-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDog_Cat.py
73 lines (60 loc) · 2.14 KB
/
Dog_Cat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 29 21:35:39 2019
@author: Amith R
Image classification using Convolutional Neural Networks
"""
#DATA Pre-Processing
#data set already divided into test and training set
# encoding is not required
# feature scaling is required
# building the CNN
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# initialising the CNN
# object of sequential class
classifier = Sequential()
# step1 - Convolution
classifier.add(Convolution2D(32,3,3,input_shape=(64,64,3),activation='relu'))
# using different feature detectors
#step2- MAxpooling
classifier.add(MaxPooling2D(pool_size=(2,2)))
#size of feature map reduced by 2
#adding a second convolutional layer to
classifier.add(Convolution2D(32,3,3,activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
#step3 -Flattening
classifier.add(Flatten())
#step4 - FullConnection
#fully connected layer
classifier.add(Dense(output_dim=128,activation = 'relu'))
classifier.add(Dense(output_dim=1,activation = 'sigmoid'))
# compliling the CNN
classifier.compile (optimizer ='adam',loss='binary_crossentropy',metrics=['accuracy'])
# Fitting the CNN to dataset
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
#object used for augmentation
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size=(64,64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(
training_set,
samples_per_epoch=8000, #no of images in training set
epochs=25,
validation_data=test_set,
validation_steps=2000)