-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy patheval_mna.py
64 lines (55 loc) · 2.48 KB
/
eval_mna.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding=UTF-8 -*-\n
from eval.eval_mna import Eval_MNA
from eval.measures import *
import ast
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter
, conflict_handler='resolve')
parser.add_argument('-net-src', required=True, default=None
, help='features from source network')
parser.add_argument('-net-end', required=True, default=None
, help='features from end network')
parser.add_argument('-use-net', required=True, default=True, type=str2bool
, help='If use structural information in MNA')
parser.add_argument('-feat-src', required=False, default=None
, help='features from source network')
parser.add_argument('-feat-end', required=False, default=None
, help='features from end network')
parser.add_argument('-linkage', required=True
, help='linkage for test')
parser.add_argument('-model', required=True
, help='Model file')
parser.add_argument('-n-cands', default=9, type=int
, help='number of candidates')
parser.add_argument('-eval-type', default='mrr'
, help='mrr/ca/cls (MRR/Candidate selection/Classification)')
parser.add_argument('-output', required=True
, help='Output file')
return parser.parse_args()
def main(args):
# args.use_net=False
print(args)
eval_model = Eval_MNA()
eval_model._init_eval(net_src=args.net_src
, net_end=args.net_end
, feat_src=args.feat_src
, feat_end=args.feat_end
, linkage=args.linkage
, use_net=args.use_net
)
if args.eval_type=='mrr':
eval_model.calc_mrr_by_dist(model=args.model, candidate_num=args.n_cands, out_file=args.output)
if args.eval_type=='cls':
eval_model.eval_classes(model=args.model, candidate_num=args.n_cands, out_file=args.output)
if __name__=='__main__':
main(parse_args())