forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpSample.cuh
368 lines (326 loc) · 11.4 KB
/
UpSample.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#include <ATen/core/TensorAccessor.h>
#include <ATen/cuda/Atomic.cuh>
#include <c10/util/ArrayRef.h>
#include <c10/util/Optional.h>
#include <c10/util/SmallVector.h>
#include <math.h>
namespace at {
namespace native {
namespace upsample {
// TODO: Remove duplicate declaration.
TORCH_API c10::SmallVector<int64_t, 3> compute_output_size(
c10::IntArrayRef input_size, // Full input tensor size.
c10::optional<c10::IntArrayRef> output_size,
c10::optional<c10::ArrayRef<double>> scale_factors);
} // namespace upsample
namespace upsample_cuda {
// TODO: Remove duplication with Upsample.h (CPU).
inline c10::optional<double> get_scale_value(c10::optional<c10::ArrayRef<double>> scales, int idx) {
if (!scales) {
return nullopt;
}
return scales->at(idx);
}
} // namespace upsample_cuda
/* TODO: move this to a common place */
template <typename scalar_t>
__device__ inline scalar_t min(scalar_t a, scalar_t b) {
return a < b ? a : b;
}
template <typename scalar_t>
__device__ inline scalar_t max(scalar_t a, scalar_t b) {
return a > b ? a : b;
}
// NOTE [ Nearest neighbor upsampling kernel implementation ]
//
// The nearest neighbor upsampling kernel implementation is symmetrical as
// expected. We launch kernels with threads mapping to destination tensors where
// kernels write data to, each thread reads data from the source tensor, this
// means:
// 1. In the forward kernel,
// src_xxx refers to properties of input tensors;
// dst_xxx refers to properties of output tensors;
// scale_factor is the ratio of src_size to dst_size;
// 2. In the backward kernel,
// src_xxx refers to properties of grad_output tensors;
// dst_xxx refers to properties of grad_input tensors;
// scale_factor is the ratio of src_size to dst_size;
//
// Because of this, we need to take the reciprocal of the scale defined by
// upsample layer during forward path. The motivation is to avoid slow
// division in the kernel code, so we can use faster multiplication instead.
// This is not necessary during backward path, since the scale_factor is already
// the reciprocal of corresponding scale_factor used in the forward path due to
// the swap of source and destination tensor.
//
// Similarly, since the mapping from grad_input to grad_output during backward
// is the reverse of the mapping of output to input, we need to have opposite
// mapping functions to compute the source index.
// see NOTE [ Nearest neighbor upsampling kernel implementation ]
template <typename accscalar_t>
__host__ __forceinline__ static accscalar_t compute_scales_value(
const c10::optional<double> scale,
int64_t src_size,
int64_t dst_size) {
// FIXME: remove magic > 0 after we ensure no models were serialized with -1 defaults.
return (scale.has_value() && scale.value() > 0.) ? (accscalar_t)(1.0 / scale.value())
: (accscalar_t)src_size / dst_size;
}
// see NOTE [ Nearest neighbor upsampling kernel implementation ]
template <typename accscalar_t>
__host__ __forceinline__ static accscalar_t compute_scales_value_backwards(
const c10::optional<double> scale,
int64_t src_size,
int64_t dst_size) {
// FIXME: remove magic > 0 after we ensure no models were serialized with -1 defaults.
return (scale.has_value() && scale.value() > 0.) ? (accscalar_t)scale.value()
: (accscalar_t)src_size / dst_size;
}
template <typename accscalar_t>
__host__ __forceinline__ static accscalar_t area_pixel_compute_scale(
int input_size,
int output_size,
bool align_corners,
const c10::optional<double> scale) {
if(align_corners) {
if(output_size > 1) {
return (accscalar_t)(input_size - 1) / (output_size - 1);
}
else {
return static_cast<accscalar_t>(0);
}
}
else{
return compute_scales_value<accscalar_t>(scale, input_size, output_size);
}
}
template <typename accscalar_t>
__device__ __forceinline__ static accscalar_t area_pixel_compute_source_index(
accscalar_t scale,
int dst_index,
bool align_corners,
bool cubic) {
if (align_corners) {
return scale * dst_index;
} else {
accscalar_t src_idx = scale * (dst_index + static_cast<accscalar_t>(0.5)) -
static_cast<accscalar_t>(0.5);
// See Note[Follow Opencv resize logic]
return (!cubic && src_idx < static_cast<accscalar_t>(0))
? static_cast<accscalar_t>(0)
: src_idx;
}
}
// see NOTE [ Nearest neighbor upsampling kernel implementation ]
__device__ __forceinline__ static int nearest_neighbor_compute_source_index(
const float scale,
int dst_index,
int input_size) {
// index_f32 = (output_index) * scale
// input_index = round(index_f32)
// Same as a buggy OpenCV INTER_NEAREST
// We keep this method for BC and consider as deprecated.
// See nearest_neighbor_exact_compute_source_index as replacement
const int src_index =
min(static_cast<int>(floorf((dst_index) * scale)), input_size - 1);
return src_index;
}
__device__ __forceinline__ static int nearest_neighbor_exact_compute_source_index(
const float scale,
int dst_index,
int input_size) {
// index_f32 = (output_index + 0.5) * scale - 0.5
// input_index = round(index_f32)
// Same as Pillow and Scikit-Image/Scipy ndi.zoom
const int src_index =
min(static_cast<int>(floorf((dst_index + static_cast<float>(0.5)) * scale)), input_size - 1);
return src_index;
}
// see NOTE [ Nearest neighbor upsampling kernel implementation ]
__device__ __forceinline__ static int nearest_neighbor_bw_compute_source_index(
const float scale,
int dst_index,
int output_size) {
// Equivalent to buggy OpenCV INTER_NEAREST
// We keep this method for BC and consider as deprecated.
// See nearest_neighbor_exact_bw_compute_source_index as replacement
const int src_index =
min(static_cast<int>(ceilf(dst_index * scale)), output_size);
return src_index;
}
// see NOTE [ Nearest neighbor upsampling kernel implementation ]
__device__ __forceinline__ static int nearest_neighbor_exact_bw_compute_source_index(
const float scale,
int dst_index,
int output_size) {
// Equivalent to Pillow and Scikit-Image/Scipy ndi.zoom
const int src_index =
min(static_cast<int>(ceilf(dst_index * scale - static_cast<float>(0.5))), output_size);
return src_index;
}
/* Used by UpSampleBicubic2d.cu */
template <typename scalar_t>
__device__ __forceinline__ static scalar_t upsample_get_value_bounded(
const PackedTensorAccessor64<scalar_t, 4>& data,
int batch,
int channel,
int height,
int width,
int y,
int x) {
int access_y = max(min(y, height - 1), 0);
int access_x = max(min(x, width - 1), 0);
return data[batch][channel][access_y][access_x];
}
/* Used by UpSampleBicubic2d.cu */
template <typename scalar_t, typename accscalar_t>
__device__ __forceinline__ static void upsample_increment_value_bounded(
PackedTensorAccessor64<scalar_t, 4>& data,
int batch,
int channel,
int height,
int width,
int y,
int x,
accscalar_t value) {
int access_y = max(min(y, height - 1), 0);
int access_x = max(min(x, width - 1), 0);
/* TODO: result here is truncated to scalar_t,
check: https://github.com/pytorch/pytorch/pull/19630#discussion_r281426912
*/
gpuAtomicAddNoReturn(
&data[batch][channel][access_y][access_x], static_cast<scalar_t>(value));
}
// Based on
// https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
template <typename accscalar_t>
__device__ __forceinline__ static accscalar_t cubic_convolution1(
accscalar_t x,
accscalar_t A) {
return ((A + 2) * x - (A + 3)) * x * x + 1;
}
template <typename accscalar_t>
__device__ __forceinline__ static accscalar_t cubic_convolution2(
accscalar_t x,
accscalar_t A) {
return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A;
}
template <typename accscalar_t>
__device__ __forceinline__ static void get_cubic_upsampling_coefficients(
accscalar_t coeffs[4],
accscalar_t t) {
accscalar_t A = -0.75;
accscalar_t x1 = t;
coeffs[0] = cubic_convolution2<accscalar_t>(x1 + 1.0, A);
coeffs[1] = cubic_convolution1<accscalar_t>(x1, A);
// opposite coefficients
accscalar_t x2 = 1.0 - t;
coeffs[2] = cubic_convolution1<accscalar_t>(x2, A);
coeffs[3] = cubic_convolution2<accscalar_t>(x2 + 1.0, A);
}
template <typename scalar_t, typename accscalar_t>
__device__ __forceinline__ static accscalar_t cubic_interp1d(
scalar_t x0,
scalar_t x1,
scalar_t x2,
scalar_t x3,
accscalar_t t) {
accscalar_t coeffs[4];
get_cubic_upsampling_coefficients<accscalar_t>(coeffs, t);
return x0 * coeffs[0] + x1 * coeffs[1] + x2 * coeffs[2] + x3 * coeffs[3];
}
namespace upsample_antialias {
// taken from
// https://github.com/python-pillow/Pillow/blob/6812205f18ca4ef54372e87e1a13ce4a859434df/
// src/libImaging/Resample.c#L20-L29
struct BilinearFilterFunctor {
template <typename accscalar_t>
__device__ accscalar_t operator()(accscalar_t x) const {
if (x < 0) {
x = -x;
}
if (x < 1) {
return 1 - x;
}
return 0;
}
static const int size = 2;
};
// taken from
// https://github.com/python-pillow/Pillow/blob/6812205f18ca4ef54372e87e1a13ce4a859434df/
// src/libImaging/Resample.c#L46-L62
struct BicubicFilterFunctor {
template <typename accscalar_t>
__device__ accscalar_t operator()(accscalar_t x) const {
// https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
const accscalar_t a = -0.5;
if (x < 0) {
x = -x;
}
if (x < 1) {
return ((a + 2) * x - (a + 3)) * x * x + 1;
}
if (x < 2) {
return (((x - 5) * x + 8) * x - 4) * a;
}
return 0;
}
static const int size = 4;
};
template <typename accscalar_t>
__device__ __forceinline__ static void _compute_weights_span(
const int i,
const int input_size,
const accscalar_t scale,
const accscalar_t support,
int& xmin,
int& xsize,
accscalar_t& center) {
center = scale * (i + static_cast<accscalar_t>(0.5));
xmin = max(static_cast<int>(center - support + static_cast<accscalar_t>(0.5)), static_cast<int>(0));
xsize = min(static_cast<int>(center + support + static_cast<accscalar_t>(0.5)), input_size) - xmin;
}
template <typename scalar_t, typename accscalar_t, typename interp_filter_t>
__device__ __forceinline__ static void _compute_weights(
scalar_t* wt_ptr,
const accscalar_t scale,
int interp_size,
const interp_filter_t& interp_filter,
accscalar_t xmin_m_center,
int xsize) {
accscalar_t invscale = (scale >= 1.0) ? 1.0 / scale : 1.0;
accscalar_t total_w = 0.0;
int j = 0;
for (j = 0; j < xsize; j++) {
accscalar_t w = interp_filter((j + xmin_m_center + static_cast<accscalar_t>(0.5)) * invscale);
wt_ptr[j] = static_cast<scalar_t>(w);
total_w += w;
}
for (j = 0; j < xsize; j++) {
if (total_w != 0.0) {
wt_ptr[j] /= total_w;
}
}
for (; j < interp_size; j++) {
wt_ptr[j] = static_cast<scalar_t>(0.0);
}
}
template <typename scalar_t, typename accscalar_t>
__device__ __forceinline__ static accscalar_t interpolate_aa_single_dim(
const scalar_t* src,
const scalar_t* weights,
int size) {
scalar_t t = static_cast<accscalar_t>(*src);
scalar_t wts = static_cast<accscalar_t>(weights[0]);
accscalar_t output = t * wts;
int j = 1;
for (; j < size; j++) {
wts = static_cast<accscalar_t>(weights[j]);
t = static_cast<accscalar_t>(*(src + j));
output += t * wts;
}
return output;
}
}
} // namespace native
} // namespace at