-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnistnet_frmcsv.py
89 lines (73 loc) · 3.05 KB
/
mnistnet_frmcsv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 10 20:26:21 2017
@author: kanmani
"""
import tensorflow as tf
import numpy as np
import pandas as pd
import random
trainimages=pd.read_csv("mnist_train.csv",header=None,delimiter=',').values
testimages=pd.read_csv("mnist_test.csv",header=None,delimiter=',').values
#%%
tf.reset_default_graph()
print("I reset graph")
n_inputs =28*28
n_hidden1=300
n_hidden2=100
n_outputs = 10
learning_rate=0.01
X=tf.placeholder(tf.float32,shape=(None,n_inputs),name='X')
y=tf.placeholder(tf.int64,shape=(None),name='y')
trainy=trainimages[:,0]
testy=testimages[:,0]
trainimages2=np.copy(trainimages)
#==============================================================================
# trainimages=trainimages[:,1:]
# testimages=testimages[:,1:]
#==============================================================================
train_num=len(trainimages)
def next_batch_shuffle():
index=random.randint(0,len(trainimages2)-batch_size)
random.shuffle(trainimages2)
Xbatch=trainimages2[index:index+batch_size,1:]
ybatch=trainimages2[index:index+batch_size,0]
return Xbatch,ybatch
with tf.name_scope("dnn"):
hidden1=tf.contrib.layers.fully_connected(X,n_hidden1,scope="hidden1")
hidden2=tf.contrib.layers.fully_connected(hidden1,n_hidden2,scope="hidden2")
logits=tf.contrib.layers.fully_connected(hidden2,n_outputs,scope="outputs",activation_fn=None)
with tf.name_scope("loss"):
xentropy =tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=logits)
loss =tf.reduce_mean(xentropy,name="loss")
loss_summary=tf.summary.scalar("log_loss",loss)
with tf.name_scope("train"):
optimizer=tf.train.GradientDescentOptimizer(learning_rate)
training_op=optimizer.minimize(loss)
with tf.name_scope("eval"):
correct=tf.nn.in_top_k(logits,y,1)
accuracy=tf.reduce_mean(tf.cast(correct,tf.float32))
init =tf.global_variables_initializer()
saver =tf.train.Saver()
#==============================================================================
# from tensorflow.examples.tutorials.mnist import input_data
# mnist=input_data.read_data_sets("/tmp/data/")
#==============================================================================
n_epochs=400
batch_size=50
print("graph construction over i start train and test")
with tf.Session() as sess:
sess.run(init)
for epoch in range(n_epochs):
random.shuffle(trainimages2)
for iteration in range(train_num//batch_size):
X_batch = trainimages2[iteration:iteration+batch_size,1:]
y_batch =trainimages2[iteration:iteration+batch_size,0]
if iteration%100==0:
print(X_batch.shape,y_batch.shape)
sess.run(training_op,feed_dict={X:X_batch,y:y_batch})
print("iteration over")
acc_train=accuracy.eval(feed_dict={X:X_batch,y:y_batch})
acc_test=accuracy.eval(feed_dict={X:testimages[:,1:],y:testimages[:,0]})
print(epoch, "Train accuracy:", acc_train,"Test accuracy:",acc_test)
save_path=saver.save(sess,"./my_model_final.ckpt")