-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathr2unet.py
117 lines (90 loc) · 3.41 KB
/
r2unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
import torch.nn as nn
import torch.nn.functional as F
class up_conv(nn.Module):
def __init__(self,ch_in,ch_out):
super(up_conv,self).__init__()
self.up = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=1,padding=1,bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self,x):
x = self.up(x)
return x
class Recurrent_block(nn.Module):
def __init__(self, ch_out, t=2):
super(Recurrent_block, self).__init__()
self.t = t
self.ch_out = ch_out
self.conv = nn.Sequential(
nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1, bias=True),
nn.BatchNorm2d(ch_out),
nn.ReLU(inplace=True)
)
def forward(self, x):
for i in range(self.t):
if i == 0:
x1 = self.conv(x)
x1 = self.conv(x + x1)
return x1
class RRCNN_block(nn.Module):
def __init__(self,ch_in,ch_out,t=2):
super(RRCNN_block,self).__init__()
self.RCNN = nn.Sequential(
Recurrent_block(ch_out,t=t),
Recurrent_block(ch_out,t=t)
)
self.Conv_1x1 = nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=1,padding=0)
def forward(self,x):
x = self.Conv_1x1(x)
x1 = self.RCNN(x)
return x+x1
class R2U_Net(nn.Module):
def __init__(self, img_ch=3, output_ch=1, t=2):
super(R2U_Net, self).__init__()
self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.Upsample = nn.Upsample(scale_factor=2)
self.RRCNN1 = RRCNN_block(ch_in=img_ch, ch_out=64, t=t)
self.RRCNN2 = RRCNN_block(ch_in=64, ch_out=128, t=t)
self.RRCNN3 = RRCNN_block(ch_in=128, ch_out=256, t=t)
self.RRCNN4 = RRCNN_block(ch_in=256, ch_out=512, t=t)
self.RRCNN5 = RRCNN_block(ch_in=512, ch_out=1024, t=t)
self.Up5 = up_conv(ch_in=1024, ch_out=512)
self.Up_RRCNN5 = RRCNN_block(ch_in=1024, ch_out=512, t=t)
self.Up4 = up_conv(ch_in=512, ch_out=256)
self.Up_RRCNN4 = RRCNN_block(ch_in=512, ch_out=256, t=t)
self.Up3 = up_conv(ch_in=256, ch_out=128)
self.Up_RRCNN3 = RRCNN_block(ch_in=256, ch_out=128, t=t)
self.Up2 = up_conv(ch_in=128, ch_out=64)
self.Up_RRCNN2 = RRCNN_block(ch_in=128, ch_out=64, t=t)
self.Conv_1x1 = nn.Conv2d(64, output_ch, kernel_size=1, stride=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# encoding path
x1 = self.RRCNN1(x)
x2 = self.Maxpool(x1)
x2 = self.RRCNN2(x2)
x3 = self.Maxpool(x2)
x3 = self.RRCNN3(x3)
x4 = self.Maxpool(x3)
x4 = self.RRCNN4(x4)
x5 = self.Maxpool(x4)
x5 = self.RRCNN5(x5)
# decoding + concat path
d5 = self.Up5(x5)
d5 = torch.cat((x4, d5), dim=1)
d5 = self.Up_RRCNN5(d5)
d4 = self.Up4(d5)
d4 = torch.cat((x3, d4), dim=1)
d4 = self.Up_RRCNN4(d4)
d3 = self.Up3(d4)
d3 = torch.cat((x2, d3), dim=1)
d3 = self.Up_RRCNN3(d3)
d2 = self.Up2(d3)
d2 = torch.cat((x1, d2), dim=1)
d2 = self.Up_RRCNN2(d2)
d1 = self.Conv_1x1(d2)
d1 = self.sigmoid(d1)
return d1