forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTensorCompare.cu
166 lines (142 loc) · 5.8 KB
/
TensorCompare.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/NumericUtils.h>
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorCompare.h>
#include <ATen/native/cuda/Loops.cuh>
#include <c10/core/Scalar.h>
namespace at { namespace native {
namespace {
void where_kernel_impl(TensorIterator &iter) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kHalf, kBFloat16, kBool, iter.dtype(), "where_cuda", [&] {
gpu_kernel(
iter,
[=] GPU_LAMBDA (bool cond_val, scalar_t self_val, scalar_t other_val) -> scalar_t {
return cond_val ? self_val : other_val;
});
});
}
void isposinf_kernel_impl(TensorIteratorBase &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.input_dtype(), "isposinf_cuda", [&]() {
gpu_kernel(
iter,
[] GPU_LAMBDA (scalar_t a) -> bool { return a == std::numeric_limits<scalar_t>::infinity(); }
);
});
}
void isneginf_kernel_impl(TensorIteratorBase &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.input_dtype(), "isneginf_cuda", [&]() {
gpu_kernel(
iter,
[] GPU_LAMBDA (scalar_t a) -> bool { return a == -std::numeric_limits<scalar_t>::infinity(); }
);
});
}
void clamp_kernel_impl(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "clamp_cuda", [&] {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t v, scalar_t lower, scalar_t upper) -> scalar_t {
// Propagate nan, which doesn't propagate automatically for ROCm
if (at::_isnan(v)) {
return v;
} else {
return ::min(::max(v, lower), upper);
}
});
});
}
void inline launch_clamp_scalar(TensorIteratorBase& iter, Scalar lim0, Scalar lim1, at::native::detail::ClampLimits minmax){
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "clamp_min_scalar_cuda", [&] {
using opmath_t = at::opmath_type<scalar_t>;
auto lim0_val = lim0.to<opmath_t>();
auto lim1_val = lim1.to<opmath_t>();
gpu_kernel(iter, [=]GPU_LAMBDA(scalar_t v) -> scalar_t {
// Propagate nan, which doesn't propagate automatically for ROCm
if (_isnan(static_cast<opmath_t>(v))) {
return v;
} else if (minmax==at::native::detail::ClampLimits::Min){
return ::max(static_cast<opmath_t>(v), lim0_val);
} else if (minmax==at::native::detail::ClampLimits::Max){
return ::min(static_cast<opmath_t>(v), lim0_val);
} else {
return ::min(::max(static_cast<opmath_t>(v), lim0_val), lim1_val);
}
});
});
}
void clamp_scalar_kernel_impl(TensorIteratorBase& iter, const Scalar& min, const Scalar& max) {
launch_clamp_scalar(iter, min, max, at::native::detail::ClampLimits::MinMax);
}
void clamp_min_scalar_kernel_impl(TensorIteratorBase& iter, Scalar min) {
launch_clamp_scalar(iter, min, min, at::native::detail::ClampLimits::Min);
}
void clamp_min_kernel_impl(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "clamp_min_cuda", [&] {
if (iter.is_cpu_scalar(2)){
Scalar min = iter.scalar_value<scalar_t>(2);
iter.remove_operand(2);
clamp_min_scalar_kernel_impl(iter, min);
} else {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t v, scalar_t lower) -> scalar_t {
// Propagate nan, which doesn't propagate automatically for ROCm
if (_isnan(v)) {
return v;
} else {
return ::max(v, lower);
}
});
}
});
}
void clamp_max_scalar_kernel_impl(TensorIteratorBase& iter, Scalar max) {
launch_clamp_scalar(iter, max, max, at::native::detail::ClampLimits::Max);
}
void clamp_max_kernel_impl(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "clamp_max_cuda", [&] {
if (iter.is_cpu_scalar(2)){
Scalar max = iter.scalar_value<scalar_t>(2);
iter.remove_operand(2);
clamp_max_scalar_kernel_impl(iter, max);
} else {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t v, scalar_t upper) -> scalar_t {
// Propagate nan, which doesn't propagate automatically for ROCm
if (_isnan(v)) {
return v;
} else {
return ::min(v, upper);
}
});
}
});
}
} // anonymous namespace
REGISTER_DISPATCH(where_kernel, &where_kernel_impl);
REGISTER_DISPATCH(isposinf_stub, &isposinf_kernel_impl);
REGISTER_DISPATCH(isneginf_stub, &isneginf_kernel_impl);
REGISTER_DISPATCH(clamp_stub, &clamp_kernel_impl);
REGISTER_DISPATCH(clamp_min_stub, &clamp_min_kernel_impl);
REGISTER_DISPATCH(clamp_max_stub, &clamp_max_kernel_impl);
REGISTER_DISPATCH(clamp_scalar_stub, &clamp_scalar_kernel_impl);
REGISTER_DISPATCH(clamp_min_scalar_stub, &clamp_min_scalar_kernel_impl);
REGISTER_DISPATCH(clamp_max_scalar_stub, &clamp_max_scalar_kernel_impl);
template <typename scalar_t>
__global__ void _assert_async_cuda_kernel(scalar_t* input) {
CUDA_KERNEL_ASSERT(input[0] != 0);
}
__global__ void _assert_async_cuda_kernel(c10::complex<float>* input) {
CUDA_KERNEL_ASSERT(input[0] != c10::complex<float>(0, 0));
}
__global__ void _assert_async_cuda_kernel(c10::complex<double>* input) {
CUDA_KERNEL_ASSERT(input[0] != c10::complex<double>(0, 0));
}
void _assert_async_cuda(const Tensor& self_tensor) {
const TensorBase &self = get_tensor_base(self_tensor);
auto n = self.numel();
TORCH_CHECK(n != 0, "Boolean value of Tensor with no values is ambiguous");
TORCH_CHECK(n < 2, "Boolean value of Tensor with more than one value is ambiguous");
auto stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16, self.scalar_type(), "_assert_async_cuda", [&] {
_assert_async_cuda_kernel<<<1, 1, 0, stream>>>(self.data_ptr<scalar_t>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
}} // namespace at::native