-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathEllipsoidalOccluder.js
290 lines (255 loc) · 14.3 KB
/
EllipsoidalOccluder.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import BoundingSphere from './BoundingSphere.js';
import Cartesian3 from './Cartesian3.js';
import Check from './Check.js';
import defaultValue from './defaultValue.js';
import defined from './defined.js';
import defineProperties from './defineProperties.js';
import Rectangle from './Rectangle.js';
/**
* Determine whether or not other objects are visible or hidden behind the visible horizon defined by
* an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
* origin of the coordinate system. This class uses the algorithm described in the
* {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
*
* @alias EllipsoidalOccluder
*
* @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
* @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
* specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
* testing visibility.
*
* @constructor
*
* @example
* // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
* var cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
* var occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* var occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
*
* @private
*/
function EllipsoidalOccluder(ellipsoid, cameraPosition) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('ellipsoid', ellipsoid);
//>>includeEnd('debug');
this._ellipsoid = ellipsoid;
this._cameraPosition = new Cartesian3();
this._cameraPositionInScaledSpace = new Cartesian3();
this._distanceToLimbInScaledSpaceSquared = 0.0;
// cameraPosition fills in the above values
if (defined(cameraPosition)) {
this.cameraPosition = cameraPosition;
}
}
defineProperties(EllipsoidalOccluder.prototype, {
/**
* Gets the occluding ellipsoid.
* @memberof EllipsoidalOccluder.prototype
* @type {Ellipsoid}
*/
ellipsoid : {
get: function() {
return this._ellipsoid;
}
},
/**
* Gets or sets the position of the camera.
* @memberof EllipsoidalOccluder.prototype
* @type {Cartesian3}
*/
cameraPosition : {
get : function() {
return this._cameraPosition;
},
set : function(cameraPosition) {
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
var ellipsoid = this._ellipsoid;
var cv = ellipsoid.transformPositionToScaledSpace(cameraPosition, this._cameraPositionInScaledSpace);
var vhMagnitudeSquared = Cartesian3.magnitudeSquared(cv) - 1.0;
Cartesian3.clone(cameraPosition, this._cameraPosition);
this._cameraPositionInScaledSpace = cv;
this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
}
}
});
var scratchCartesian = new Cartesian3();
/**
* Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
*
* @param {Cartesian3} occludee The point to test for visibility.
* @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
*
* @example
* var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
* var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
* var point = new Cesium.Cartesian3(0, -3, -3);
* occluder.isPointVisible(point); //returns true
*/
EllipsoidalOccluder.prototype.isPointVisible = function(occludee) {
var ellipsoid = this._ellipsoid;
var occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(occludee, scratchCartesian);
return this.isScaledSpacePointVisible(occludeeScaledSpacePosition);
};
/**
* Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
* occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
* into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
*
* @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
* @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
*
* @example
* var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
* var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
* var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
* var point = new Cesium.Cartesian3(0, -3, -3);
* var scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
* occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
*/
EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function(occludeeScaledSpacePosition) {
// See https://cesium.com/blog/2013/04/25/Horizon-culling/
var cv = this._cameraPositionInScaledSpace;
var vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
var vt = Cartesian3.subtract(occludeeScaledSpacePosition, cv, scratchCartesian);
var vtDotVc = -Cartesian3.dot(vt, cv);
// If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
// in this case, set the culling plane to be on V.
var isOccluded = vhMagnitudeSquared < 0 ? vtDotVc > 0 : (vtDotVc > vhMagnitudeSquared &&
vtDotVc * vtDotVc / Cartesian3.magnitudeSquared(vt) > vhMagnitudeSquared);
return !isOccluded;
};
/**
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
* is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function(directionToPoint, positions, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('directionToPoint', directionToPoint);
Check.defined('positions', positions);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian3();
}
var ellipsoid = this._ellipsoid;
var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint);
var resultMagnitude = 0.0;
for (var i = 0, len = positions.length; i < len; ++i) {
var position = positions[i];
var candidateMagnitude = computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint);
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
}
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
};
var positionScratch = new Cartesian3();
/**
* Computes a point that can be used for horizon culling from a list of positions. If the point is below
* the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
* is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
* A reasonable direction to use is the direction from the center of the ellipsoid to
* the center of the bounding sphere computed from the positions. The direction need not
* be normalized.
* @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
* must be expressed in a reference frame centered at the ellipsoid and aligned with the
* ellipsoid's axes.
* @param {Number} [stride=3]
* @param {Cartesian3} [center=Cartesian3.ZERO]
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function(directionToPoint, vertices, stride, center, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('directionToPoint', directionToPoint);
Check.defined('vertices', vertices);
Check.typeOf.number('stride', stride);
//>>includeEnd('debug');
if (!defined(result)) {
result = new Cartesian3();
}
center = defaultValue(center, Cartesian3.ZERO);
var ellipsoid = this._ellipsoid;
var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint);
var resultMagnitude = 0.0;
for (var i = 0, len = vertices.length; i < len; i += stride) {
positionScratch.x = vertices[i] + center.x;
positionScratch.y = vertices[i + 1] + center.y;
positionScratch.z = vertices[i + 2] + center.z;
var candidateMagnitude = computeMagnitude(ellipsoid, positionScratch, scaledSpaceDirectionToPoint);
resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
}
return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
};
var subsampleScratch = [];
/**
* Computes a point that can be used for horizon culling of a rectangle. If the point is below
* the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
* The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
* {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
*
* @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
* @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
* the ellipsoid used by this instance for occlusion testing.
* @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
* @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
*/
EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function(rectangle, ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('rectangle', rectangle);
//>>includeEnd('debug');
var positions = Rectangle.subsample(rectangle, ellipsoid, 0.0, subsampleScratch);
var bs = BoundingSphere.fromPoints(positions);
// If the bounding sphere center is too close to the center of the occluder, it doesn't make
// sense to try to horizon cull it.
if (Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
return undefined;
}
return this.computeHorizonCullingPoint(bs.center, positions, result);
};
var scaledSpaceScratch = new Cartesian3();
var directionScratch = new Cartesian3();
function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
var scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(position, scaledSpaceScratch);
var magnitudeSquared = Cartesian3.magnitudeSquared(scaledSpacePosition);
var magnitude = Math.sqrt(magnitudeSquared);
var direction = Cartesian3.divideByScalar(scaledSpacePosition, magnitude, directionScratch);
// For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
magnitudeSquared = Math.max(1.0, magnitudeSquared);
magnitude = Math.max(1.0, magnitude);
var cosAlpha = Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
var sinAlpha = Cartesian3.magnitude(Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction));
var cosBeta = 1.0 / magnitude;
var sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
}
function magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result) {
// The horizon culling point is undefined if there were no positions from which to compute it,
// the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
if (resultMagnitude <= 0.0 || resultMagnitude === 1.0 / 0.0 || resultMagnitude !== resultMagnitude) {
return undefined;
}
return Cartesian3.multiplyByScalar(scaledSpaceDirectionToPoint, resultMagnitude, result);
}
var directionToPointScratch = new Cartesian3();
function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
if (Cartesian3.equals(directionToPoint, Cartesian3.ZERO)) {
return directionToPoint;
}
ellipsoid.transformPositionToScaledSpace(directionToPoint, directionToPointScratch);
return Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
}
export default EllipsoidalOccluder;