forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUnaryGammaKernels.cu
108 lines (101 loc) · 3.64 KB
/
UnaryGammaKernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#define TORCH_ASSERT_NO_OPERATORS
#include <limits>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/cuda/JitLoops.cuh>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Math.cuh>
#include <ATen/native/Math.h>
namespace at { namespace native {
// See note [Jiterator]
const char digamma_name[] = "digamma";
void digamma_kernel_cuda(TensorIteratorBase& iter) {
#if AT_USE_JITERATOR()
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.common_dtype(), "digamma_cuda", [&]() {
jitted_gpu_kernel</*name=*/digamma_name,
/*return_dtype=*/ scalar_t,
/*common_dtype=*/ scalar_t,
/*arity=*/ 1>(iter, digamma_string);
});
#else
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.common_dtype(), "digamma_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t {
return calc_digamma(a);
});
});
#endif // AT_USE_JITERATOR()
}
// See note [Jiterator]
const char trigamma_name[] = "trigamma";
void trigamma_kernel_cuda(TensorIteratorBase& iter) {
#if AT_USE_JITERATOR()
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.common_dtype(), "trigamma_cuda", [&]() {
jitted_gpu_kernel</*name=*/trigamma_name,
/*return_dtype=*/ scalar_t,
/*common_dtype=*/ scalar_t,
/*arity=*/ 1>(iter, trigamma_string);
});
#else
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.common_dtype(), "trigamma_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t {
return calc_trigamma(a);
});
});
#endif // AT_USE_JITERATOR()
}
const char polygamma_name[] = "polygamma";
void polygamma_kernel_cuda(TensorIteratorBase& iter, int64_t n) {
if (n == 0) {
digamma_kernel_cuda(iter);
} else if (n == 1) {
trigamma_kernel_cuda(iter);
} else {
#if AT_USE_JITERATOR()
// TODO : `unary_jitted_gpu_kernel` for cleaner UX.
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
iter.common_dtype(), "polygamma_cuda", [&]() {
jitted_gpu_kernel<
/*name=*/polygamma_name,
/*return_dtype=*/scalar_t,
/*common_dtype=*/scalar_t,
/*arity=*/1>(
iter,
polygamma_string,
/*scalar_pos=*/at::cuda::jit::BinaryFuncVariant::NoScalar,
/*scalar_val=*/0,
/*extra_args=*/std::make_tuple(n));
});
#else
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
iter.common_dtype(), "polygamma_cuda", [&]() {
gpu_kernel(iter, [=] GPU_LAMBDA(scalar_t a) -> scalar_t {
return calc_polygamma<scalar_t, /*is_cuda=*/true>(a, static_cast<int>(n));
});
});
#endif // AT_USE_JITERATOR()
}
}
const char lgamma_name[] = "lgamma_kernel";
void lgamma_kernel_cuda(TensorIteratorBase& iter) {
#if AT_USE_JITERATOR()
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.common_dtype(), "lgamma_cuda", [&]() {
jitted_gpu_kernel</*name=*/lgamma_name,
/*return_dtype=*/ scalar_t,
/*common_dtype=*/ scalar_t,
/*arity=*/ 1>(iter, lgamma_string);
});
#else
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.common_dtype(), "lgamma_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t {
return ::lgamma(a);
});
});
#endif
}
REGISTER_DISPATCH(digamma_stub, &digamma_kernel_cuda);
REGISTER_DISPATCH(polygamma_stub, &polygamma_kernel_cuda);
REGISTER_DISPATCH(lgamma_stub, &lgamma_kernel_cuda);
}} // namespace at::native