-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnum_rec.py
51 lines (36 loc) · 1.1 KB
/
num_rec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import cv2
import pickle
################################
width = 640
height = 480
threshold = 0.65
#####################################
cap = cv2.VideoCapture(0)
cap.set(3,width)
cap.set(4,height)
pickle_in = open("model_trained.p","rb")
model = pickle.load(pickle_in)
def preProcessing(img):
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img = cv2.equalizeHist(img)
img = img/255
return img
while True:
success, imgOrignal = cap.read()
img = np.asarray(imgOrignal)
img = cv2.resize(img,(32,32))
img = preProcessing(img)
cv2.imshow("Processed Image",img)
img = img.reshape(1,32,32,1)
#Predict
classIndex = int(model.predict_classes(img))
prediction = model.predict(img)
probVal = np.amax(prediction)
print(classIndex,probVal)
if probVal > threshold:
cv2.putText(imgOrignal,str(classIndex)+" "+str(probVal),(50,50),cv2.FONT_HERSHEY_COMPLEX,
1,(0,0,255),1)
cv2.imshow("Orignal Image",imgOrignal)
if cv2.waitKey(1) & 0xff == ord('q'):
break