-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdraw_functional_network_diagram.R
108 lines (76 loc) · 3.04 KB
/
draw_functional_network_diagram.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Patricia Tran
# December 4, 2019
# Generate a network plot with reactions as node, and edges are MAGs, and are colored by taxonomic group.
userprefs <- commandArgs(trailingOnly = TRUE)
R_input_table <- userprefs[1] # Path to folder with all the summary files Energy_flow_input.txt is.
plots.folder.path <- userprefs[2] # Name of new directory to make to store things
if (length(userprefs) > 2){
mirror.location <- userprefs[3]
}else{
mirror.location <- "https://cran.mtu.edu"
}
network.plots.folder <- paste(plots.folder.path, "network_plot", sep = "/")
print(network.plots.folder)
library.path <- .libPaths()
# create directories to hold plots
make.plot.directory <- function(FolderPath){
if (!dir.exists(FolderPath)){
dir.create(FolderPath)
cat("made folder: ", FolderPath, "\n")
}
}
make.plot.directory(FolderPath = plots.folder.path)
print(network.plots.folder)
dir.create(network.plots.folder)
plot.folder <- network.plots.folder
#R_input_table <- "/Users/patriciatran/Downloads/Metabolic_network_input.txt"
table <- read.csv(R_input_table, header=T, sep="\t")
#Change the column names
#install.packages("ggraph")
library(ggraph)
library(igraph)
library(tidyverse)
library(tidygraph)
my_graph <- table[,c(2,3,4,5)] %>%
graph_from_data_frame()
deg <- degree(my_graph, mode="all")
# this generates the whole community plot
community.plot <- table[,c(2,3,4,5)] %>%
graph_from_data_frame() %>%
ggraph(layout = "linear",circular = TRUE) +
geom_edge_arc(alpha = .25,
aes(width = Coverage.value.average., color=as.factor(Taxonomic.Group))) +
geom_node_point(aes(size = 0.02*deg), color = "black", alpha=0.75) +
geom_node_text(aes(label = name), color="black", repel = TRUE)+
#theme_graph()+
labs(title = 'Metabolic connections within dataset',
subtitle = 'No scaling')
#community.plot
plot.name <- paste0(network.plots.folder,"/CommunityPlot.PDF")
print(plot.name)
cairo_pdf(filename = plot.name, width = 11, height = 8.5, onefile = TRUE)
community.plot
dev.off()
# this makes a plot for each Taxonomic Group
unique.taxo.groups <- unique(levels(table$Taxonomic.Group))
for (i in 1:length(unique.taxo.groups)){
print(paste0("Making a plot for: ",unique.taxo.groups[i]))
name.taxo <- unique.taxo.groups[i]
individual.table <- subset(table, table$Taxonomic.Group == unique.taxo.groups[i])
ind.plot <- individual.table[,c(2,3,4,5)] %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(alpha = .50,
aes(width = Coverage.value.average.)) +
geom_node_point(color = "black", size = 2) +
geom_node_text(aes(label = name), color="black", repel = TRUE)+
theme_graph()+
labs(title = paste0('Functional connections within ',unique.taxo.groups[i]),
subtitle = 'No scaling')
plot.name2 <- paste0(network.plots.folder,"/",name.taxo,".Individual.Taxonomic.Groups.Functional.Network.PDF")
print(plot.name2)
cairo_pdf(filename = plot.name2, width = 11, height = 8.5, onefile = TRUE)
print(ind.plot)
dev.off()
print(i)
}