matrix X;
matrix y;
int shallow;
int *num_boxes;
box **boxes;
} data;
// data.h
typedef enum {
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA, ISEG_DATA
} data_type;
// data.h
typedef struct load_args {
int threads;
char **paths;
char *path;
int n;
int m;
char **labels;
int h;
int w;
int c; // color depth
int out_w;
int out_h;
int nh;
int nw;
int num_boxes;
int truth_size;
int min, max, size;
int classes;
int background;
int scale;
int center;
int coords;
int mini_batch;
int track;
int augment_speed;
int letter_box;
int mosaic_bound;
int show_imgs;
int dontuse_opencv;
int contrastive;
int contrastive_jit_flip;
int contrastive_color;
float jitter;
float resize;
int flip;
int gaussian_noise;
int blur;
int mixup;
float label_smooth_eps;
float angle;
float aspect;
float saturation;
float exposure;
float hue;
data *d;
image *im;
image *resized;
data_type type;
tree *hierarchy;
} load_args;
// data.h
typedef struct box_label {
int id;
int track_id;
float x, y, w, h;
float left, right, top, bottom;
} box_label;