-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecipes_Technical.tex
230 lines (203 loc) · 12.3 KB
/
Recipes_Technical.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
\subsection{Recipes for engineering templates}
\label{ssec:recipes_technical}
% HB 20230726: We decided that the recipes listed here should be included.
%\TBD It is not clear (2020-11-19) whether data from maintenance
%templates need to be reduced by the pipeline. This section and the
%recipes described therein serves as a placeholder and may be removed
%later.
The CLC coronagraph was removed from the baseline coronagraphic modes before FDR however the coronagraph would be technically available during engineering. At this stage the DRL will not have the corresponding recipes to use the CLC. However, if the need arises during commissioning or after to make the CLC mode available, its DRL recipe can be adapted from the baseline RAVC/CVC coronagraph recipes as it is related in design and usage.
%------------------------------------------------------------------------------------------------------------------
\subsubsection{\REC*{metis_pupil_imaging}: Pupil imaging}\label{rec:metis_pupil_imaging}
\label{sssec:pupil_imaging}
This recipe refers to pupil imaging using the science detectors.
Pupil imaging is needed to verify the alignment and illumination of the pupil masks (part of the HCI coronagraphs) with the telescope beam.
It is not foreseen to be used by scientists in regular operation.
% From OC:
%Presumably it only contains the most basic reduction steps.
%There may have to be separate recipes for the various
%subsystems.
% From GO:
%Also it can be used to record the pupil transmission which can improve PSF modelling.
%A simple reduction to get rid of bias effects might be enough to align the pupil, and it might already be possible on the raw data.
%If they want pupil transmission they likely also expect some pixel response or flatfield correction.
\begin{recipedef}
Name & \REC{metis_pupil_imaging} \\
Purpose: & Apply basic reduction to pupil imaging data. \\
Requirements: & -- \\
Type: & Maintenance \\
Templates: & \TPL{METIS_pup_lm} \\
& \TPL{METIS_pup_n} \\
Input data: & \RAW{LM_PUPIL_RAW} or \RAW{N_PUPIL_RAW} \\
& \STATCALIB{GAIN_MAP_2RG} or \STATCALIB{GAIN_MAP_GEO} \\
& \EXTCALIB{PERSISTENCE_MAP} \\
& \STATCALIB{LINEARITY_2RG} or \STATCALIB{LINEARITY_GEO} \\
& \STATCALIB{GAIN_MAP_2RG} or \STATCALIB{GAIN_MAP_GEO} \\
& \PROD{MASTER_DARK_2RG} or \PROD{MASTER_DARK_GEO} \\
& \PROD{MASTER_IMG_FLAT_LAMP_LM} or \PROD{MASTER_IMG_FLAT_LAMP_N} \\
Matched keywords: & \FITS{DRS.PUPIL} \\
Algorithm & Apply dark current and flat field corrections.\\
Output data: & \PROD{LM_PUPIL_REDUCED} or \PROD{N_PUPIL_REDUCED} \\
Expected accuracies: & n/a \\
QC1 parameters: & None \\
\end{recipedef}
\clearpage
%------------------------------------------------------------------------------------------------------------------
\clearpage
\subsubsection{\REC*{metis_cal_chophome}: Chopper home position recipe}
\label{sssec:metiscalchophome}
\label{sssec:metis_cal_chophome}
\label{metis_cal_chophome}
\label{rec:metiscalchophome}
\label{rec:metis_cal_chophome}
The recipe \REC{metis_cal_chophome} aims to detect chopper mirror zero positions. It is foreseen to be carried out on a daily basis; at the very least it is necessary after changes that possibly affect the absolute chopper position, e.g.\ after instrument interventions or unforeseen events like earthquakes (cf.\ Section ``Chopper Home Position'' in \cite{METIS-calibration_plan}).
The procedure consists in measuring the position of a point source
from the \ac{WCU}, which has been centred on the \ac{WFS} pyramid (in
the K-band), in the \CODE{IMG_LM} mode. The recipe measures the
position of the point source on the LM detector and derives a
coordinate offset between the \ac{WFS} Pyramid focal plane and the
science focal planes by comparing to the respective positional
metrology values of the \ac{WFS} field selector and the chopper.
% (the latter in plural because we have already calibrated the relative astrometry between between IMG-LM and IMG-N/LMS).
The offset in $x$ and $y$ is delivered as QC parameters in the header
of the \PROD{LM_CHOPHOME_COMBINED} product.
\begin{recipedef}
Name: & \REC{metis_cal_chophome} \\
Purpose: & Detection of the chopper mirror home position \\
Type: & Calibration\\
Requirements: & None \\
Templates: & \TPL{METIS_img_lm_cal_ChopperHome} \\
Input data: & \RAW{LM_CHOPHOME_RAW} \\
& \RAW{LM_WCU_OFF_RAW} \\
& \EXTCALIB{PERSISTENCE_MAP} \\
& \STATCALIB{LINEARITY_2RG} \\
& \STATCALIB{GAIN_MAP_2RG} \\
& \EXTCALIB{BADPIX_MAP_2RG} \\
& \EXTCALIB{PINHOLE_TABLE} \\
Matched Keywords & \FITS{DET.DIT} \\
& \FITS{DET.NDIT} \\
& \FITS{DRS.FILTER} \\
Parameters: & None\\
Algorithm: & remove detector signature\\
& remove median background\\
& detect reference source from \ac{WCU} via centroid peak detection\\
& Calculate mirror offset\\
Output data:
& \PROD{LM_CHOPHOME_BACKGROUND} \\
& \PROD{LM_CHOPHOME_COMBINED} \\
% & The latter product includes the offset of the chopper mirror as keywords in the FITS header. \\
Expected accuracies: & 0.1\,mas accuracy of the centroid position (cf.~\cite{METIS-calibration_plan})\\
QC1 parameters: & \QC{QC CAL CHOPHOME XCEN} \\
& \QC{QC CAL CHOPHOME XCEN STDEV} \\
& \QC{QC CAL CHOPHOME YCEN} \\
& \QC{QC CAL CHOPHOME YCEN STDEV} \\
& \QC{QC CAL CHOPHOME FWHM} \\
& \QC{QC CAL CHOPHOME SNR} \\
& \QC{QC CAL CHOPHOME OFFX} \\
& \QC{QC CAL CHOPHOME OFFY} \\
\end{recipedef}
\begin{figure}[hb]
\centering
\def \globalscale {0.600000}
\fontsize{10}{12}\selectfont
\input{tikz/metis_cal_chophome}
\caption[Recipe: \REC*{metis_cal_chophome}]{\REC*{metis_cal_chophome} --
measurement of the zero position of the chopper mirror.}
\label{fig:metis_cal_chophome}
\end{figure}
\clearpage
%------------------------------------------------------------------------------------------------------------------
% Moved to https://github.com/AstarVienna/METIS_DRLD/issues/101
% \subsubsection{Plate-scale calibration}
% \TODO{Plate-scale calibration}
%------------------------------------------------------------------------------------------------------------------
\clearpage
\subsubsection{\REC*{metis_lm_adc_slitloss} and \REC*{metis_n_adc_slitloss}: Slit loss determination }\label{sssec:adc_slitlosses}
The recipes \REC{metis_lm_adc_slitloss} (Fig.~\ref{Fig:rec_lm_adc_slitloss}) and \REC{metis_n_adc_slitloss} (Fig.~\ref{Fig:rec_n_adc_slitloss}) aims to determine the throughput as function of the object position along the across-slit direction. It is expected that the usage of the fixed positioned \ac{ADC} will introduce flux losses (cf. Section "Calibration of slit losses" in \cite{METIS-calibration_plan}). For the determination, the point sources (i.e. mask of the \ac{WCU}) is placed on several positions (distance $\sim\frac{1}{10}\lambda/D$) across the slit (cf. Fig.~\ref{Fig:slitloss}), and measure the wavelength dependent flux changes with respect to the respective positions. Finally, a simple model is determined to be able to correct for the flux losses (see Section "Calibration of slit losses" in the Calibration Plan~\cite{METIS-calibration_plan} for more details). This recipe is to be carried out once in a while to update the static calibration database.
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textheight]{figures/slitloss_det.pdf}
\caption[slitloss determination]{Algorithm for the slit-loss determination in recipe \REC{metis_lm_adc_slitloss} }
\label{Fig:slitloss}
\end{figure}
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textheight]{figures/metis_lm_adc_slitloss_v0.83.pdf}
\caption[Recipe: \REC*{metis_lm_adc_slitloss}]{\REC*{metis_lm_adc_slitloss} --
Recipe workflow to determine the \ac{ADC} induced slit losses.}
\label{Fig:rec_lm_adc_slitloss}
\end{figure}
\begin{recipedef}\label{rec:metislmadcmslitloss}\label{rec:metis_lm_adc_slitloss}
Name: & \REC{metis_lm_adc_slitloss} \\
Purpose: & Determination of the \ac{ADC} induced slit losses \\
Type: & Calibration\\
Requirements: & METIS-6074, METIS-2757, METIS-9099, METIS-9150\\
Templates: & \TPL{METIS_spec_lm_cal_SlitAdc} \\
Input data: & \RAW{LM_SLITLOSSES_RAW} \\
& \RAW{LM_WCU_OFF_RAW} \\
& \EXTCALIB{PERSISTENCE_MAP} \\
& \STATCALIB{LINEARITY_2RG} \\
& \STATCALIB{GAIN_MAP_2RG} \\
& \EXTCALIB{BADPIX_MAP_2RG} \\
& \PROD{MASTER_DARK_2RG} \\
& \PROD{MASTER_IMG_FLAT_LAMP_LM} \\
Matched Keywords & \FITS{DET.DIT} \\
& \FITS{DET.NDIT} \\
& \FITS{DRS.FILTER} \\
Parameters: & exposure time, offset positions\\
Algorithm: & remove detector signature\\
& remove dark\\
& apply flatfield\\
& detect reference source from \ac{WCU} via centroid peak detection\\
& apply aperture photometry\\
& calculate (simple) slitloss model (details to be defined)\\
Output data: & \STATCALIB{LM_ADC_SLITLOSS} (Slit loss model as function of the wavelength and object position across the slit \\
Expected accuracies: & 3\% (cf.~\cite{METIS_calerrbudget})\\
%QC1 parameters: & \QC{TBD}: TBD\\
\end{recipedef}
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textheight]{figures/metis_n_adc_slitloss_v0.83.pdf}
\caption[Recipe: \REC*{metis_n_adc_slitloss}]{\REC*{metis_n_adc_slitloss} --
Recipe workflow to determine the \ac{ADC} induced slit losses.}
\label{Fig:rec_n_adc_slitloss}
\end{figure}
\begin{recipedef}\label{rec:metisnadcmslitloss}\label{rec:metis_n_adc_slitloss}
Name: & \REC{metis_n_adc_slitloss} \\
Purpose: & Determination of the \ac{ADC} induced slit losses \\
Type: & Calibration\\
Requirements: & METIS-6074, METIS-2757, METIS-9099, METIS-9150 \\
Input data: & \RAW{N_SLITLOSSES_RAW} \\
& \RAW{N_WCU_OFF_RAW} \\
& \EXTCALIB{PERSISTENCE_MAP} \\
& \STATCALIB{LINEARITY_GEO} \\
& \STATCALIB{GAIN_MAP_GEO} \\
& \EXTCALIB{BADPIX_MAP_GEO} \\
& \PROD{MASTER_DARK_GEO} \\
& \PROD{MASTER_IMG_FLAT_LAMP_N} \\
Matched Keywords & \FITS{DET.DIT} \\
& \FITS{DET.NDIT} \\
& \FITS{DRS.FILTER} \\
Parameters: & exposure time, offset positions\\
Algorithm: & remove detector signature\\
& remove dark\\
& apply flatfield\\
& detect reference source from \ac{WCU} via centroid peak detection\\
& apply aperture photometry\\
& calculate (simple) slitloss model (details to be defined)\\
Output data: & \STATCALIB{N_ADC_SLITLOSS} (Slit loss model as function of the wavelength and object position across the slit) \\
Expected accuracies: & 3\% (cf.~\cite{METIS_calerrbudget})\\\\
%QC1 parameters: & \QC{TBD}: TBD\\
\end{recipedef}
%------------------------------------------------------------------------------------------------------------------
\subsubsection{Fringing correction}
\label{rec:metis_fringing_correction}
It is unclear for the time being how much of a problem will be with the METIS
detectors, and what the best strategy will be to tackle it. Therefore, the
method to use will be chosen based on AIT results (\REQ{METIS-9151}, for rationale and basic method description see Ch.~3.12 in the Calibration Plan~\cite{METIS-calibration_plan}).
Whether a stand-alone recipe will be required, or if the fringe-map will become
part of another recipe, is part of that uncertainty. If needed, the design of
said recipe will be minimal work and is thus omitted in this document.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "METIS_DRLD"
%%% End: