-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathOneServo.ino
277 lines (246 loc) · 11.2 KB
/
OneServo.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*
* OneServo.cpp
*
* Shows smooth linear movement from one servo position to another in different flavors.
*
* Copyright (C) 2019-2024 Armin Joachimsmeyer
*
* This file is part of ServoEasing https://github.com/ArminJo/ServoEasing.
*
* ServoEasing is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/gpl.html>.
*/
#include <Arduino.h>
// Must specify this before the include of "ServoEasing.hpp"
//#define USE_PCA9685_SERVO_EXPANDER // Activating this enables the use of the PCA9685 I2C expander chip/board.
//#define USE_SOFT_I2C_MASTER // Saves 1756 bytes program memory and 218 bytes RAM compared with Arduino Wire
//#define USE_SERVO_LIB // If USE_PCA9685_SERVO_EXPANDER is defined, Activating this enables force additional using of regular servo library.
//#define USE_LIGHTWEIGHT_SERVO_LIBRARY // Makes the servo pulse generating immune to other libraries blocking interrupts for a longer time like SoftwareSerial, Adafruit_NeoPixel and DmxSimple.
//#define PROVIDE_ONLY_LINEAR_MOVEMENT // Activating this disables all but LINEAR movement. Saves up to 1540 bytes program memory.
#define DISABLE_COMPLEX_FUNCTIONS // Activating this disables the SINE, CIRCULAR, BACK, ELASTIC, BOUNCE and PRECISION easings. Saves up to 1850 bytes program memory.
//#define DISABLE_MICROS_AS_DEGREE_PARAMETER // Activating this disables microsecond values as (target angle) parameter. Saves 128 bytes program memory.
//#define DISABLE_MIN_AND_MAX_CONSTRAINTS // Activating this disables constraints. Saves 4 bytes RAM per servo but strangely enough no program memory.
//#define DISABLE_PAUSE_RESUME // Activating this disables pause and resume functions. Saves 5 bytes RAM per servo.
#define MAX_EASING_SERVOS 1
/*
* Specify which easings types should be available.
* If no easing is defined, all easings are active.
* This must be done before the #include "ServoEasing.hpp"
*/
//#define ENABLE_EASE_QUADRATIC
#define ENABLE_EASE_CUBIC
//#define ENABLE_EASE_QUARTIC
//#define ENABLE_EASE_SINE
//#define ENABLE_EASE_CIRCULAR
//#define ENABLE_EASE_BACK
//#define ENABLE_EASE_ELASTIC
//#define ENABLE_EASE_BOUNCE
//#define ENABLE_EASE_PRECISION
//#define ENABLE_EASE_USER
//#define DEBUG // Activating this enables generate lots of lovely debug output for this library.
//#define PRINT_FOR_SERIAL_PLOTTER // Activating this enables generate the Arduino plotter output from ServoEasing.hpp.
#include "ServoEasing.hpp"
#include "PinDefinitionsAndMore.h"
/*
* Pin mapping table for different platforms - used by all examples
*
* Platform Servo1 Servo2 Servo3 Analog Core/Pin schema
* -------------------------------------------------------------------------------
* (Mega)AVR + SAMD 9 10 11 A0
* 2560 46 45 44 A0
* ATtiny3217 20|PA3 0|PA4 1|PA5 2|PA6 MegaTinyCore
* ESP8266 14|D5 12|D6 13|D7 0
* ESP32 5 18 19 A0
* BluePill PB7 PB8 PB9 PA0
* APOLLO3 11 12 13 A3
* RP2040 6|GPIO18 7|GPIO19 8|GPIO20
*/
#if defined(USE_PCA9685_SERVO_EXPANDER)
ServoEasing Servo1(PCA9685_DEFAULT_ADDRESS); // If you use more than one PCA9685 you probably must modify MAX_EASING_SERVOS
#else
ServoEasing Servo1;
#endif
#define START_DEGREE_VALUE 0 // The degree value written to the servo at time of attach.
void blinkLED();
void setup() {
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
#if defined(__AVR_ATmega32U4__) || defined(SERIAL_PORT_USBVIRTUAL) || defined(SERIAL_USB) /*stm32duino*/|| defined(USBCON) /*STM32_stm32*/ \
|| defined(SERIALUSB_PID) || defined(ARDUINO_ARCH_RP2040) || defined(ARDUINO_attiny3217)
delay(4000); // To be able to connect Serial monitor after reset or power up and before first print out. Do not wait for an attached Serial Monitor!
#endif
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
// Just to know which program is running on my Arduino
Serial.println(F("START " __FILE__ " from " __DATE__ "\r\nUsing library version " VERSION_SERVO_EASING));
#endif
/********************************************************
* Attach servo to pin and set servos to start position.
* This is the position where the movement starts.
*******************************************************/
#if defined(USE_PCA9685_SERVO_EXPANDER)
if (Servo1.InitializeAndCheckI2CConnection(&Serial)) {
while (true) {
blinkLED();
}
}
#endif
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
# if defined(USE_PCA9685_SERVO_EXPANDER)
#undef SERVO1_PIN
#define SERVO1_PIN 0 // we use first port of expander
Serial.println(F("Attach servo to port 0 of PCA9685 expander"));
# else
Serial.println(F("Attach servo at pin " STR(SERVO1_PIN)));
# endif
#endif
if (Servo1.attach(SERVO1_PIN, START_DEGREE_VALUE) == INVALID_SERVO) {
Serial.println(F("Error attaching servo"));
while (true) {
blinkLED();
}
}
// Wait for servo to reach start position.
delay(2000);
#if defined(PRINT_FOR_SERIAL_PLOTTER)
// Legend for Arduino Serial plotter
Serial.println(); // end of line of attach values
Serial.println("OneServo[us]_Linear->Cubic->Linear");
#endif
}
void loop() {
// Move slow
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Move to 90 degree with 10 degree per second blocking"));
#endif
Servo1.setSpeed(10); // This speed is taken if no further speed argument is given.
Servo1.easeTo(90);
// Servo1.easeTo(DEFAULT_MICROSECONDS_FOR_90_DEGREE); // Alternatively you can specify the target as microsecond value
// Now move faster without any delay between the moves
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Move to 180 degree with 30 degree per second blocking with own loop"));
#endif
Servo1.startEaseTo(180, 30, DO_NOT_START_UPDATE_BY_INTERRUPT); // no interrupts here
do {
// Here you can insert your own code
// First do the optional delay, then check for update, since we are probably called directly after start and there is nothing to move yet
delay(REFRESH_INTERVAL_MILLIS); // Optional 20ms delay. Can be less.
#if defined(PRINT_FOR_SERIAL_PLOTTER)
} while (!updateAllServos()); // this outputs a value plus a newline, whilst Servo1.update() would not output the newline
#else
} while (!Servo1.update());
#endif
delay(1000);
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Move to 45 degree in one second using interrupts"));
Serial.flush(); // Just in case interrupts do not work
#endif
Servo1.startEaseToD(45, 1000);
// Servo1.startEaseToD((544 + ((2400 - 544) / 4)), 1000); // Alternatively you can specify the target as microsecond value
// Blink until servo stops
while (Servo1.isMoving()) {
/*
* Here you can insert your own code
*/
blinkLED();
}
delay(2000); // wait one second after servo has arrived at target position
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Move to 135 degree and back nonlinear in one second each using interrupts"));
#endif
Servo1.setEasingType(EASE_CUBIC_IN_OUT); // EASE_LINEAR is default
for (int i = 0; i < 2; ++i) {
Servo1.startEaseToD(135, 1000);
// Servo1.startEaseToD((544 + (((2400 - 544) / 4) * 3)), 1000); // Alternatively you can specify the target as microsecond value
// isMoving() calls yield for the ESP8266 boards
while (Servo1.isMoving()) {
/*
* Here you can insert your own code
*/
#if defined(ESP32)
delay(1); // ESP32 requires it, delay(0) or yield() or taskYIELD() is not sufficient here :-(
#else
; // no delays here to avoid break between forth and back movement
#endif
}
Servo1.startEaseToD(45, 1000);
// Servo1.startEaseToD((544 + ((2400 - 544) / 4)), 1000); // Alternatively you can specify the target as microsecond value
while (Servo1.isMoving()) {
#if defined(ESP32)
delay(1); // ESP32 requires it, delay(0) or yield() or taskYIELD() is not sufficient here :-(
#else
; // no delays here to avoid break between forth and back movement
#endif
}
}
Servo1.setEasingType(EASE_LINEAR);
delay(2000); // wait one second after servo has arrived at target position
/*
* The LED goes on if servo reaches 120 degree
*/
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Move to 180 degree with 15 degree per second using interrupts and switch LED on at 120 degree"));
#endif
Servo1.startEaseTo(180, 15, START_UPDATE_BY_INTERRUPT);
// Servo1.startEaseTo(DEFAULT_MICROSECONDS_FOR_180_DEGREE, 50); // Alternatively you can specify the target as microsecond value
while (Servo1.getCurrentAngle() < 120) {
delay(20); // just wait until angle is above 120 degree
}
digitalWrite(LED_BUILTIN, HIGH);
// wait for servo to stop
while (Servo1.isMoving()) {
; // Here you can insert your own code
}
delay(1000);
/*
* The LED goes off when servo theoretical reaches 90 degree
*/
#if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Move from 180 to 0 degree with 90 degree per second using interrupts"));
#endif
Servo1.startEaseTo(0, 90, START_UPDATE_BY_INTERRUPT);
// Servo1.startEaseTo(DEFAULT_MICROSECONDS_FOR_0_DEGREE, 360, true); // Alternatively you can specify the target as microsecond value
// Wait. The servo should have moved 90 degree.
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
#if !defined(DISABLE_PAUSE_RESUME)
# if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Interrupt movement with pause() for 1 second at 90 degree"));
# endif
/*
* Demonstrate pause and resume in the middle of a movement
*/
Servo1.pause();
delay(1000);
// resume movement using interrupts
Servo1.resumeWithInterrupts();
#endif
while (Servo1.isMoving())
; // wait for servo to stop
# if !defined(PRINT_FOR_SERIAL_PLOTTER)
Serial.println(F("Detach the servo for 5 seconds. During this time you can move the servo manually."));
# endif
Servo1.detach();
/*
* After detach the servo is "not powered" for 5 seconds, i.e. no servo signal is generated.
* This allows you to easily move the servo manually.
*/
delay(5000); // wait 5 seconds
Servo1.attach(SERVO1_PIN, 0);
}
void blinkLED() {
digitalWrite(LED_BUILTIN, HIGH);
delay(100);
digitalWrite(LED_BUILTIN, LOW);
delay(100);
}