-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
225 lines (171 loc) · 6.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# MIT License
# Copyright (c) [2023] [Anima-Lab]
# This code is adapted from https://github.com/NVlabs/edm/blob/main/generate.py.
# The original code is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License, which is can be found at licenses/LICENSE_EDM.txt.
import os
import re
import sys
import contextlib
import torch
import torch.distributed as dist
#----------------------------------------------------------------------------
# Get the latest checkpoint from the save dir
def get_latest_ckpt(dir):
latest_id = -1
for file in os.listdir(dir):
if file.endswith('.pt'):
m = re.search(r'(\d+)\.pt', file)
if m:
ckpt_id = int(m.group(1))
latest_id = max(latest_id, ckpt_id)
if latest_id == -1:
return None
else:
ckpt_path = os.path.join(dir, f'{latest_id:07d}.pt')
return ckpt_path
def get_ckpt_paths(dir, id_min, id_max):
ckpt_dict = {}
for file in os.listdir(dir):
if file.endswith('.pt'):
m = re.search(r'(\d+)\.pt', file)
if m:
ckpt_id = int(m.group(1))
if id_min <= ckpt_id <= id_max:
ckpt_dict[ckpt_id] = os.path.join(dir, f'{ckpt_id:07d}.pt')
return ckpt_dict
#----------------------------------------------------------------------------
# Take the mean over all non-batch dimensions.
def mean_flat(tensor):
return tensor.mean(dim=list(range(1, tensor.ndim)))
#----------------------------------------------------------------------------
# Convert latent (mean, logvar) to latent variable (inherited from autoencoder.py)
def sample(moments, scale_factor=0.18215):
mean, logvar = torch.chunk(moments, 2, dim=1)
logvar = torch.clamp(logvar, -30.0, 20.0)
std = torch.exp(0.5 * logvar)
z = mean + std * torch.randn_like(mean)
z = scale_factor * z
return z
#----------------------------------------------------------------------------
# Context manager for easily enabling/disabling DistributedDataParallel
# synchronization.
@contextlib.contextmanager
def ddp_sync(module, sync):
assert isinstance(module, torch.nn.Module)
if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
yield
else:
with module.no_sync():
yield
#----------------------------------------------------------------------------
# Distributed training helper functions
def init_processes(fn, args):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = args.master_address
os.environ['MASTER_PORT'] = '6020'
print(f'MASTER_ADDR = {os.environ["MASTER_ADDR"]}')
print(f'MASTER_PORT = {os.environ["MASTER_PORT"]}')
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend='nccl', init_method='env://', rank=args.global_rank, world_size=args.global_size)
fn(args)
if args.global_size > 1:
cleanup()
def mprint(*args, **kwargs):
"""
Print only from rank 0.
"""
if dist.get_rank() == 0:
print(*args, **kwargs)
def cleanup():
"""
End DDP training.
"""
dist.barrier()
mprint("Done!")
dist.barrier()
dist.destroy_process_group()
#----------------------------------------------------------------------------
# Wrapper for torch.Generator that allows specifying a different random seed
# for each sample in a minibatch.
class StackedRandomGenerator:
def __init__(self, device, seeds):
super().__init__()
self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds]
def randn(self, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators])
def randn_like(self, input):
return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device)
def randint(self, *args, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])
#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
# Parse 'None' to None and others to float value
def parse_float_none(s):
assert isinstance(s, str)
return None if s == 'None' else float(s)
# Parse 'None' to None and others to str
def parse_str_none(s):
assert isinstance(s, str)
return None if s == 'None' else s
# Parse 'true' to True
def str2bool(s):
return s.lower() in ['true', '1', 'yes']
#----------------------------------------------------------------------------
# logging info.
class Logger(object):
"""
Redirect stderr to stdout, optionally print stdout to a file,
and optionally force flushing on both stdout and the file.
"""
def __init__(self, file_name=None, file_mode="w", should_flush=True):
self.file = None
if file_name is not None:
self.file = open(file_name, file_mode)
self.should_flush = should_flush
self.stdout = sys.stdout
self.stderr = sys.stderr
sys.stdout = self
sys.stderr = self
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def write(self, text):
"""Write text to stdout (and a file) and optionally flush."""
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
return
if self.file is not None:
self.file.write(text)
self.stdout.write(text)
if self.should_flush:
self.flush()
def flush(self):
"""Flush written text to both stdout and a file, if open."""
if self.file is not None:
self.file.flush()
self.stdout.flush()
def close(self):
"""Flush, close possible files, and remove stdout/stderr mirroring."""
self.flush()
# if using multiple loggers, prevent closing in wrong order
if sys.stdout is self:
sys.stdout = self.stdout
if sys.stderr is self:
sys.stderr = self.stderr
if self.file is not None:
self.file.close()