diff --git a/.idea/autora.iml b/.idea/autora.iml
index 7bfbf6e7a..e163492a5 100644
--- a/.idea/autora.iml
+++ b/.idea/autora.iml
@@ -5,8 +5,6 @@
-
-
@@ -25,4 +23,4 @@
-
\ No newline at end of file
+
diff --git a/example/cycle/cycle_results_plots.ipynb b/docs/cycle/cycle_results_plots.ipynb
similarity index 99%
rename from example/cycle/cycle_results_plots.ipynb
rename to docs/cycle/cycle_results_plots.ipynb
index 6e99c8c52..d01f36ef0 100644
--- a/example/cycle/cycle_results_plots.ipynb
+++ b/docs/cycle/cycle_results_plots.ipynb
@@ -6,20 +6,26 @@
" # Examples of using cycle results plotting functions"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
- "collapsed": true,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": true
},
"outputs": [],
"source": [
@@ -99,10 +105,7 @@
"cycle.run(5)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -115,10 +118,7 @@
"* Default panel configuration is 4 plots to a row."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -139,10 +139,7 @@
"plot_results_panel_2d(cycle); # Add semicolon to supress creating two figures in jupyter notebook"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -151,10 +148,7 @@
"### Default parameters can be changed by passing in keywords"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -178,10 +172,7 @@
" );"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -194,10 +185,7 @@
" * Below shows ways to specify the parameters of the [scatter](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html) points and theory [line](https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html)."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -224,10 +212,7 @@
" );"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -236,10 +221,7 @@
"Saving the figure to an object (above) will allow you to cycle through the axes to make panel-specific edits."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -265,10 +247,7 @@
"fig\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -280,10 +259,7 @@
"2. **Slice**: Constructed with `slice()` or `np.s_[]`"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -334,10 +310,7 @@
"fig.suptitle('Last Cycle')"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -370,10 +343,7 @@
"fig.supxlabel('x1', y=0.1)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -423,10 +393,7 @@
"fig2.suptitle('Last 2 Cycles')"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -436,10 +403,7 @@
"The 3D plotter has similar functionality as the 2D plotter but will only work with problem spaces where there are exactly 2 independent variable values. Only one dependent value can be plotted at a time."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -508,10 +472,7 @@
"cycle_mlr.run(5)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -532,10 +493,7 @@
"fig = plot_results_panel_3d(cycle_mlr); # Add semicolon to supress creating two figures in jupyter notebook"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -559,10 +517,7 @@
" );"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -589,10 +544,7 @@
" );\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -607,10 +559,7 @@
"\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -638,10 +587,7 @@
" );"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -669,10 +615,7 @@
" );\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
}
],
@@ -697,4 +640,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/example/cycle/cycle_scoring.ipynb b/docs/cycle/cycle_scoring.ipynb
similarity index 99%
rename from example/cycle/cycle_scoring.ipynb
rename to docs/cycle/cycle_scoring.ipynb
index 9f4bb6421..ee048bd39 100644
--- a/example/cycle/cycle_scoring.ipynb
+++ b/docs/cycle/cycle_scoring.ipynb
@@ -3,26 +3,32 @@
{
"cell_type": "markdown",
"source": [
- "# Cycle Scoring\n",
+ "# Scoring\n",
"This notebook shows how to use autora.cycle scoring tools.\n",
"\n",
"We'll be using the [Iris toy dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#iris-plants-dataset) from sklearn to create a simple logistic regression cycle. This model will classify samples into different species of irises based on flower measurements. The dataset will be split between a training set and test set; the test set will be withheld for the scoring metrics."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
- "collapsed": true,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": true
},
"outputs": [],
"source": [
@@ -49,10 +55,7 @@
"Data is split where 33% is reserved for testing."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -65,10 +68,7 @@
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.33, random_state=1)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -80,10 +80,7 @@
"3. **Experiment Runner** - Creates an oracle that uses the full dataset to match experimental independent variables (flower measurements) and returns the dependent variable (species)."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -155,10 +152,7 @@
"cycle.run(20)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -176,10 +170,7 @@
"\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -209,10 +200,7 @@
"print(f'Specified scorer - precision: {np.around(results_specified_precision, 2).tolist()}')"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -221,10 +209,7 @@
"Note that the \"default scorer\" and \"specified scorer 1\" results should be the same because the `LogisticRegression` estimator's default is the `accuracy_score` function."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -238,10 +223,7 @@
"Below are several examples."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -275,10 +257,7 @@
" figsize=(5,3));"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -302,10 +281,7 @@
" scorer_kw=dict(average='weighted', zero_division=0));"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -329,10 +305,7 @@
" scorer_kw=dict(average='weighted'));"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -356,10 +329,7 @@
" scorer_kw=dict(average='weighted'));"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -383,10 +353,7 @@
" scorer_kw=dict(average='weighted', multi_class='ovr'));"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -425,10 +392,7 @@
"fig.axes[0].set_title('Accuracy Over 20 Cycles')\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
}
],
@@ -453,4 +417,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/example/cycle/cycle_scoring_bms.ipynb b/docs/cycle/cycle_scoring_bms.ipynb
similarity index 99%
rename from example/cycle/cycle_scoring_bms.ipynb
rename to docs/cycle/cycle_scoring_bms.ipynb
index c1eb23dfc..bb45b8878 100644
--- a/example/cycle/cycle_scoring_bms.ipynb
+++ b/docs/cycle/cycle_scoring_bms.ipynb
@@ -4,10 +4,7 @@
"cell_type": "markdown",
"source": [],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -17,10 +14,19 @@
"The aim of this example notebook is to use the AutoRA `Cycle` to recover a ground truth theory from some noisy data using BSM and random sampling. We will evaluate the model with AutoRa's scoring and plotting functions."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
}
},
{
@@ -40,10 +46,7 @@
"from autora.skl.bms import BMSRegressor"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -54,10 +57,7 @@
"The space of allowed x values is reals between -10 and 10 inclusive. We discretize them as we don't currently have a sampler which can sample from the uniform distribution."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -97,20 +97,14 @@
"plt.legend()"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -120,10 +114,7 @@
"We create a synthetic experiment that adds noise."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -161,10 +152,7 @@
"plt.legend()"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -174,10 +162,7 @@
"We use a common BMS regressor with a common parametrization as the theorist."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -188,10 +173,7 @@
"bms_theorist = BMSRegressor(epochs=800)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -200,10 +182,7 @@
"## Experimentalist - Random Sampler"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -220,10 +199,7 @@
")"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -245,10 +221,7 @@
"random_experimentalist_cycle.run(n_cycles);"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -257,10 +230,7 @@
"## Evaluating Results"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -270,10 +240,7 @@
"We will test the performance of the models against the ground truth. Here we generate the ground truth values across the value range as the test set."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -285,10 +252,7 @@
"y_test = ground_truth(X_test)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -320,10 +284,7 @@
" figsize=(5,3));"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -347,10 +308,7 @@
" );\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -374,10 +332,7 @@
" );\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
}
],
@@ -402,4 +357,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/example/cycle/simple_cycle_bms_darts.ipynb b/docs/cycle/simple_cycle_bms_darts.ipynb
similarity index 77%
rename from example/cycle/simple_cycle_bms_darts.ipynb
rename to docs/cycle/simple_cycle_bms_darts.ipynb
index 5d9bb8991..be862996f 100644
--- a/example/cycle/simple_cycle_bms_darts.ipynb
+++ b/docs/cycle/simple_cycle_bms_darts.ipynb
@@ -8,10 +8,19 @@
"It uses a trivial experimentalist which resamples the same x-values each cycle."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
}
},
{
@@ -24,10 +33,7 @@
"from itertools import repeat, chain"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -39,10 +45,7 @@
" return (xs ** 2.) + xs + 1."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -51,10 +54,7 @@
"The space of allowed x values is the integers between 0 and 10 inclusive, and we record the allowed output values as well."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -68,10 +68,7 @@
" )"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -81,10 +78,7 @@
"Since the space of values is so restricted, we can just sample them all each time."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -97,10 +91,7 @@
" [list(chain.from_iterable((repeat(study_metadata.independent_variables[0].allowed_values, 10))))])"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -109,10 +100,7 @@
"When we run a synthetic experiment, we get a reproducible noisy result:"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -133,10 +121,7 @@
"example_synthetic_experiment_runner(x)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -145,10 +130,7 @@
"## Bayesian Machine Scientist"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -160,10 +142,7 @@
"bms_theorist = BMSRegressor(epochs=100)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -174,10 +153,7 @@
"as well as a monitor which will let us know which cycle we're currently on."
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -193,10 +169,7 @@
")"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -205,10 +178,7 @@
"We can run the cycle by calling the run method:"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -219,10 +189,7 @@
"cycle.run(num_cycles=3)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -232,10 +199,7 @@
"experiment runner were:"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -244,10 +208,7 @@
"The observations include the conditions and the results:"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -258,10 +219,7 @@
"cycle.data.observations[0]"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -270,10 +228,7 @@
"The best fit theory after the first cycle is:"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -284,10 +239,7 @@
"len(cycle.data.observations)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -298,10 +250,7 @@
"str(cycle.data.theories[0].model_), cycle.data.theories[0].model_.fit_par[str(cycle.data.theories[0].model_)]"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -312,10 +261,7 @@
"str(cycle.data.theories[-1].model_), cycle.data.theories[-1].model_.fit_par[str(cycle.data.theories[-1].model_)]"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -327,10 +273,7 @@
"plot_results_panel_2d(cycle, subplot_kw=dict(figsize=(12,4)))"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -339,10 +282,7 @@
"## DARTS\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
},
"execution_count": 217
},
@@ -355,10 +295,7 @@
"darts_theorist = DARTSRegressor(max_epochs=100)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -374,10 +311,7 @@
")"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -388,10 +322,7 @@
"darts_cycle.run(3)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -402,10 +333,7 @@
"darts_cycle.data.theories[-2].visualize_model()\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -416,10 +344,7 @@
"darts_cycle.data.theories[-2].model_repr()\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -431,10 +356,7 @@
"darts_cycle.run(3)"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -446,10 +368,7 @@
"plot_results_panel_2d(darts_cycle, wrap=3)\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
}
],
@@ -474,4 +393,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/docs/cycle/simple_cycle_bms_model_poppernet.ipynb b/docs/cycle/simple_cycle_bms_model_poppernet.ipynb
new file mode 100644
index 000000000..1bda9fd20
--- /dev/null
+++ b/docs/cycle/simple_cycle_bms_model_poppernet.ipynb
@@ -0,0 +1,622 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "from autora.cycle import Cycle\n",
+ "from autora.experimentalist.pipeline import Pipeline\n",
+ "from autora.experimentalist.pooler import grid_pool, poppernet_pool\n",
+ "from autora.experimentalist.sampler import nearest_values_sampler\n",
+ "from autora.skl.bms import BMSRegressor\n",
+ "from autora.variable import Variable, VariableCollection"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "outputs": [],
+ "source": [
+ "# meta parameters\n",
+ "ground_truth_resolution = 1000\n",
+ "samples_per_cycle = 7\n",
+ "value_range = (-1, 5)\n",
+ "allowed_values = np.linspace(value_range[0], value_range[1], ground_truth_resolution)"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "outputs": [],
+ "source": [
+ "# define ground truth\n",
+ "def ground_truth(xs):\n",
+ " # return (xs ** 2.) + xs + 1.\n",
+ " y = xs * 1.0\n",
+ " y[xs < 0] = 0\n",
+ " return y"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "outputs": [],
+ "source": [
+ "# define variables\n",
+ "study_metadata = VariableCollection(\n",
+ " independent_variables=[\n",
+ " Variable(name=\"x1\", allowed_values=allowed_values, value_range=value_range)\n",
+ " ],\n",
+ " dependent_variables=[Variable(name=\"y\", value_range=(-20, 20))],\n",
+ ")"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "outputs": [],
+ "source": [
+ "# define experiment platform\n",
+ "def get_synthetic_experiment_runner():\n",
+ " rng = np.random.default_rng(seed=180)\n",
+ "\n",
+ " def runner(xs):\n",
+ " return ground_truth(xs) + rng.normal(0, 0.5, xs.shape)\n",
+ "\n",
+ " return runner\n",
+ "\n",
+ "synthetic_experiment_runner = get_synthetic_experiment_runner()"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "outputs": [],
+ "source": [
+ "# Initialize the experimentalist\n",
+ "random_experimentalist = Pipeline(\n",
+ " [\n",
+ " (\"grid_pool\", grid_pool), # type: ignore\n",
+ " (\"nearest_values_sampler\", nearest_values_sampler), # type: ignore\n",
+ " ],\n",
+ " {\n",
+ " \"grid_pool\": {\"ivs\": study_metadata.independent_variables},\n",
+ " \"nearest_values_sampler\": {\n",
+ " \"allowed_values\": np.linspace(\n",
+ " value_range[0], value_range[1], samples_per_cycle\n",
+ " ),\n",
+ " \"n\": samples_per_cycle,\n",
+ " },\n",
+ " },\n",
+ ")"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "outputs": [],
+ "source": [
+ "# define theorist\n",
+ "bms_theorist = BMSRegressor(epochs=100)"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:autora.skl.bms:BMS fitting started\n",
+ " 0%| | 0/100 [00:00, ?it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return X0**_a0_\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ " 3%|▎ | 3/100 [00:00<00:03, 24.45it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return sig(_a0_/X0)\n",
+ "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n",
+ " warnings.warn('Covariance of the parameters could not be estimated',\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return sig(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return sig(_a0_/X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 6%|▌ | 6/100 [00:00<00:04, 19.35it/s]:2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return -log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return -log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return -log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return -log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return -log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return -log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return -_a0_*log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return -_a0_*log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return -_a0_*log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return -_a0_*log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return -_a0_*log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return -_a0_*log(X0)\n",
+ " 10%|█ | 10/100 [00:00<00:03, 24.48it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ " 13%|█▎ | 13/100 [00:00<00:03, 25.56it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 17%|█▋ | 17/100 [00:00<00:02, 28.60it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 25%|██▌ | 25/100 [00:00<00:02, 29.38it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return abs(relu(_a0_/X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return abs(relu(_a0_/X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return abs(relu(_a0_/X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ " 29%|██▉ | 29/100 [00:01<00:02, 30.25it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return abs(X0**_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 33%|███▎ | 33/100 [00:01<00:02, 31.17it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return relu(X0**_a0_)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return sig(sig(_a0_/X0)**2)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return sig(sig(_a0_/X0)**2)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return sig(sig(_a0_/X0)**2)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 37%|███▋ | 37/100 [00:01<00:01, 32.09it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ " 41%|████ | 41/100 [00:01<00:01, 32.14it/s]:2: RuntimeWarning: divide by zero encountered in power\n",
+ " return sig(sig(sig(X0**_a0_)))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(sig(sig(X0**_a0_)))\n",
+ ":2: RuntimeWarning: divide by zero encountered in power\n",
+ " return sig(sig(sig(X0**_a0_)))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(sig(sig(X0**_a0_)))\n",
+ ":2: RuntimeWarning: divide by zero encountered in power\n",
+ " return sig(sig(sig(X0**_a0_)))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(sig(sig(X0**_a0_)))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ " 45%|████▌ | 45/100 [00:01<00:01, 32.18it/s]:2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(relu(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(relu(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 49%|████▉ | 49/100 [00:01<00:01, 32.49it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return relu(relu(X0**_a0_))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return abs(log(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return abs(log(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return abs(log(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return abs(log(X0))\n",
+ " 53%|█████▎ | 53/100 [00:01<00:01, 32.94it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return abs(sqrt(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return abs(sqrt(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 57%|█████▋ | 57/100 [00:01<00:01, 32.46it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return abs(relu(sqrt(X0)))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return abs(relu(sqrt(X0)))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return abs(relu(sqrt(X0)))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return sig(sig(sig(log(_a0_))))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return sig(sig(sig(log(_a0_))))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return sig(sig(sig(log(_a0_))))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 61%|██████ | 61/100 [00:02<00:01, 32.52it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return abs(sqrt(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(X0)\n",
+ " 65%|██████▌ | 65/100 [00:02<00:01, 33.12it/s]:2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(relu(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in power\n",
+ " return relu(X0)**X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in power\n",
+ " return relu(X0)**X0\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 69%|██████▉ | 69/100 [00:02<00:00, 33.02it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 73%|███████▎ | 73/100 [00:02<00:00, 31.93it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ " 77%|███████▋ | 77/100 [00:02<00:00, 31.69it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return abs(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return abs(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return abs(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(relu(relu(relu(X0))))\n",
+ ":2: RuntimeWarning: divide by zero encountered in log\n",
+ " return log(relu(relu(relu(X0))))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ " 81%|████████ | 81/100 [00:02<00:00, 32.10it/s]:2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ " 85%|████████▌ | 85/100 [00:02<00:00, 31.54it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(sqrt(X0))\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return relu(_a0_/X0)\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: divide by zero encountered in divide\n",
+ " return _a0_/X0\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(X0)\n",
+ " 97%|█████████▋| 97/100 [00:03<00:00, 33.64it/s]:2: RuntimeWarning: invalid value encountered in divide\n",
+ " return relu(relu(X0))/X0\n",
+ ":2: RuntimeWarning: invalid value encountered in divide\n",
+ " return relu(relu(X0))/X0\n",
+ "100%|██████████| 100/100 [00:03<00:00, 31.19it/s]\n",
+ "INFO:autora.skl.bms:BMS fitting finished\n"
+ ]
+ }
+ ],
+ "source": [
+ "# define seed cycle\n",
+ "# we will use this cycle to collect initial data and initialize the BMS model\n",
+ "seed_cycle = Cycle(\n",
+ " metadata=study_metadata,\n",
+ " theorist=bms_theorist,\n",
+ " experimentalist=random_experimentalist,\n",
+ " experiment_runner=synthetic_experiment_runner,\n",
+ ")\n",
+ "\n",
+ "# run seed cycle\n",
+ "seed_cycle.run(num_cycles=1)\n",
+ "\n",
+ "seed_model = seed_cycle.data.theories[0].model_\n",
+ "seed_x = seed_cycle.data.conditions[0]\n",
+ "seed_y = seed_cycle.data.observations[0][:, 1]"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "outputs": [],
+ "source": [
+ "# now we define the poppernet experimentalist which takes into account\n",
+ "# the seed data and the seed model\n",
+ "popper_experimentalist = Pipeline(\n",
+ " [\n",
+ " (\"popper_pool\", poppernet_pool), # type: ignore\n",
+ " (\"nearest_values_sampler\", nearest_values_sampler), # type: ignore\n",
+ " ],\n",
+ " {\n",
+ " \"popper_pool\": {\n",
+ " \"metadata\": study_metadata,\n",
+ " \"model\": seed_model,\n",
+ " \"x_train\": seed_x,\n",
+ " \"y_train\": seed_y,\n",
+ " \"n\": samples_per_cycle,\n",
+ " \"plot\": True,\n",
+ " },\n",
+ " \"nearest_values_sampler\": {\n",
+ " \"allowed_values\": allowed_values,\n",
+ " \"n\": samples_per_cycle,\n",
+ " },\n",
+ " },\n",
+ ")"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Finished training Popper Network...\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvAklEQVR4nO3dd1hTZ8MG8DsJhDADyEaQDU5AXDjqbHFUq62j2rrqaK22tdq31fZzddnpa1+1w7aO2lqtdbUuHHXvBYooSxGUqYwwZCXn+wNJRUFBgZOQ+3dduVpOTpI7EeXmnOd5jkQQBAFEREREBkgqdgAiIiIisbAIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERHV0rhx42BhYSF2jMe2atUqSCQSJCYmarf16NEDPXr0qLPXmD9/PiQSSZ09H1F9YREiIp22du1aLF68WOwYVIXCwkLMnz8fBw4cEDsK0WNjESIincYi1DB2796N3bt31+oxhYWFWLBgQZVF6P/+7/9w586dOkpHVH9YhIioVgoKCsSOIBqx33tZWRlKSkrq5bnlcjnkcnmdPZ+RkREUCkWdPR9RfWERIqpDFeMirly5guHDh8PKygpNmjTBW2+9haKiokr7lpWV4aOPPoK3tzdMTEzg4eGB999/H8XFxZX28/DwwLPPPovdu3cjKCgICoUCLVq0wKZNmyrtVzHu49ChQ3j11VfRpEkTWFlZYcyYMcjOzn4g686dO9GtWzeYm5vD0tISAwYMwKVLlyrtUzEWJiEhAf3794elpSVeeumlR77/+Ph4jBs3DtbW1lAqlRg/fjwKCwsf2P/XX39FSEgITE1NYWtrixdffBHJycna+3v06IHt27fj+vXrkEgkkEgk8PDwgCAIsLOzw4wZM7T7ajQaWFtbQyaTIScnR7v9888/h5GREfLz87Xb/vnnH+17t7a2xnPPPYfLly9X+V6io6MxatQo2NjYoGvXrtW+94iICNjb26NHjx6VXut+FZ/p1atXERYWBnNzc7i4uODDDz+EIAja/RITEyGRSPDVV19h8eLF2u+T6OhoAMCVK1cwdOhQ2NraQqFQoF27dvjrr78eeL1Lly6hV69eMDU1RdOmTfHxxx9Do9E8sF9VY4SKioowf/58+Pn5QaFQwNnZGc8//zwSEhKQmJgIe3t7AMCCBQu0fz7z58+v9Pndq7bf80eOHEGHDh2gUCjg5eWFX375pdrPlehxGYkdgKgxGj58ODw8PLBw4UKcOHEC//vf/5CdnV3pH/KJEydi9erVGDp0KGbOnImTJ09i4cKFuHz5MjZv3lzp+eLi4jBixAi89tprGDt2LFauXIlhw4Zh165dePrppyvtO23aNFhbW2P+/PmIiYnBd999h+vXr+PAgQPaH0xr1qzB2LFjERYWhs8//xyFhYX47rvv0LVrV5w/fx4eHh7a5ysrK0NYWBi6du2Kr776CmZmZjV6/56enli4cCHOnTuHn376CQ4ODvj888+1+3zyySeYM2cOhg8fjokTJyIzMxNLlizBU089hfPnz8Pa2hoffPABcnNzcePGDfz3v/8FAFhYWEAikaBLly44dOiQ9vkuXLiA3NxcSKVSHD16FAMGDAAAHD58GMHBwdrBzXv37kW/fv3g5eWF+fPn486dO1iyZAm6dOmCc+fOVXrvADBs2DD4+vri008/rVRU7nX69GmEhYWhXbt22Lp1K0xNTR/6+ajVavTt2xedOnXCF198gV27dmHevHkoKyvDhx9+WGnflStXoqioCJMnT4aJiQlsbW1x6dIldOnSBa6urpg1axbMzc3xxx9/YPDgwdi4cSOGDBkCAEhLS0PPnj1RVlam3W/58uWPzFeR8dlnn8W+ffvw4osv4q233kJeXh727NmDqKgo9OnTB9999x2mTJmCIUOG4PnnnwcAtGnTptrnrM33fHx8PIYOHYoJEyZg7NixWLFiBcaNG4eQkBC0bNnykfmJakwgojozb948AYAwaNCgSttff/11AYAQGRkpCIIgRERECACEiRMnVtrvnXfeEQAI//zzj3Zbs2bNBADCxo0btdtyc3MFZ2dnITg4WLtt5cqVAgAhJCREKCkp0W7/4osvBADC1q1bBUEQhLy8PMHa2lqYNGlSpddOS0sTlEplpe1jx44VAAizZs2q1ft/5ZVXKm0fMmSI0KRJE+3XiYmJgkwmEz755JNK+128eFEwMjKqtH3AgAFCs2bNHnitL7/8UpDJZIJKpRIEQRD+97//Cc2aNRM6dOggvPfee4IgCIJarRasra2Ft99+W/u4oKAgwcHBQbh9+7Z2W2RkpCCVSoUxY8Y88F5Gjhz5wGuPHTtWMDc3FwRBEI4cOSJYWVkJAwYMEIqKih75GVV8pm+88YZ2m0ajEQYMGCDI5XIhMzNTEARBuHbtmgBAsLKyEjIyMio9R+/evYXWrVtXej2NRiN07txZ8PX11W6bPn26AEA4efKkdltGRoagVCoFAMK1a9e027t37y50795d+/WKFSsEAMKiRYseeA8ajUYQBEHIzMwUAAjz5s17YJ+Kz6/C43zPHzp0qFJuExMTYebMmQ+8FtGT4KkxonowderUSl+/8cYbAIAdO3ZU+u+9p3YAYObMmQCA7du3V9ru4uKi/S0fgPaU1/nz55GWllZp38mTJ8PY2Fj79ZQpU2BkZKR9zT179iAnJwcjR47ErVu3tDeZTIaOHTti//79D7yfKVOm1PzNA3jttdcqfd2tWzfcvn0bKpUKALBp0yZoNBoMHz68UgYnJyf4+vpWmeF+3bp1g1qtxrFjxwCUH/np1q0bunXrhsOHDwMAoqKikJOTg27dugEAUlNTERERgXHjxsHW1lb7XG3atMHTTz+t/Ywe9l7utX//foSFhaF3797YtGkTTExMHpm7wrRp07T/L5FIMG3aNJSUlGDv3r2V9nvhhRe0p6AAICsrC//88w+GDx+OvLw87Wd3+/ZthIWFIS4uDjdv3gRQ/n3WqVMndOjQQft4e3v7h57erLBx40bY2dlpv3fv9TjT4mv7Pd+iRQvtn1tFbn9/f1y9erXWr030MDw1RlQPfH19K33t7e0NqVSqXbfl+vXrkEql8PHxqbSfk5MTrK2tcf369UrbfXx8Hvjh4+fnB6B8LImTk1O1r21hYQFnZ2fta8fFxQEAevXqVWV2KyurSl8bGRmhadOm1b3VKrm7u1f62sbGBgCQnZ0NKysrxMXFQRCEB7JWuLfIVadt27YwMzPD4cOHERYWhsOHD2PBggVwcnLCkiVLUFRUpC1EFWN7Kj5Xf3//B56vefPmCA8PR0FBAczNzbXbPT09q3z9oqIiDBgwACEhIfjjjz9gZFTzf06lUim8vLwqbbv3z/Ne979+fHw8BEHAnDlzMGfOnCqfPyMjA66urrh+/To6duz4wP1Vvf/7JSQkwN/fv1bv62Fq+z1///cQUP59VNV4N6InwSJE1ACq+w1ajAXnKgbKrlmzplKBqnD/Dz4TExNIpbU7eCyTyarcLtwdY6PRaCCRSLBz584q963JYoXGxsbo2LEjDh06hPj4eKSlpaFbt25wdHREaWkpTp48icOHDyMgIKDSEZXaqm48jYmJCfr374+tW7di165dePbZZx/7NWrz+hV/fu+88w7CwsKqfMz9ZUOX1PR7/lHfQ0R1hUWIqB7ExcVV+k0+Pj4eGo1GOxC3WbNm0Gg0iIuLQ/PmzbX7paenIycnB82aNav0fBVHAe79IRIbGwsADwzujYuLQ8+ePbVf5+fnIzU1Ff379wdQfnQKABwcHNCnT58nf7OPwdvbG4IgwNPTU3skpDoP+8HZrVs3fP7559i7dy/s7OwQEBAAiUSCli1b4vDhwzh8+HClglLxucbExDzwXFeuXIGdnV2lo0GPyvXbb7/hueeew7Bhw7Bz584ar8ys0Whw9erVSu+9uj/P+1UcSTI2Nn7kn1+zZs20RwDvVdX7v5+3tzdOnjyJ0tLSao/Q1abI1/Z7nqihcIwQUT1YtmxZpa+XLFkCAOjXrx8AaEvJ/QsFLlq0CAC0M54qpKSkVJpVo1Kp8MsvvyAoKOiBozrLly9HaWmp9uvvvvsOZWVl2tcOCwuDlZUVPv3000r7VcjMzKzx+3xczz//PGQyGRYsWPDAb/iCIOD27dvar83NzZGbm1vl83Tr1g3FxcVYvHgxunbtqv3B3K1bN6xZswYpKSmVxpk4OzsjKCgIq1evrjTFPioqCrt379b+udSUXC7Hpk2b0L59ewwcOBCnTp2q8WOXLl2q/X9BELB06VIYGxujd+/eD32cg4MDevTogR9++AGpqakP3H/vn1///v1x4sSJSrkyMzPx22+/PTLfCy+8gFu3blXKeW9eANoZhPd+ltWp7fc8UUPhESGienDt2jUMGjQIffv2xfHjx/Hrr79i1KhRCAwMBAAEBgZi7NixWL58OXJyctC9e3ecOnUKq1evxuDBgysd0QHKx49MmDABp0+fhqOjI1asWIH09HSsXLnygdcuKSlB7969MXz4cMTExODbb79F165dMWjQIADlY4C+++47jB49Gm3btsWLL74Ie3t7JCUlYfv27ejSpUuVP/zqkre3Nz7++GPMnj0biYmJGDx4MCwtLXHt2jVs3rwZkydPxjvvvAMACAkJwfr16zFjxgy0b98eFhYWGDhwIAAgNDQURkZGiImJweTJk7XP/9RTT+G7774DgEpFCAC+/PJL9OvXD6GhoZgwYYJ2+rxSqdSugVMbpqam2LZtG3r16oV+/frh4MGDaNWq1UMfo1AosGvXLowdOxYdO3bEzp07sX37drz//vs1Oo23bNkydO3aFa1bt8akSZPg5eWF9PR0HD9+HDdu3EBkZCQA4N1338WaNWvQt29fvPXWW9rp882aNcOFCxce+hpjxozBL7/8ghkzZuDUqVPo1q0bCgoKsHfvXrz++ut47rnnYGpqihYtWmD9+vXw8/ODra0tWrVqVeX7r+33PFGDEWu6GlFjVDFlODo6Whg6dKhgaWkp2NjYCNOmTRPu3LlTad/S0lJhwYIFgqenp2BsbCy4ubkJs2fPfmAKdrNmzYQBAwYI4eHhQps2bQQTExMhICBA2LBhQ6X9KqbPHzx4UJg8ebJgY2MjWFhYCC+99FKlqeIV9u/fL4SFhQlKpVJQKBSCt7e3MG7cOOHMmTPafe6dJl6b918xBfz+bPdO1xYEQdi4caPQtWtXwdzcXDA3NxcCAgKEqVOnCjExMdp98vPzhVGjRgnW1tYCgAem0rdv3/6BKeI3btwQAAhubm5V5ty7d6/QpUsXwdTUVLCyshIGDhwoREdH1+i9CELVn8utW7eEFi1aCE5OTkJcXFy1n1HFYxMSEoRnnnlGMDMzExwdHYV58+YJarVau1/F9Pkvv/yyyudJSEgQxowZIzg5OQnGxsaCq6ur8Oyzzwp//vlnpf0uXLggdO/eXVAoFIKrq6vw0UcfCT///PMjp88LgiAUFhYKH3zwgfZ71MnJSRg6dKiQkJCg3efYsWNCSEiIIJfLK02lv3/6vCDU/nv+flVlJHpSEkHgyDOiujJ//nwsWLAAmZmZsLOzq5Pn9PDwQKtWrbBt27aH7rdq1SqMHz8ep0+fRrt27erktanujRs3Dn/++edDV58moobDMUJERERksFiEiIiIyGCxCBEREZHB4hghIiIiMlg8IkREREQGi0WIiIiIDBaL0CMIggCVSsXr2xARETVCLEKPkJeXB6VSiby8PLGjEBERUR1jESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiA+fh4YHFixdrv5ZIJNiyZcsTPWddPEdDMBI7ABEREemW1NRU2NjY1Gjf+fPnY8uWLYiIiHjs5xATixCRjsktLEWxWg1rUznkRjxoS0Q1U1JSArlcXifP5eTkpBPP0RD05l/ZhQsXon379rC0tISDgwMGDx6MmJiYRz5uw4YNCAgIgEKhQOvWrbFjx44GSEtUO+eSsjHzj0i0/2QvAj/cjQ6f7EOLubvQ/5vDWLIvDhl5RWJHJKIG1qNHD0ybNg3Tpk2DUqmEnZ0d5syZA0EQAJSfzvroo48wZswYWFlZYfLkyQCAI0eOoFu3bjA1NYWbmxvefPNNFBQUaJ83IyMDAwcOhKmpKTw9PfHbb7898Nr3n9a6ceMGRo4cCVtbW5ibm6Ndu3Y4efIkVq1ahQULFiAyMhISiQQSiQSrVq2q8jkuXryIXr16wdTUFE2aNMHkyZORn5+vvX/cuHEYPHgwvvrqKzg7O6NJkyaYOnUqSktL6/BTfZDeHBE6ePAgpk6divbt26OsrAzvv/8+nnnmGURHR8Pc3LzKxxw7dgwjR47EwoUL8eyzz2Lt2rUYPHgwzp07h1atWjXwOyB6UEZeERb8FY3tF1MfuK9MIyA6VYXoVBWWHYjHxK5emNbLBwpjmQhJiRoPQRBwp1Td4K9raiyDRCKp1WNWr16NCRMm4NSpUzhz5gwmT54Md3d3TJo0CQDw1VdfYe7cuZg3bx4AICEhAX379sXHH3+MFStWIDMzU1umVq5cCaC8cKSkpGD//v0wNjbGm2++iYyMjGoz5Ofno3v37nB1dcVff/0FJycnnDt3DhqNBiNGjEBUVBR27dqFvXv3AgCUSuUDz1FQUICwsDCEhobi9OnTyMjIwMSJEzFt2jRtcQKA/fv3w9nZGfv370d8fDxGjBiBoKAg7futDxKholrqmczMTDg4OODgwYN46qmnqtxnxIgRKCgowLZt27TbOnXqhKCgIHz//fc1eh2VSgWlUonc3FxYWVnVSXYiAIhIzsGra84gXVUMqQR4vm1TDA1pisCm1lAYS5GaW4Qj8bfw28kkRCbnAAD8HC3w3csh8La3EDc8kR4rLClDi7nhDf660R+GwUxe8+MPPXr0QEZGBi5duqQtULNmzcJff/2F6OhoeHh4IDg4GJs3b9Y+ZuLEiZDJZPjhhx+0244cOYLu3bujoKAASUlJ8Pf3x6lTp9C+fXsAwJUrV9C8eXP897//xfTp0wGUH83ZvHkzBg8ejOXLl+Odd95BYmIibG1tH8hZ3Rihe5/jxx9/xHvvvYfk5GTtwYsdO3Zg4MCBSElJgaOjI8aNG4cDBw4gISEBMln5L3zDhw+HVCrFunXravy51ZbenBq7X25uLgBU+YdS4fjx4+jTp0+lbWFhYTh+/Hi1jykuLoZKpap0I6prp65lYeTyE0hXFcPXwQLb3uiGr4YFopNXE5jKy39rdLE2xfB2btjyemd8+1Jb2FnIEZuej+e/PYZjCbfEfgtE1AA6depU6ShSaGgo4uLioFaXH9Fq165dpf0jIyOxatUqWFhYaG9hYWHQaDS4du0aLl++DCMjI4SEhGgfExAQAGtr62ozREREIDg4+KE/bx/l8uXLCAwMrHQGp0uXLtBoNJWGubRs2VJbggDA2dn5oUer6oLenBq7l0ajwfTp09GlS5eHnuJKS0uDo6NjpW2Ojo5IS0ur9jELFy7EggUL6iwr0f2iU1QYv/IU7pSq0c3XDt+9HAILk+r/KkokEvRv7Yz2HraYvOYMziflYOyKU1g+uh16Bjg0YHKixsHUWIboD8NEed26dv/QkPz8fLz66qt48803H9jX3d0dsbGxtX4NU1PTx85XW8bGxpW+lkgk0Gg09fqaenlEaOrUqYiKiqqXQ2WzZ89Gbm6u9pacnFznr0GGK6ugBJPXnEFBiRqhXk3w45h2Dy1B97K3NMHvkzqhb0snlKoFvPrrWRyN55EhotqSSCQwkxs1+K2244MA4OTJk5W+PnHiBHx9fSsdNblX27ZtER0dDR8fnwducrkcAQEBKCsrw9mzZ7WPiYmJQU5OTrUZ2rRpg4iICGRlZVV5v1wu1x6hqk7z5s0RGRlZadD20aNHIZVK4e/v/9DH1je9K0LTpk3Dtm3bsH//fjRt2vSh+zo5OSE9Pb3StvT09IdO6TMxMYGVlVWlG1FdEAQB/9kQiRvZd9CsiRm+fzmk1gOfFcYyLBkVjD7NHVFSpsHkX84gJi2vnhITkdiSkpIwY8YMxMTE4Pfff8eSJUvw1ltvVbv/e++9h2PHjmHatGmIiIhAXFwctm7dimnTpgEA/P390bdvX7z66qs4efIkzp49i4kTJz70qM/IkSPh5OSEwYMH4+jRo7h69So2btyoHWbi4eGBa9euISIiArdu3UJxcfEDz/HSSy9BoVBg7NixiIqKwv79+/HGG29g9OjRD5y5aWh6U4QEQcC0adOwefNm/PPPP/D09HzkY0JDQ7Fv375K2/bs2YPQ0ND6iklUrU3nbmLflQzIZVL8MDoESjPjRz+oCsYyKZa9FIyOnrYoKFFjwurTuJ3/4D88RKT/xowZgzt37qBDhw6YOnUq3nrrLe00+aq0adMGBw8eRGxsLLp164bg4GDMnTsXLi4u2n1WrlwJFxcXdO/eHc8//zwmT54MB4fqT7PL5XLs3r0bDg4O6N+/P1q3bo3PPvtMe1TqhRdeQN++fdGzZ0/Y29vj999/f+A5zMzMEB4ejqysLLRv3x5Dhw5F7969sXTp0if4dOqG3swae/3117F27Vps3bq10mE0pVKpbbJjxoyBq6srFi5cCKB8+nz37t3x2WefYcCAAVi3bh0+/fTTWk2f56wxqgvpqiI8veggVEVl+E+YP6b29Hni58wuKMFzy44iKasQnb2bYM2EjpBJa3/onYh0U48ePRAUFFTp0hdU9/TmiNB3332H3Nxc9OjRA87Oztrb+vXrtfskJSUhNfXf9Vg6d+6MtWvXYvny5QgMDMSff/6JLVu2cA0hanCf77wCVVEZWrsq8epTXnXynDbmcvw8th1MjWU4lnAbPxxKqJPnJSIyJHoza6wmB64OHDjwwLZhw4Zh2LBh9ZCIqGaibuZi0/mbAICPB7eCkazufv/wdbTEguda4t0/L+Dr3bHo5NUEbd11/9o+RES6Qm+KEJE+EgQBn+64DAB4LsgFgW7Wdf4aw0Ka4nDcLfwdmYK31p1H+AAXmCVdA3x8AF/fOn89ImoYVf1yT3VPb06NEemjI/G3cCzhNuRGUrzzTP1MEZVIJPhkSCu4WsmRnHUHX735NdC/P+DnB/TtC2Rn18vrEhE1BixCRPVo2f54AMCoDu5wszWrt9exUhjjk/MbAAAr2w3COZe7pWvvXmDkyHp7XSIifcciRFRPziVl48TVLBjLJJhcRwOkqxUbix5//ojnL+6DIJHi3X5voVhmBKjVQHg4EBdXv69PRKSnWISI6sm3+8tncQ0OcoWLdT0vUZ9Q/lpz/vkJdgXZiLdzx8/tBv97f3x8/b4+EZGeYhEiqgfXbhVg7+V0SCTAq9296/8Fvctfw6YoD+/vXwEAWNp5BNIsmpTf7/Pk6xYRETVGLEJE9eC3E9cBAD39HeDjYFH/L+jnB4SFATIZhlzaj5Ab0SiUm+LTXq+Ub+fsMSKiKrEIEdWxolI1Npy9AQB4uZN7w73w778DffpAAmDB3h8gETT4q3l3nPzi+4bLQESkZ1iEiOrY35EpyL1TiqY2pujuV/31e+qcjQ2waxcQG4tWK5dgZPPyhRXn/ZMEtUYvrqRDRPfo0aMHpk+fLnYMLV3LU1dYhIjq2K8nkwAAozq6i3PtL19foF8//GdYB1gpjHAlLQ+bzt1o+BxEJLqSkhKxI+g8FiGiOhSfkYfI5BzIpBIMC3ETNYuNuVx7cddFe2JRVKoWNQ9RoxAbC+zcWe9LUowbNw4HDx7EN998A4lEAolEgoSEBEyYMAGenp4wNTWFv78/vvnmmwceN3jwYHzyySdwcXHRXqT82LFjCAoKgkKhQLt27bBlyxZIJBJERERoHxsVFYV+/frBwsICjo6OGD16NG7dulVtnsTExHr9DBoKixBRHdp0rvyaYj387GFvaSJyGmBsZw+4WpsiNbcIK48mih2HSH9lZZWv1O7v3yArt3/zzTcIDQ3FpEmTkJqaitTUVDRt2hRNmzbFhg0bEB0djblz5+L999/HH3/8Uemx+/btQ0xMDPbs2YNt27ZBpVJh4MCBaN26Nc6dO4ePPvoI7733XqXH5OTkoFevXggODsaZM2ewa9cupKenY/jw4dXmcXMT95e9usJrjRHVEY1GwNaIFADAkLauIqcppzCWYcbTfpi5IRLfHojHi+3dYGMuFzsWkf4ZNap8pfZ7VazcvmtXnb+cUqmEXC6HmZkZnJyctNsXLFig/X9PT08cP34cf/zxh7awAIC5uTl++uknyOXlf9e///57SCQS/Pjjj1AoFGjRogVu3ryJSZMmaR+zdOlSBAcH49NPP9VuW7FiBdzc3BAbGws/P78q8zQGPCJEVEdOXsvCzZw7sFQYoU9zR7HjaA0OdkVzZyvkFZVh6X4urEhUa7Gx5Su0q+87vSzCyu3Lli1DSEgI7O3tYWFhgeXLlyMpKanSPq1bt9aWIACIiYlBmzZtoFAotNs6dOhQ6TGRkZHYv38/LCwstLeAgAAAQMLdBVsbKxYhojqy+Xz5gORn2zhDYSwTOc2/ZFIJZvcr/wftl+OJSM4qFDkRkZ55VBFooJXb161bh3feeQcTJkzA7t27ERERgfHjxz8wINrc3LzWz52fn4+BAwciIiKi0i0uLg5PPfVUXb0FncRTY0R1oFStQfildADAoEDdOC12r6f87NHZuwmOJdzG0n/i8fnQNmJHItIf3o9YHb6eVm6Xy+VQ33MU6ujRo+jcuTNef/117baaHK3x9/fHr7/+iuLiYpiYlI9dPH36dKV92rZti40bN8LDwwNGRlVXg/vzNBY8IkRUB05cvY3cO6VoYi5HB09bseNUaeYzfgCAP8/dQOKtApHTEOmRe1Zur0Qmq9eV2z08PHDy5EkkJibi1q1b8PX1xZkzZxAeHo7Y2FjMmTPngUJTlVGjRkGj0WDy5Mm4fPkywsPD8dVXXwEAJJLyJT6mTp2KrKwsjBw5EqdPn0ZCQgLCw8Mxfvx4bfm5P49Go6mX993QWISI6sDOqDQAwDMtHcVZO6gGQprZooe/PdQaAf/bx6vRE9XK3ZXbK+nTp3x7PXnnnXcgk8nQokUL2NvbIywsDM8//zxGjBiBjh074vbt25WODlXHysoKf//9NyIiIhAUFIQPPvgAc+fOBQDtuCEXFxccPXoUarUazzzzDFq3bo3p06fD2toaUqm0yjz3j03SVxJBELjk7EOoVCoolUrk5ubCyspK7Dikg9QaAR0/3Ytb+SVY/UoHdPezFztStS7cyMGgpUchlQC7334KPg6WYkci0i9xceVjgnx89Poafr/99hvGjx+P3NxcmJqaih1HVDwiRPSEziRm4VZ+CZSmxujs3UTsOA/Vpqk1nmnhCI0A/HcvjwoR1drdldv1rQT98ssvOHLkCK5du4YtW7bgvffew/Dhww2+BAEsQkRPrOK0WJ/mjjCW6f5fqbefLh8rtP1CKi6nqkROQ0QNIS0tDS+//DKaN2+Ot99+G8OGDcPy5cvFjqUTeGrsEXhqjB5GEAR0/uwfpOYW4acx7dCnhe6sH/QwU9eew/YLqXimhSOWj2kndhwiItHo/q+vRDrscmoeUnOLoDCWoquvndhxauztPr7l44Si03HxRq7YcYiIRMMiRPQE9sdkAAC6eNvp1CKKj+LjYInBQeXrHS3aEyNyGiIi8bAIET2BA3eLUM8AB5GT1N6bvX0hk0qwPyYT55Pq58KRRES6jkWI6DHlFpbi7PXyAtHDX3enzFfHw84czweXHxXiDDIiMlQsQkSP6WBcJjQC4OdogaY2ZmLHeSxv9PKFkVSCQ7GZ2lJHRGRIWISIHtOBK3dPi/nr32mxCu5NzPBC26YAgMV7Y0VOQ0TU8FiEiB6DRiPgQGwmAKCHHhchAJjWywdGUgkOx93C6cQsseMQETUoFiGix3DxZi6yCkpgaWKEdh42Ysd5Im62ZhjWzg0A8N89PCpERIaFRYjoMRyJvwUACPVuoherST/KtF4+MJZJcCzhNk5cvS12HCKiBqP//4ITieBYQnkR6uKjP4soPoyrtSlGtOdRISIyPCxCRLVUVKrG6cTyGVZdfHT7Iqu1MbWnD+QyKU5ey9IWPSKixo5FiKiWzl7PRkmZBg6WJvC2txA7Tp1xVppiZIfyo0KL98SBlyEkIkPAIkRUS0fvjg/q6mMHiUQicpq69XpPH8iNpDiVmIWj8RwrRESNH4sQUS0dTSgvCJ0byfigezlaKTCqgzsA4L97Y3lUiIgaPRYholrIvVOKizdyADSu8UH3er2HN0yMpDh7PRuH4jhWiIgaNxYholo4cfU2NALgZW8OZ6Wp2HHqhYOVAi93agagfAYZjwoRUWPGIkRUCxVr7HT2bpxHgyq81t0bCmMpIpJztCtoExE1RixCRLVw6lr5JSg6ejbuImRvaYIxoR4AeFSIiBo3FiGiGlIVleJyqgoA0MHTVuQ09W/yU14wNZbhwo1c/HP3ArNERI0NixBRDZ29ng2NADRrYgZHK4XYceqdnYUJxnb2AMAZZETUeLEIEdXQ6bunxdp7NP6jQRUmP+UFc7kMUTdV2BOdLnYcIqI6xyJEVEMV44MM4bRYBVtzOcZ18QAALN7L1aaJqPHRqyJ06NAhDBw4EC4uLpBIJNiyZctD9z9w4AAkEskDt7S0tIYJTI1GUakakXfXD+poQEUIACZ184KFiRGiU1UIv8SjQkTUuOhVESooKEBgYCCWLVtWq8fFxMQgNTVVe3NwcKinhNRYRSTnoFQtwMHSBO62ZmLHaVDWZnKM1x4VioVGw6NCRNR4GIkdoDb69euHfv361fpxDg4OsLa2rvtAZDDuPS3W2K4vVhMTu3ph1dFEXEnLw65Laejf2lnsSEREdUKvjgg9rqCgIDg7O+Ppp5/G0aNHxY5DesgQxwfdS2lmjFe6egLgUSEialwadRFydnbG999/j40bN2Ljxo1wc3NDjx49cO7cuWofU1xcDJVKVelGhq1UrcG5pGwAhluEAOCVrp6wVBghNj0f2y+mih2HiKhONOoi5O/vj1dffRUhISHo3LkzVqxYgc6dO+O///1vtY9ZuHAhlEql9ubm5taAiUkXRaeoUFiihpXCCH4OlmLHEY3S1BiTunkBAL7ZFwc1jwoRUSPQqItQVTp06ID4+Phq7589ezZyc3O1t+Tk5AZMR7ro/N2jQW2b2UAqNbzxQfca38UDSlNjxGfkY9O5G2LHISJ6YgZXhCIiIuDsXP1ATxMTE1hZWVW6kWE7l5QDAGjrbiNuEB1gqTDG1J7eAIBFe2JRVKoWORER0ZPRq1lj+fn5lY7mXLt2DREREbC1tYW7uztmz56Nmzdv4pdffgEALF68GJ6enmjZsiWKiorw008/4Z9//sHu3bvFegukhyrGBwW7W4sbREeMCfXA6mPXcTPnDlYdS8Rr3b3FjkRE9Nj06ojQmTNnEBwcjODgYADAjBkzEBwcjLlz5wIAUlNTkZSUpN2/pKQEM2fOROvWrdG9e3dERkZi79696N27tyj5Sf9k5BXhRvYdSCRAkJu12HF0gsJYhhlP+wEAvt0fj5zCEpETERE9PonANfMfSqVSQalUIjc3l6fJDFD4pTS8uuYs/B0tEf72U2LH0RlqjYAB/zuMK2l5mNTNEx8MaCF2JCKix6JXR4SIGto57UBpa3GD6BiZVIJZ/QIAAKuPXUdyVqHIiYiIHg+LENFDnL87UDrYjQOl79fdzx6dvZugRK3Boj2xYschInosLEJE1ShVa3Dh7oVWeUToQRKJBLP7NQcAbIm4iUspuSInIiKqPRYhompcSc1DUakGVgojeNlZiB1HJ7VuqsTAQBcIAvDpjsvgkEMi0jcsQkTVOJ9cPj4oyJ0LKT7Mu2H+kBtJcTT+NvZEp4sdh4ioVliEiKpx7vrdgdJcP+ih3GzNMKlb+QVZP95+GcVlXGSRiPQHixBRNbiidM293sMHDpYmSMoqxIojiWLHISKqMRYhoircyi9G0t0p4YFcSPGRzE2MtNPpl/4ThwxVkciJiIhqhkWIqAoRd48G+TpYQGlqLG4YPTE4yBWBbtYoKFHjy/AYseMQEdUIixBRFS7cLJ8K3qaptbhB9IhUKsG8geUrTG84ewORyTniBiIiqgEWIaIqRN0tQq1deVmV2mjrboPng10BAAv+vsTp9ESk81iEiKpwsaIINVWKnET/vNs3AGZyGc4l5WDjuZtixyEieigWIaL7pKuKkJlXDKkEaOHMIlRbTkoF3ujlC6B8kUVenZ6IdBmLENF9Lt4oPxrk42ABU7lM5DT6aUJXT/g6WCCroASf7+LAaSLSXSxCRPepOC3WypVHgx6X3EiKjwe3AgD8fioJ55KyRU5ERFQ1FiGi+1RcPLQ1i9AT6ejVBC+0bQoA+L/NUShTa0RORET0IBYhovtoB0qzCD2x9/sHQGlqjOhUFX45fl3sOERED2ARIrpHRl4R0lV3B0q7cOr8k2piYYL3+pavOL1oTyxSc++InIiIqDIWIaJ7VKwf5G1vATO5kchpGocX27sh2N0a+cVl+L/NUVxbiIh0CosQ0T0u3lAB4EDpuiSVSvD5C21gLJNg35UM/BWZInYkIiItFiGie3DGWP3wc7TUri00/69LuJVfLHIiIqJyLEJE94jiQOl6M6WHNwKcLJFdWIr5f10SOw4REQAWISKtzLxipKmKIJEALTlQus4Zy6T4cmggZFIJtl1Ixe5LaWJHIiJiESKqUHE0yMvOHOYmHChdH1o3VWJSNy8AwP9tiULunVKRExGRoWMRIrqLp8UaxvQ+vvCyM0dGXjE+2hYtdhwiMnAsQkR3caB0w1AYy/D50DaQSIA/z97gKTIiEhWLENFdPCLUcNp72GLy3VNkszddRGYeZ5ERkThYhIgA3M4vRkpuEQCgJYtQg5jxjB8CnCxxu6AEszdd4EKLRCQKFiEi/HtazMvOHBYcKN0gTIxk+O+IIMhlUuy9nIH1p5PFjkREBohFiAj/nhbj+KCG1dzZCu+E+QEAPtwWjeu3C0RORESGhkWICLzivJgmdPVCB09bFJaoMeOPSKg1PEVGRA2HRYgIQNRNXmNMLDKpBF8PC4SFiRHOXs/Gkn/ixI5ERAaERYgMXlZBCW7m3AEAtHTlitJicLM1w8eDWwEA/rcvDieu3hY5EREZChYhMngVp8U87cxhpTAWOY3hGhzsiqEhTaERgLfWnUdWQYnYkYjIALAIkcHjQGndsWBQS3jZmyNdVYx3NkRySj0R1TsWITJ4/y6kyNNiYjM3McKyUW0hN5LinysZ+PnINbEjEVEjxyJEBo+X1tAtzZ2tMOfZFgCAz3ddwYUbOeIGIqJGjUWIDFp2QQluZN8dKO3CIqQrXu7ojn6tnFCqFjBt7XmoiniVeiKqHyxCZNCiUsqPBjVrYgalKQdK6wqJRILPXmgDV2tTJGUV4p0/OF6IiOoHixAZNJ4W011KU2N8+1JbyGVS7I5Ox/cHr4odiYgaIRYhMmi84rxuC3SzxvxBLQEAX4ZfwdH4WyInIqLGhkWIDBovraH7RnZww7C76wu98ft5pNxd/JKIqC6wCJHByiksQXJW+Q/VVhworbMkEgk+GtwKLV2skFVQgtd/O4fiMrXYsYiokWARIoN1KaX8+mLutmZQmnGgtC5TGMvw/cshUJoaIyI5Bx9tixY7EhE1EixCZLB4Wky/uNmaYfGLQZBIgF9PJGHDmWSxIxFRI6BXRejQoUMYOHAgXFxcIJFIsGXLlkc+5sCBA2jbti1MTEzg4+ODVatW1XtO0g+cMaZ/evo74M1evgCAD7ZE4XxStsiJiEjf6VURKigoQGBgIJYtW1aj/a9du4YBAwagZ8+eiIiIwPTp0zFx4kSEh4fXc1LSB/9eY4yX1tAnb/X2xdMtHFFSpsGra84iLbdI7EhEpMckgp6uUiaRSLB582YMHjy42n3ee+89bN++HVFRUdptL774InJycrBr164avY5KpYJSqURubi6srPgDs7HIvVOKwAW7AQDn5zwNG3O5yImoNvKLy/D8t0cRm56PwKZKrH81FApjmdixiEgP6dURodo6fvw4+vTpU2lbWFgYjh8/Xu1jiouLoVKpKt2o8bl092hQUxtTliA9ZGFihJ/GtIe1mTEib+Ri1sYLXHmaiB5Loy5CaWlpcHR0rLTN0dERKpUKd+5UvRbJwoULoVQqtTc3N7eGiEoNjAOl9Z97EzN8+1JbyKQSbIlIwQ+HuPI0EdVeoy5Cj2P27NnIzc3V3pKTOTOlMeJA6cahs7cd5g/890r1/1xJFzkREembRl2EnJyckJ5e+R/G9PR0WFlZwdTUtMrHmJiYwMrKqtKNGh9eWqPxeLlTM4zq6A5BAN78PQJx6XliRyIiPdKoi1BoaCj27dtXaduePXsQGhoqUiLSBaqiUiTeLgTAItQYSCQSzB/YEh08bZFfXIZXVp/GrfxisWMRkZ7QqyKUn5+PiIgIREREACifHh8REYGkpCQA5ae1xowZo93/tddew9WrV/Huu+/iypUr+Pbbb/HHH3/g7bffFiM+6YhLN8sHwLtac6B0YyE3kuL7l0PQrIkZkrPuYNIvZ1BUystwENGj6VUROnPmDIKDgxEcHAwAmDFjBoKDgzF37lwAQGpqqrYUAYCnpye2b9+OPXv2IDAwEF9//TV++uknhIWFiZKfdANPizVOtuZyrBjXHkpTY5xPysHMDZHQaDiTjIgeTm/XEWooXEeo8Xnz9/P4KzIF/wnzx9SePmLHoTp2POE2xqw4iVK1gKk9vfGfsACxIxGRDtOrI0JEdaHiiFBLFxbbxijUuwk+e74NAGDZ/gT8wWuSEdFDsAiRQckrKsXVWwUAeGqsMXshpCne6FV+tO/9TRdxLP6WyImISFexCJFBuZRSPlDaRalAEwsTkdNQfZrxtB8GBbqgTCPgtV/PIj4jX+xIRKSDWITIoERxIUWDIZFI8MXQNmjXzAaqojKMX3UKtzmtnojuwyJEBoWX1jAsCmMZfhgdAnfb8mn1E385gzslnFZPRP9iESKDor20RlMWIUPRxMIEK8f/O63+zXXnoea0eiK6i0WIDEZ+cRmucaC0QfK2t8DPY9tBbiTFnuh0zPsrilerJyIALEJkQKJTVBAEwFmpgB0HShucdh62+N+LQZBIgF9PJOHbAwlAbCywcycQFyd2PCISCYsQGQxecZ76tnLGvGfLr1b/ZXgMNj3/GtC/P+DnB/TtC2Rni5yQiBoaixAZDO2MMRcWIUM2rosnXk0/CwB4t99bOOwRVH7H3r3AyJHiBSMiUdS4CGVkZDz0/rKyMpw6deqJAxHVF+2MsaZcUdqgxcbivVXzMSj6AMpkRpgy+H1ccvAE1GogPJynyYgMTI2LkLOzc6Uy1Lp1ayQn/7t0/e3btxEaGlq36YjqSEFxGRIyyxfU46kxA5eQACkEfLljMUKvRyLfxAzjhi3ADSv78vvj48XNR0QNqsZF6P4ZFomJiSgtLX3oPkS6Ijq1fKC0o5UJHCwVYschMXl7AwBM1GX4fvOn8M9MRKaFLcYO/xA5CgvAhxfiJTIkdTpGSCKR1OXTEdWZize4kCLd5ecHhIUBMhmUxQVYtWEenFWZSGjihkkTFqHIw0vshETUgDhYmgwCL61Blfz+O9CnDwDAOe82Vm2YD0t1MU5buODt9RHQcMFFIoNR4yIkkUiQl5cHlUqF3NxcSCQS5OfnQ6VSaW9EuoqX1qBKbGyAXbvK1xHasQP+x/Zg+WvdIZdJsTMqDR9ui+apfiIDYVTTHQVBgJ+fX6Wvg4ODK33NU2OkiwpL/h0ozSJElfj6lt8AhAL4angg3vz9PFYdS4SrtSkmPcXTZESNXY2L0P79++szB1G9uZyqgkYAHCxN4GDFgdJUvUGBLkjPLcInOy7jkx2X4WBlgueCXMWORUT1qMZFqHv37vWZg6jeVAyU5vggqomJ3TyRknsHK48m4p0NkbC3NEFnbzuxYxFRPanxGKGysjIUFxdX2paeno4FCxbg3XffxZEjR+o8HFFduHizfPwaixDVhEQiwZwBLdC/tRNK1QJe/eUsrqRxDCRRY1XjIjRp0iS8+eab2q/z8vLQvn17LFu2DOHh4ejZsyd27NhRLyGJnkQUB0pTLUmlEiwaHoQOHrbIKy7DuBWnkZJzR+xYRFQPalyEjh49ihdeeEH79S+//AK1Wo24uDhERkZixowZ+PLLL+slJNHjulOiRlxGHgAWIaodhbEMP45pB18HC6SpijBu5Snk3il99AOJSK/UuAjdvHkTvndnVwDAvn378MILL0CpLP/hMnbsWFy6dKnuExI9gejUXGgEwN7SBE5KDpSm2lGaGWPVKx3gaGWC2PR8TP7lDIrL1GLHIqI6VOMipFAocOfOv4eGT5w4gY4dO1a6Pz8/v27TET2hC3cHSrfh0SB6TK7Wplg5rgMsTIxw8loWZvwRyQUXiRqRGhehoKAgrFmzBgBw+PBhpKeno1evXtr7ExIS4OLiUvcJiZ7Av1ecZxGix9fCxQo/jA6BsUyC7RdS8emOy2JHIqI6UuMiNHfuXHzzzTfw9vZGWFgYxo0bB2dnZ+39mzdvRpcuXeolJNHj4jXGqK508bHDl0MDAQA/HbmGn49cEzkREdWFWq0jdPbsWezevRtOTk4YNmxYpfuDgoLQoUOHOg9I9LgKissQzxWlqQ4NDnZFmqoIn+28go+3R8PJSoEBbZwf/UAi0lk1LkIA0Lx5czRv3rzK+yZPnlwngYjqSnSqCoIAOFkpuKI01ZlXn/JCas4drD5+HW+vj0ATCzk6eTUROxYRPaYaF6FDhw7VaL+nnnrqscMQ1aULXFGa6oFEIsHcgS2RpipC+KV0TP7lDP6c0hl+jpZiRyOix1DjItSjRw/tRVWruyqzRCKBWs2ppaQbLt7IAQC04UBpqmMyqQTfvBiMl386iTPXszF2xSlsfr0Ll2gg0kM1HixtY2MDNzc3zJkzB3FxccjOzn7glpWVVZ9ZiWqFM8aoPlUsuOhlb47U3PIFF1VFXHCRSN/UuAilpqbi888/x/Hjx9G6dWtMmDABx44dg5WVFZRKpfZGpAvyikpx9VYBAA6UpvpjYy7H6vEdYG9pgitpeXhtzVmUlGnEjkVEtVDjIiSXyzFixAiEh4fjypUraNOmDaZNmwY3Nzd88MEHKCsrq8+cRLVyKaV8oLSLUgE7CxOx41Aj5mZrhlXj28NcLsOxhNv4z59ccJFIn9S4CN3L3d0dc+fOxd69e+Hn54fPPvsMKhWvzky6o+JCqxwoTQ2hpYsS348OgZFUgq0RKfg8/IrYkYiohmpdhIqLi7F27Vr06dMHrVq1gp2dHbZv3w5bW9v6yEf0WLSX1uD4IGog3Xzt8fkLbQAAPxy8ilVHueAikT6o8ayxU6dOYeXKlVi3bh08PDwwfvx4/PHHHyxApJP+HShtLW4QMigvhDRFmqoIX4bHYMG2aDhbmyKspZPYsYjoISRCdXPh7yOVSuHu7o6xY8ciJCSk2v0GDRpUZ+F0gUqlglKpRG5uLqysrMSOQzWgKipFm/m7AQDn5jwNW3O5yInIkAiCgP/bEoXfTibB1FiGP14N5cxFIh1WqyL0yCdrhOsIsQjpn2MJtzDqx5NwtTbF0Vm9Hv0AojpWptZg/KrTOBx3Cw6WJtg6rQuclaZixyKiKtR4jJBGo3nkrbGVINJPFzk+iERmJJNi2Utt4edogYy8Yryy6gwKijmzlkgXPdasMSJddoEzxkgHWCmM8fPY9rCzkONyqgpv/n4eak6rJ9I5LELU6FRMnecRIRKbm60Zlo9pBxMjKfZdycAn2y+LHYmI7sMiRI1KbmEprt8uBMAVpUk3tHW3wdfDAwEAK45ew5rjieIGIqJKWISoUamYNu9mawprM84WI93wbBsX/CfMHwAw/+9oHIjJEDkREVVgEaJGJbLiivOu1qLmILrf6z288ULbplBrBExbex4xaXliRyIi6GERWrZsGTw8PKBQKNCxY0ecOnWq2n1XrVoFiURS6aZQKBowLTW0yOQcAECQm7WoOYjuJ5FIsPD51ujoaYv84jK8suo0bucXix2LyODVqAjZ2NjA1ta2Rrf6tH79esyYMQPz5s3DuXPnEBgYiLCwMGRkVH+Y2crKCqmpqdrb9evX6zUjiUcQBETcLUKBLEKkg+RGUvwwOgQeTcxwM+cOpvx2jlerJxJZjS6xsXjx4nqOUTOLFi3CpEmTMH78eADA999/j+3bt2PFihWYNWtWlY+RSCRwcuIS94YgTVWEjLxiyKQStHLl4pekm6zN5PhpbDsMXnYMp65lYcHfl/DJkNZixyIyWDUqQmPHjq3vHI9UUlKCs2fPYvbs2dptUqkUffr0wfHjx6t9XH5+Ppo1awaNRoO2bdvi008/RcuWLRsiMjWwiKQcAICfoyXM5DW+jB5Rg/NxsMQ3LwZh4i9n8NvJJDR3tsLLnZqJHYvIID3WGKGEhAT83//9H0aOHKk9LbVz505cunSpTsPd69atW1Cr1XB0dKy03dHREWlpaVU+xt/fHytWrMDWrVvx66+/QqPRoHPnzrhx40a1r1NcXAyVSlXpRvoh4u5AaY4PIn3Qu7kj3nnm7kyyvy7hxNXbIiciMky1LkIHDx5E69atcfLkSWzatAn5+fkAgMjISMybN6/OAz6J0NBQjBkzBkFBQejevTs2bdoEe3t7/PDDD9U+ZuHChVAqldqbm5tbAyamJ1FxRCiYRYj0xOs9vDEw0AVlGgGv/3YOyVmFYkciMji1LkKzZs3Cxx9/jD179kAu/3edll69euHEiRN1Gu5ednZ2kMlkSE9Pr7Q9PT29xmOAjI2NERwcjPj4+Gr3mT17NnJzc7W35OTkJ8pNDUOtEbRrCHGgNOkLiUSCL15og1auVsgqKMGkX3hNMqKGVusidPHiRQwZMuSB7Q4ODrh161adhKqKXC5HSEgI9u3bp92m0Wiwb98+hIaG1ug51Go1Ll68CGdn52r3MTExgZWVVaUb6b64jDwUlqhhLpfBx8FC7DhENWYql2H56HawszDBlbQ8vLMhEhpek4yowdS6CFlbWyM1NfWB7efPn4erq2udhKrOjBkz8OOPP2L16tW4fPkypkyZgoKCAu0ssjFjxlQaTP3hhx9i9+7duHr1Ks6dO4eXX34Z169fx8SJE+s1JzW8itNirZsqIZNKxA1DVEsu1qb4/uW2MJZJsDMqDUv3V3/UmojqVq2n1rz44ot47733sGHDBkgkEmg0Ghw9ehTvvPMOxowZUx8ZtUaMGIHMzEzMnTsXaWlpCAoKwq5du7QDqJOSkiCV/tvtsrOzMWnSJKSlpcHGxgYhISE4duwYWrRoUa85qeFFagdK24gbhOgxtfOwxceDW+G9jRfx372xaNNUiR7+DmLHImr0JIIg1OoYbElJCaZOnYpVq1ZBrVbDyMgIarUao0aNwqpVqyCTyeorqyhUKhWUSiVyc3N5mkyH9V18CFfS8vD9yyHo24rrRpH+en/zRaw9mQSlqTG2vdEVbrZmYkciatRqXYQqJCUlISoqCvn5+QgODoavr29dZ9MJLEK6r7CkDK3mhUMjACdm94aTkpdRIf1VXKbG8O+PI/JGLlq5WuHP1zpDYdy4fsEk0iWPveqcu7s73N3d6zIL0WO5eCMXGgFwslKwBJHeMzGS4duXQzBwyRFE3VRh3tZL+HxoG7FjETVaNSpCM2bMqPETLlq06LHDED2OivFBgW5KcYMQ1RFXa1MsGRmM0T+fxPozyQh2t8aLHfiLJ1F9qFEROn/+fKWvz507h7KyMvj7l6+KGhsbC5lMhpCQkLpPSPQIEdorznOgNDUeXXzsMPMZf3wZHoO5Wy+hubMV18giqgc1KkL79+/X/v+iRYtgaWmJ1atXw8am/AdPdnY2xo8fj27dutVPSqKHiEyuWEiRR4SocZnS3RsRyTnYE52O1387h7/f6Apbc/mjH0hENVbrwdKurq7YvXv3AxcujYqKwjPPPIOUlJQ6DSg2DpbWbWm5Rei0cB+kEuDC/DBYmPBiq9S4qIpKMWjJESTeLkR3P3usHNceUq6VRVRnar2gokqlQmZm5gPbMzMzkZeXVyehiGrqXFI2ACDAyYoliBolK4Uxvh8dAhMjKQ7GZmL54atiRyJqVGpdhIYMGYLx48dj06ZNuHHjBm7cuIGNGzdiwoQJeP755+sjI1G1zl4vL0IhzTg+iBqvACcrLBhUfhT+y/AYnL2eJXIiosaj1kXo+++/R79+/TBq1Cg0a9YMzZo1w6hRo9C3b198++239ZGRqFosQmQoRrR3w6BAF6g1At5Yex7ZBSViRyJqFB57QcWCggIkJCQAALy9vWFubl6nwXQFxwjprqJSNVrPD0epWsDhd3tyBV5q9PKLyzBwyRFcu1WAPs0d8OOYdpBIOF6I6EnU+ohQBXNzc9ja2sLW1rbRliDSbRdv5qJULcDe0gRNbUzFjkNU7yxMjLB0VDDkRlLsvZyBn49cEzsSkd6rdRHSaDT48MMPoVQqtafGrK2t8dFHH0Gj0dRHRqIqaU+Ludvwt2IyGC1dlJjzbPmFoz/fdUW7jhYRPZ5aF6EPPvgAS5cuxWeffYbz58/j/Pnz+PTTT7FkyRLMmTOnPjISVYnjg8hQvdzRHf1bO6FULWDa2nPILSwVOxKR3qr1GCEXFxd8//33GDRoUKXtW7duxeuvv46bN2/WaUCxcYyQbhIEAe0/2Ytb+SXYOKUzyxAZHFVRKZ793xEkZRViQBtnLB0ZzCOjRI+h1keEsrKyEBAQ8MD2gIAAZGVxSic1jKSsQtzKL4FcJkUrVxZUMjxWCmMsGRkMI6kE2y+kYtO5xvVLKFFDqXURCgwMxNKlSx/YvnTpUgQGBtZJKKJHqTgt1rqpEiZGMpHTEIkj0M0abz/tBwCYuzUK128XiJyISP/UeineL774AgMGDMDevXsRGhoKADh+/DiSk5OxY8eOOg9IVBWODyIq91p3bxyMycSpxCxMXx+BDa+Gwkj22BOCiQxOrf+2dO/eHbGxsRgyZAhycnKQk5OD559/HjExMbzoKjWYiiLU1p1FiAybTCrBohGBsFQY4XxSDpb8Ey92JCK98tgLKhoKDpbWPXlFpWizYDcEATj1QW84WCrEjkQkuq0RN/HWughIJcCG10IR0sxW7EhEeuGxrlJZVFSECxcuICMj44G1g+6fTUZU185ez4YgAO62ZixBRHc9F+SKAzGZ2Hz+Jqavj8CON7vBUmEsdiwinVfrIrRr1y6MGTMGt27deuA+iUQCtVpdJ8GIqnPqWvnsxI6e/I2X6F4LnmuJ04lZSM66g3l/XcKi4UFiRyLSebUeI/TGG29g2LBhSE1NhUajqXRjCaKGUFGEOrAIEVVipTDG4hFBkEqATeduIvxSmtiRiHRerYtQeno6ZsyYAUdHx/rIQ/RQRaVqRN7IAQB09GwibhgiHdTOwxaTn/IGAHyw+SJu5xeLnIhIt9W6CA0dOhQHDhyohyhEj3Y+KQelagGOViZws+WFVomq8vbTvvBztMCt/BLM2RoFzokhql6txwgtXboUw4YNw+HDh9G6dWsYG1cejPfmm2/WWTii+/17WqwJLydAVA0TIxkWDQ/C4GVHseNiGv6+kIpBgS5ixyLSSbUuQr///jt2794NhUKBAwcOVPphJJFIWISoXp1KvA2A44OIHqWVqxLTevlg8d44zNkShU6etnCw4ixLovs91tXnFyxYgNzcXCQmJuLatWva29WrV+sjIxEAoKRMo11IkTPGiB5tak8ftHK1Qu6dUszadJGnyIiqUOsiVFJSghEjRkAq5RLu1LCiUnJRVKqBjZkxfOwtxI5DpPOMZVJ8PSwIcpkU/1zJwIazN8SORKRzat1mxo4di/Xr19dHFqKHqhgf1N7DFlIpxwcR1YS/k6X2wqwf/h2Nmzl3RE5EpFtqPUZIrVbjiy++QHh4ONq0afPAYOlFixbVWTiie3H9IKLHM/kpL+yJTsO5pBx8sPkiVo5rz8kGRHfVughdvHgRwcHBAICoqKhK9/EvFtUXtUbA6cSKFaW5fhBRbcikEnwxtA36f3MEB2IysTUiBYODXcWORaQTal2E9u/fXx85iB7qSpoKeUVlsDAxQnNnS7HjEOkdHwdLvNnbB1/tjsWCvy+hq68d7CxMxI5FJDqOeCa9cDyhfNp8SDMbGMn4bUv0OF7t7o0AJ0tkF5Ziwd/RYsch0gn8iUJ64fiFJABAF2tO/yV6XMYyKb4cGgipBPg7MgV7o9PFjkQkOhYh0m1ZWSjr2w8n4zMBAJ1ffwno2xfIzhY5GJF+at1UiUlPeQEA/m9LFFRFpSInIhIXixDptlGjEHkpCfkmZrC+o0KL9KvA3r3AyJFiJyPSW2/38YNHEzOkqYrw2c4rYschEhWLEOmu2FggPBzH3VoBAEKTLkIKAVCrgfBwIC5O5IBE+klhLMNnL7QBAKw9mYQTV2+LnIhIPCxCpLsSEgAAR5sFAgA6X4+sfH98fEMnImo0Onk1wUsd3QEAszZeQFGpWuREROJgESLd5e2NIiM5zro2B1BFEfLxESEUUeMxq18AnKwUSLxdiKX/8BcLMkwsQqS7/Pxw9rnRKDGSwynvFryybpZvl8mAsDDA11fcfER6zlJhjPmDWgIAfjiUgPiMPJETETU8FiHSaUdfngYA6Hz9ArTrlvfpA/z+u2iZiBqTsJaO6NPcAaVqAR9sjuIV6sngsAiRTjt6swAA0Pn1kcCOHeUDqHftAmxsRE5G1DhIJBLMH9QSpsYynLyWhT95hXoyMCxCpLNy75Ti4o0cAEDnzi2Bfv14OoyoHjS1McP0PuV/tz7dcRlZBSUiJyJqOCxCpLNOXcuCRgA87czhYm0qdhyiRu2Vrp7ay298tvOy2HGIGgyLEOmsI3F3V5P25tXmieqbsUyKT4aUr9n1x5kbOHUtS+RERA1D74rQsmXL4OHhAYVCgY4dO+LUqVMP3X/Dhg0ICAiAQqFA69atsWPHjgZKSk/qYGx5EeruZy9yEiLDENLMFiM7lK8t9P7miygp04iciKj+6VURWr9+PWbMmIF58+bh3LlzCAwMRFhYGDIyMqrc/9ixYxg5ciQmTJiA8+fPY/DgwRg8eDCioqIaODnVVuKtAiTeLoSRVILOPnZixyEyGLP6BqCJuRzxGfn48fBVseMQ1TuJoEdzJTt27Ij27dtj6dKlAACNRgM3Nze88cYbmDVr1gP7jxgxAgUFBdi2bZt2W6dOnRAUFITvv/++Rq+pUqmgVCqRm5sLKyurunkj9Ei/HE/E3K2X0MnLFusmh4odh8igbD5/A2+vj4SJkRR73u4O9yZmYkciqjd6c0SopKQEZ8+eRZ8+fbTbpFIp+vTpg+PHj1f5mOPHj1faHwDCwsKq3R8AiouLoVKpKt2o4R2MqTgt5iByEiLDMzjIFV18mqC4TIMFf18SOw5RvdKbInTr1i2o1Wo4OjpW2u7o6Ii0tLQqH5OWllar/QFg4cKFUCqV2pubm9uTh6daKS5T41hC+UUgOT6IqOFJJBIsGNQKxjIJ9l3JwL7L6WJHIqo3elOEGsrs2bORm5urvSUnJ4sdyeCcvpaNO6Vq2FuaoLmzpdhxiAySj4MFXunqCQBY8Hc0iqKvADt3AnFxIicjqlt6U4Ts7Owgk8mQnl75N5P09HQ4OTlV+RgnJ6da7Q8AJiYmsLKyqnSjhnUwtnzwe3c/e0gkkkfsTUT15c1evnCykCMpqxA/TFoA9O8P+PkBffsC2dlixyOqE3pThORyOUJCQrBv3z7tNo1Gg3379iE0tOrBtKGhoZX2B4A9e/ZUuz/pBk6bJ9IN5iZG+CDqLwDAt52GIVl5d6jB3r3AyJEiJiOqO3pThABgxowZ+PHHH7F69WpcvnwZU6ZMQUFBAcaPHw8AGDNmDGbPnq3d/6233sKuXbvw9ddf48qVK5g/fz7OnDmDadOmifUW6BFScu4gNj0fUgnQldPmicQVG4tn1y9F6PVIFBub4MNeE8u3q9VAeDhPk1GjoFdFaMSIEfjqq68wd+5cBAUFISIiArt27dIOiE5KSkJqaqp2/86dO2Pt2rVYvnw5AgMD8eeff2LLli1o1aqVWG+BHuHQ3aNBgW7WsDGXi5yGyMAlJEACYMHeH2CkLsMev1Ds9wr59/74eNGiEdUVvVpHSAxcR6hhvbrmDMIvpWN6H19M7+MndhwiwxYbC/j7AwA+7jkBP3UYAo+sFISveB0m6rLy+3khZNJzenVEiBq3olI1DsfdAgD0ae74iL2JqN75+QFhYYBMhreOroV9fhYSbV3wU8cXyrezBFEjwCJEOuP41dsoLFHDyUqBli48+kakE37/HejTB5Yld/DB/hUAgCVdXsTNH1aJm4uojrAIkc7YG12+1EHv5g6cNk+kK2xsgF27gNhYPPflf9DB0RRFUmN8fPim2MmI6gSLEOkEQRCw9+7qtX1a8LQYkc7x9YWkf38seLEdZFIJdkal4XBcptipiJ4YixDphKibKqSrimEmlyHUq4nYcYioGs2drTC6UzMAwLy/LqGkTCNyIqInwyJEOmHP3aNBT/naQ2EsEzkNET3MjGf8YGchx9XMAqw6dk3sOERPhEWIdELF+CCeFiPSfVYKY7zbNwAA8M3eOGSoikRORPT4WIRIdCk5dxCdqoJUAvT052U1iPTB0LZNEeRmjYISNT7beUXsOESPjUWIRLf7UhoAoK27DZpYmIichohqQiqVYMGglpBIgE3nb+JMYpbYkYgeC4sQiW5nVHkR6tvKSeQkRFQbgW7WGB7iBgCYu/US1BpeqID0D4sQiSozrxin7v4m2a+1s8hpiKi2/tPXH5YKI0SnqvD7qSSx4xDVGosQiSr8UhoEAQhsqoSrtanYcYioluwsTDDz6fLrAn61OwbZBSUiJyKqHRYhEtWuu6fFeDSISH+93KkZApwskVNYiq/3xIgdh6hWWIRINFkFJTh+9TYAoB/HBxHpLSOZFPMHtQQArD2ZhEspuSInIqo5FiESzZ7oNKg1Alo4W6FZE3Ox4xDRE+jk1QTPtnGGRgDmbb0EQeDAadIPLEIkmorZYv1b82gQUWPwwYDmMDWW4cz1bGyJ4EVZST+wCJEocgpLcDT+FgCODyJqLJyVppjWywcAsHDHFeQXl4mciOjRWIRIFDuj0lCqFhDgZAlvewux4xBRHZnYzRMeTcyQkVeMJfvixI5D9EgsQiSKLefLD5sPDnYVOQkR1SUTIxnmDmwBAFhx9BoSMvNFTkT0cCxC1OBScu5oF1EcGOgichoiqmu9AhzRK8ABpWoBC/6O5sBp0mksQtTgtl1IgSAAHTxsuYgiUSM199kWkMukOBSbiT3R6WLHIaoWixA1uC3nUwAAzwXzaBBRY+VhZ46J3TwBAB9ui0ZRqVrkRERVYxGiBhWXnofoVBWMpBL0b8XZYkSN2bRePnBWKnAj+w5+OHhV7DhEVWIRogb1V2T50aDufvawMZeLnIaI6pOZ3Ajv928OAPj2QDxuZBeKnIjoQSxC1GA0GgGb784WGxTE02JEhuDZNs7o5GWL4jINPtl+Wew4RA9gEaIGc+LqbdzIvgNLhRHCWnI1aSJDIJFIMH9QS8ikEuyMStMupEqkK1iEqMH8cSYZQPmUeYWxTOQ0RNRQApysMLpTMwDAvL8uoVStETkR0b9YhKhBqIpKtdcWGxbSVOQ0RNTQ3n7aD03M5YjPyMfqY4lixyHSYhGiBrEtMhXFZRr4OFggyM1a7DhE1MCUpsZ4t68/AGDx3jhk5BWJnIioHIsQNYgNZ8tPiw1v1xQSiUTkNEQkhmEhbghsqkR+cRk+3xkjdhwiACxC1ADiM/JwPikHMqmE1xYjMmBSafnAaQDYeO4Gzl7PFjkREYsQNYD1p8uPBvX0t4eDpULkNEQkpmB3G+04wfl/XYJaw+uQkbhYhKheFZWqseHsDQDAyA7uIqchIl3wbt8AWCqMcPFmrnY2KZFYWISoXm27kIqcwlK4Wpuih7+D2HGISAfYW5rg7T5+AIAvdl1BTmGJyInIkLEIUb369cR1AMCoju6QSTlImojKjQ5tBj9HC2QXlmLRnlix45ABYxGiehN1MxcRyTkwlkkwvJ2b2HGISIcYy6TagdO/nriO6BSVyInIULEIUb357WT50aCwlk6wtzQROQ0R6ZrO3nYY0NoZGqF84LQgcOA0NTwWIaoXqqJSbDlffqX5l+8urU9EdL/3BzSHqbEMpxKz8FdkithxyACxCFG9WH8qGXdK1fB1sEBHT1ux4xCRjnK1NsXUnt4AgE93XEZBcZnIicjQsAhRnStTa7Dq7rWEJnT15ErSRPRQE7t5wd3WDOmqYiz5J17sOGRgWISozoVfSsfNnDuwNZdzJWkieiSFsQxzn20BAPj5yFVczcwXOREZEhYhqnM/H7kKoHxskMJYJnIaItIHvZs7oIe/PUrVAj7cFs2B09RgWISoTp1Lysa5pBzIZVKM5iBpIqohiUSCuc+2gLFMggMxmdh3OUPsSGQgWISoTv185BoA4LkgF06ZJ6Ja8bK3wMRuXgCAD7dFo6hULXIiMgR6U4SysrLw0ksvwcrKCtbW1pgwYQLy8x9+HrlHjx6QSCSVbq+99loDJTY8ibcKsPNiKgDgla6eIqchIn00racPnKwUSMoqxJJ/4sSOQwZAb4rQSy+9hEuXLmHPnj3Ytm0bDh06hMmTJz/ycZMmTUJqaqr29sUXXzRAWsP0/cEEaASgV4ADmjtbiR2HiPSQuYmRdsXpHw5exeVUrjhN9UsvitDly5exa9cu/PTTT+jYsSO6du2KJUuWYN26dUhJefgCXGZmZnByctLerKz4A7o+pOTcwcZz5VeZn9rTR+Q0RKTP+rZyQlhLR5RpBMzadBFqDQdOU/3RiyJ0/PhxWFtbo127dtptffr0gVQqxcmTJx/62N9++w12dnZo1aoVZs+ejcLCwofuX1xcDJVKVelGj/bj4asoVQvo5GWLkGY2YschIj334XOtYGlihMjkHKy+uy4ZUX3QiyKUlpYGBweHStuMjIxga2uLtLS0ah83atQo/Prrr9i/fz9mz56NNWvW4OWXX37oay1cuBBKpVJ7c3PjxUIf5VZ+MX4/lQQAmNbTV+Q0RNQYOFopMKt/AADgq90xuJH98F9iiR6XqEVo1qxZDwxmvv925cqVx37+yZMnIywsDK1bt8ZLL72EX375BZs3b0ZCQkK1j5k9ezZyc3O1t+Tk5Md+fUPx85FrKCrVILCpEl18mogdh4gaiZHt3dHBwxaFJWrM2RLFtYWoXhiJ+eIzZ87EuHHjHrqPl5cXnJyckJFReU2JsrIyZGVlwcnJqcav17FjRwBAfHw8vL29q9zHxMQEJiac9l1TmXnFWHU0EQAwrZcvL6dBRHVGKpXg0+dbo/83h7E/JhN/X0jFoEAXsWNRIyNqEbK3t4e9vf0j9wsNDUVOTg7Onj2LkJAQAMA///wDjUajLTc1ERERAQBwdnZ+rLz0oG8PxONOqRqBbtbo09zh0Q8gIqoFHwcLTO3pg//ujcWCvy6hm48dbMzlYseiRkQvxgg1b94cffv2xaRJk3Dq1CkcPXoU06ZNw4svvggXl/LfDm7evImAgACcOnUKAJCQkICPPvoIZ8+eRWJiIv766y+MGTMGTz31FNq0aSPm22k0UnLu4LcT5WOD/vOMP48GEVG9mNLDG74OFrhdUIKPtkWLHYcaGb0oQkD57K+AgAD07t0b/fv3R9euXbF8+XLt/aWlpYiJidHOCpPL5di7dy+eeeYZBAQEYObMmXjhhRfw999/i/UWGp0l/8ShRK1BJy9bjg0ionojN5Li86FtIJUAm87fxO5L1U+SIaoticDRZw+lUqmgVCqRm5vLNYjukXirAL0XHYRaI2DjlFCENLMVOxIRNXILd17GDwevws5Cjt1vd4ctT5FRHdCbI0KkWxbtiYVaI6Cnvz1LEBE1iLf7+MHXwQK38kswZ2uU2HGokWARolo7n5SNvyJTIJEAM5/xFzsOERkIhbEMi4YHQSaVYPuFVGy78PArCxDVBIsQ1YogCPjw7mDFoW2bopWrUuRERGRIWjdVYmqP8uVP5myJQmZesciJSN+xCFGt/BWZgvNJOTCTy/CfMB4NIqKGN62XL1o4WyG7sBSzN13kQov0RFiEqMbulKjx+c7ylb5f7+ENByuFyImIyBDJjaT4enggjGUS7L2cjvWneQUAenwsQlRjPx2+ipTcIrham2JiNy+x4xCRAWvubIV37o5RXPB3NOIz8kVORPqKRYhqJDmrEMsOxAMAZvULgMJYJnIiIjJ0k7p5oYtPE9wpVeOtdedRXKYWOxLpIRYheiRBEDDvr0soKtWgo6ctnm3DS5QQkfikUgkWDQ+CjZkxLqWo8FV4jNiRSA+xCNEj7YpKwz9XMmAsk+CTIa15KQ0i0hmOVgp8MTQQAPDj4Ws4FJspciLSNyxC9FB5RaWY//clAMCU7t7wcbAQORERUWVPt3DEy53cAQAzN0RySj3VCosQPdTXu2ORriqGRxMzvN7TR+w4RERV+qB/C/g5WiAzrxhv/n4eZWqN2JFIT7AIUbXOXs/CL8cTAQAfD27NAdJEpLNM5TJ8+1JbmMllOH71NhbtiRU7EukJFiGqUmFJGWb+EQmNALzQtim6+tqJHYmI6KF8HCzx+QttAADfHkjAvsvpIicifcAiRFX6fOcVJN4uhItSgXmDWogdh4ioRgYGumBcZw8AwNvrI5CcVShuINJ5LEL0gKPxt7D6+HUAwBdDA2GlMBY5ERFRzb3fvzmC3KyhKirDlN/OoqiU6wtR9ViEqJLcO6X4z4ZIAMDoTs14SoyI9I7cSIplL7WFjZkxom6qMGvjBV6PjKrFIkRagiBg1sYLSMktgrutGWb1CxA7EhHRY3G1NsWyl9rCSCrBlogUfHcwQexIpKNYhEjr1xPXsTMqDcYyCZaMDIa5iZHYkYiIHltnbzvMG9QSAPBleAz2RHPwND2IRYgAAJdScvHRtssAgPf6BiDQzVrcQEREdWB0p2YY3akZBAGYvu48rqSpxI5EOoZFiJBfXIZpa8+jRK1Bn+aOmNDVU+xIRER1Zu7AFujs3QQFJWq8svI00nKLxI5EOoRFyMBpNAJmrI/AtVsFcFEq8NWwNryWGBE1KsYyKb59qS287MyRkluEcStPQVVUKnYs0hEsQgZu8b447I5Oh1xWPsvC2kwudiQiojpnbSbH6lc6wN7SBFfS8jD5lzMoLuO0emIRMmg7L6bif/viAACfPt8awe42IiciIqo/brZmWDW+PSxMjHDialb56vkaTqs3dCxCBio6RYWZd9cLeqWLJ4aGNBU5ERFR/WvposQPo0NgLJNg24VUzNkaxTWGDByLkAG6mXMH41edQmGJGl18muD9/lwviIgMRxcfO3w9PAgSCfDbySQs+DuaZciAsQgZmNzCUoxbcQrpqmL4Oljg21EhMJLx24CIDMugQBftBVpXHUvEwp1XWIYMFH8CGpCiUjUmrTmDuIx8OFqZYNUrHaA043XEiMgwDW/nhk+HtAYALD90FV/tjmEZMkAsQgaiVK3BW+vO49S1LFiaGGHV+A5wtTYVOxYRkahGdXTHgrurTy/bn4APt0VzALWBYREyAGqNgBl/RCL8Uvk0+R9Gh6C5s5XYsYiIdMLYzh6YP7AFAGDl0US8u/ECytQakVNRQ2ERauTUGgH/2RCJvyNTYCyT4PvRbdHZh1eUJyK617gunvh6WCBkUgn+PHsDU9ee4zpDBoJFqBFTa8qvJr/p/E3IpBIsGdkWvQIcxY5FRKSTXghpim9fagu5TIrwS+kY/fMpZBWUiB2L6hmLUCNVUqbBm+vOY8PZG5BKgMUjgtC3lZPYsYiIdFpYSyesvLvo4qlrWRjy7VHEZ+SLHavxio0Fdu4E4uJEi8Ai1AjdKVFj8poz2H4hFcYyCZaNaouBgS5ixyIi0gtdfOywcUpnNLUxxfXbhRjy7VEcibsldqzGJSsL6NsX8PcH+vcH/PzKv87ObvAoEoFzBR9KpVJBqVQiNzcXVla6P8A4u6AEk9ecwenEbCiMpfhhdDt097MXOxYRkd65lV+MV9ecxdnr2ZBJJXg3zB+TunlBKuWFqZ9Y377A3r2A+p5xWDIZ0KcPsGtXg0bhEaFG5GpmPoZ8exSnE7NhqTDCrxM6sgQRET0mOwsT/DaxI55v6wq1RsDCnVcwec0Z5BRy3NATiY0FwsNRDAk2teyJ50YvQoqlXXkpCg9v8NNkLEKNxPGE2xjy7TEk3i6Eq7UpNk7pjHYetmLHIiLSawpjGb4eFohPhrSC3EiKvZczMOB/R3A6MUvsaHorIzoei7qOQpcpKzHj2ZmIdPHD6rbP/rtDfHyD5uGpsUfQ9VNjgiDg91PJmPdXFErVAoLdrbF8dDvYW5qIHY2IqFGJupmLqWvP4frtQkgkwMSunpj5jD8UxjKxo+k8QRBwPjkHq44mYseFFJTdbR5Oebcw+tx2jIrYBZuivPKNsbGAr2+DZWMRegRdLkJ3StT4YMtFbDp3EwDwbBtnfDUskH8piYjqSV5RKT7aFo0/ztwAAPg4WODzF9ogpJmNyMl0U2FJGbZfSMWaE9dx4Uaudnv7/BSM+2cNnok5BmPN3XFCIo0RYhF6BF0tQlcz8zHl13OISc+DVAL8JywArz7FQXxERA1h3+V0zNp0EZl5xQCA4e2a4r2+AWhiYVJ+RCMhAfDxadAjG7pCEARcvJmLdaeT8XdECvKKywAAciMpngt0wdjOHmhlpgFGjiwfE1QhLAz4/XfApmFLJYvQI+haERIEARvO3sCCvy6hoEQNOwsTLBkZjFDvJmJHIyIyKNkFJVi487L26JCViQzTE/bjpXWLYKIu/+Ev1g93MeQUlmBrRArWnU7G5VSVdnuzJmYY0d4NL7Z3h625vPKD4uLKxwSJWBpZhB5Bl4pQZl4xZm+6iL2X0wEAHTxtsXRkMBysFKLmIiIyZGevZ2POlihE3/3h75qbjreP/IYhlw5AJpWIcrqnoRSWlGHv5Qz8FXETB2MzUaourxRyIyn6t3LCiPbu6Ohpq9NnK1iEHkEXipAgCNgZlYb/2xKFrIISyGVSzHjGD5O6eZX/JSMiIlGpr8Rg/Ytv4Zsuo5BuWX6E3uv2DUw6vRlDov6B4vKlRnOarKhUjaPxt/B3ZAp2R6ejsOTftYBaOFthRHs3DA5yhdLMWMSUNcci9AhiF6HkrELM3RqF/TGZAIAAJ0v8d0QQrx5PRKRLdu4E+vfHHSMTrG77LL7rNBS5ppYAALv8bIxpZYvhI3vBSamfR/CzC0qw70oG9kan41BcZqXy425rhueCXDAo0AW+jpYipnw8LEKPIFYRKi5T46fD1/C/fXEoLtPAWCbBlO7emNrLByZGnBVGRKRTYmPLLxdxV77cFOvaPIMV7Z9DipUDAEAqAXr6O2BYOzf08LfX6Rm+ZWoNLt7MxbGE2zgYm4kziVnQ3NMWnJUKhLV0wuBgVwQ2VUIi0d+zEyxCj9DQRUijEfD3hRR8GR6DG9l3AAChXk3w0eBW8HGwqPfXJyKix1TFZSNKjeXY/sKrWNt9JE7dswijmVyGnv4OeKalI3r4OYh+GqmkTIMraSqcvZ6No/G3cfLqbe1srwrNna3wdAtHPNPCES1drPS6/NxLb4rQJ598gu3btyMiIgJyuRw5OTmPfIwgCJg3bx5+/PFH5OTkoEuXLvjuu+/gW4vztPVWhKqYXnk84TYW7rysXWvBwdIEs/oFYEiwa6P5hiMiarSysx86JTwhMx9/nE7G35EpSMkt0u4ikZSPreno2QQdvWzRylUJF6Wi3v7dv1OiRkJmPuIy8nDxhgoRydmISlGhpExTaT8rhRFCvZugs7cdegU4wM3WrF7yiE1vitC8efNgbW2NGzdu4Oeff65REfr888+xcOFCrF69Gp6enpgzZw4uXryI6OhoKBQ1O09b50UoKwsYNUr7F0UAcPyFCVjaexyOXS8vQBYmRnituxde6eoJM7nRk78mERE1nEdMCa9YZ2dXVBp2R6cjPiP/gX2sFEYIcLaCj4MFXK1N0dTGFM5KU9iaG8NSYQxLhRFMjWWVypJaIyC/uAx5RaXIKypDTmEp0lR3kJpbhNScItzILkR8Zj5uZN9BVT/5labGCHKzRievJuji0wQtXZQGMSFHb4pQhVWrVmH69OmPLEKCIMDFxQUzZ87EO++8AwDIzc2Fo6MjVq1ahRdffLFGr1fnRejuoVNBrcZ+r3ZY0vlFnHcNAAAYSSUY1dEdb/b2hZ0FL5FBRGQIMlRFOHEtCyeu3sbZxGwkZOajTFOzH833HjSqzU9zW3M5fBws0NzJEkHu1ghys4FHEzODPPvQaA83XLt2DWlpaejTp492m1KpRMeOHXH8+PFqi1BxcTGKi4u1X6tUqir3eyx3r7gLAJOe/z/s9e0EADApLcaLF3Zj8hdvwjW4Rd29HhER6TwHKwUGBZbPugLKJ8vEZ+Tjcmoert8uwM2cO7iZXX5kJ/dOKfKKSrUDl6sqP3IjKawURrBSGMNJqYCTUgEXpSlcrE3hbW8OHweL8hWwCUAjLkJpaWkAAEdHx0rbHR0dtfdVZeHChViwYEH9hEpI0P7vU9fO47h7G7x8fgcmnt4C+8IcIO05ACxCRESGzMRIhpYuSrR0UVZ5vyAIKCxRV5rCDpTPSrNQGHFmcS1JxXzxWbNmQSKRPPR25cqVBs00e/Zs5Obmam/Jycl19+Te3tr/HX5hN45+/wpmH1xVXoKA8vPJREREDyGRSGBuYgR7S5NKtyYWJixBj0HUI0IzZ87EuHHjHrqPl5fXYz23k5MTACA9PR3Ozs7a7enp6QgKCqr2cSYmJjAxqadDhn5+5TMI9u6FQl0Khbq0fHvFFXcbyaqjRERE+kLUImRvbw97e/t6eW5PT084OTlh37592uKjUqlw8uRJTJkypV5es0Z+//3B6ZV9+pRvJyIiogalN2OEkpKSkJWVhaSkJKjVakRERAAAfHx8YGFRvtBgQEAAFi5ciCFDhkAikWD69On4+OOP4evrq50+7+LigsGDB4v3Rmxsyi++pwNX3CUiIjJ0elOE5s6di9WrV2u/Dg4OBgDs378fPXr0AADExMQgNzdXu8+7776LgoICTJ48GTk5OejatSt27dpV4zWE6pWvLwsQERGRyPRuHaGGJvZFV4mIiKj+iDprjIiIiEhMLEJERERksFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYenOJDbFULLytUqlETkJERES1ZWlpCYlEUu39LEKPkJeXBwBwc3MTOQkRERHV1qMukcVrjT2CRqNBSkrKIxtlbalUKri5uSE5OZnXMKsBfl41x8+q5vhZ1Rw/q5rjZ1VzDfFZ8YjQE5JKpWjatGm9Pb+VlRX/otQCP6+a42dVc/ysao6fVc3xs6o5MT8rDpYmIiIig8UiRERERAaLRUgkJiYmmDdvHkxMTMSOohf4edUcP6ua42dVc/ysao6fVc3pwmfFwdJERERksHhEiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWIR0xCeffILOnTvDzMwM1tbWYsfRKcuWLYOHhwcUCgU6duyIU6dOiR1JJx06dAgDBw6Ei4sLJBIJtmzZInYknbVw4UK0b98elpaWcHBwwODBgxETEyN2LJ303XffoU2bNtoF70JDQ7Fz506xY+mFzz77DBKJBNOnTxc7is6ZP38+JBJJpVtAQIAoWViEdERJSQmGDRuGKVOmiB1Fp6xfvx4zZszAvHnzcO7cOQQGBiIsLAwZGRliR9M5BQUFCAwMxLJly8SOovMOHjyIqVOn4sSJE9izZw9KS0vxzDPPoKCgQOxoOqdp06b47LPPcPbsWZw5cwa9evXCc889h0uXLokdTaedPn0aP/zwA9q0aSN2FJ3VsmVLpKamam9HjhwRJ4hAOmXlypWCUqkUO4bO6NChgzB16lTt12q1WnBxcREWLlwoYirdB0DYvHmz2DH0RkZGhgBAOHjwoNhR9IKNjY3w008/iR1DZ+Xl5Qm+vr7Cnj17hO7duwtvvfWW2JF0zrx584TAwECxYwiCIAg8IkQ6q6SkBGfPnkWfPn2026RSKfr06YPjx4+LmIwam9zcXACAra2tyEl0m1qtxrp161BQUIDQ0FCx4+isqVOnYsCAAZX+7aIHxcXFwcXFBV5eXnjppZeQlJQkSg5edJV01q1bt6BWq+Ho6Fhpu6OjI65cuSJSKmpsNBoNpk+fji5duqBVq1Zix9FJFy9eRGhoKIqKimBhYYHNmzejRYsWYsfSSevWrcO5c+dw+vRpsaPotI4dO2LVqlXw9/dHamoqFixYgG7duiEqKgqWlpYNmoVHhOrRrFmzHhgMdv+NP9CJxDV16lRERUVh3bp1YkfRWf7+/oiIiMDJkycxZcoUjB07FtHR0WLH0jnJycl466238Ntvv0GhUIgdR6f169cPw4YNQ5s2bRAWFoYdO3YgJycHf/zxR4Nn4RGhejRz5kyMGzfuoft4eXk1TBg9ZGdnB5lMhvT09Erb09PT4eTkJFIqakymTZuGbdu24dChQ2jatKnYcXSWXC6Hj48PACAkJASnT5/GN998gx9++EHkZLrl7NmzyMjIQNu2bbXb1Go1Dh06hKVLl6K4uBgymUzEhLrL2toafn5+iI+Pb/DXZhGqR/b29rC3txc7ht6Sy+UICQnBvn37MHjwYADlpzH27duHadOmiRuO9JogCHjjjTewefNmHDhwAJ6enmJH0isajQbFxcVix9A5vXv3xsWLFyttGz9+PAICAvDee++xBD1Efn4+EhISMHr06AZ/bRYhHZGUlISsrCwkJSVBrVYjIiICAODj4wMLCwtxw4loxowZGDt2LNq1a4cOHTpg8eLFKCgowPjx48WOpnPy8/Mr/TZ17do1REREwNbWFu7u7iIm0z1Tp07F2rVrsXXrVlhaWiItLQ0AoFQqYWpqKnI63TJ79mz069cP7u7uyMvLw9q1a3HgwAGEh4eLHU3nWFpaPjDOzNzcHE2aNOH4s/u88847GDhwIJo1a4aUlBTMmzcPMpkMI0eObPgwYk9bo3Jjx44VADxw279/v9jRRLdkyRLB3d1dkMvlQocOHYQTJ06IHUkn7d+/v8rvobFjx4odTedU9TkBEFauXCl2NJ3zyiuvCM2aNRPkcrlgb28v9O7dW9i9e7fYsfQGp89XbcSIEYKzs7Mgl8sFV1dXYcSIEUJ8fLwoWSSCIAgNX7+IiIiIxMdZY0RERGSwWISIiIjIYLEIERERkcFiESIiIiKDxSJEREREBotFiIiIiAwWixAREREZLBYhIiIiMlgsQkRERGSwWISIiIjIYLEIEZFByczMhJOTEz799FPttmPHjkEul2Pfvn0iJiMiMfBaY0RkcHbs2IHBgwfj2LFj8Pf3R1BQEJ577jksWrRI7GhE1MBYhIjIIE2dOhV79+5Fu3btcPHiRZw+fRomJiZixyKiBsYiREQG6c6dO2jVqhWSk5Nx9uxZtG7dWuxIRCQCjhEiIoOUkJCAlJQUaDQaJCYmih2HiETCI0JEZHBKSkrQoUMHBAUFwd/fH4sXL8bFixfh4OAgdjQiamAsQkRkcP7zn//gzz//RGRkJCwsLNC9e3colUps27ZN7GhE1MB4aoyIDMqBAwewePFirFmzBlZWVpBKpVizZg0OHz6M7777Tux4RNTAeESIiIiIDBaPCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgMFosQERERGSwWISIiIjJYLEJERERksFiEiIiIyGCxCBEREZHBYhEiIiIig8UiRERERAaLRYiIiIgM1v8DoCobJtEpREkAAAAASUVORK5CYII="
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABElElEQVR4nO3deXhU1f3H8c9MlpkgJAECCYFAkMgmOwiGRbBGqSLWtla0ViitWi1UMG4sFYpbsC1IFRS1WpdWQVzACkUxgmsUZatQZJH1pyYBhQQCZJk5vz/C3GRIQJaZe8nwfj1PHjN3zr1z7o2QD997zrkuY4wRAABAhHA73QEAAIBQItwAAICIQrgBAAARhXADAAAiCuEGAABEFMINAACIKIQbAAAQUQg3AAAgohBuAABARCHcACH07LPPyuVyadu2bU53JUhFRYXuuusupaWlye1268orr3S6S4gALpdLo0ePdrobQA3RTncAQPg988wz+stf/qKxY8eqR48eatmypdNdwgk4cOCA/vznP2vQoEEaNGiQ090BTnuEG+AM8O6776p58+Z6+OGHne4KTsKBAwc0ZcoUSSLcAMeB21LAGaCwsFCJiYkhO57f79ehQ4dCdry65kw+f2OMDh486HQ3gGMi3AA2eOyxx3TuuefK4/EoNTVVo0aN0t69e4PabNq0ST//+c+VkpIir9erFi1a6JprrlFRUZHVZsmSJerfv78SExNVv359tWvXThMmTDjq527btk0ul0tLly7VunXr5HK55HK5tGzZMklSSUmJbr/9dqWlpcnj8ahdu3b661//KmNM0HECYyv+9a9/WeexePHio35uenq6Lr/8cr399tvq1q2bvF6vOnbsqNdee61G2y1btugXv/iFGjVqpHr16un888/XwoULg9osW7ZMLpdLc+fO1YQJE5SSkqKzzjpLV1xxhXbu3BnUdtCgQerUqZNWrFihvn37Ki4uTq1bt9bs2bNrfHZpaakmT56sjIwMeTwepaWl6a677lJpaWlIzv/DDz9U79695fV6dfbZZ+v555+v0Xbv3r0aO3as9TPIyMjQQw89JL/fL6nyZ9ikSRNJ0pQpU6yf4Z/+9Ce98cYbcrlc+u9//2sd79VXX5XL5dLPfvazoM/p0KGDhg0bZr2uqKjQfffdpzZt2sjj8Sg9PV0TJkyoce6Bc3nrrbfUq1cvxcXF6Yknnjjqud9///1yu9169NFHj9oGCDsDIGT+8Y9/GElm69at1rbJkycbSSYrK8s8+uijZvTo0SYqKsqcd955pqyszBhjTGlpqWndurVJTU01999/v/n73/9upkyZYs477zyzbds2Y4wxa9euNbGxsaZXr17mb3/7m5k9e7a54447zAUXXHDU/uzfv9+88MILpn379qZFixbmhRdeMC+88ILJz883fr/f/OhHPzIul8vccMMNZubMmWbo0KFGkhk7dmzQcSSZDh06mCZNmpgpU6aYWbNmmVWrVh31c1u1amXatm1rEhMTzbhx48z06dNN586djdvtNm+//bbVLj8/3yQnJ5sGDRqYiRMnmunTp5uuXbsat9ttXnvtNavd0qVLjSTTuXNn06VLFzN9+nQzbtw44/V6Tdu2bc2BAwestgMHDjSpqammadOmZvTo0eaRRx4x/fv3N5LM008/bbXz+XzmkksuMfXq1TNjx441TzzxhBk9erSJjo42P/nJT075/Nu1a2eSk5PNhAkTzMyZM02PHj2My+Uya9eutdqVlJSYLl26mMaNG5sJEyaY2bNnm+HDhxuXy2XGjBlj/Qwff/xxI8n89Kc/tX6Ga9asMd99951xuVzm0UcftY45ZswY43a7TZMmTaxthYWFRpKZOXOmtW3EiBFGkrnqqqvMrFmzzPDhw40kc+WVV9Y4l4yMDNOwYUMzbtw4M3v2bLN06VLruowaNcpqO3HiRONyucyTTz551GsD2IFwA4TQkeGmsLDQxMbGmksuucT4fD6r3cyZM40k88wzzxhjjFm1apWRZObNm3fUYz/88MNGktm1a9cJ92vgwIHm3HPPDdo2f/58I8ncf//9Qduvuuoq43K5zObNm61tkozb7Tbr1q07rs9r1aqVkWReffVVa1tRUZFp1qyZ6d69u7Vt7NixRpL54IMPrG379u0zrVu3Nunp6dY1C4Sb5s2bm+LiYqvtyy+/bCSZv/3tb0HnKslMmzbN2lZaWmq6detmmjZtagXKF154wbjd7qDPNsaY2bNnG0nmo48+OuXzf//9961thYWFxuPxmNtvv93adt9995mzzjrLbNy4MWj/cePGmaioKLNjxw5jjDG7du0ykszkyZNrfNa5555rrr76aut1jx49zC9+8Qsjyaxfv94YY8xrr71mJJk1a9YYY4xZvXq1kWRuuOGGoGPdcccdRpJ59913a5zL4sWLa3x29XBz++23G7fbbZ599tnjukZAOHFbCgijd955R2VlZRo7dqzc7qo/bjfeeKPi4+Ot2y8JCQmSpLfeeksHDhyo9ViBMTMLFiywblmcikWLFikqKkq33npr0Pbbb79dxhj95z//Cdo+cOBAdezY8biPn5qaqp/+9KfW6/j4eA0fPlyrVq1Sfn6+1YfevXurf//+Vrv69evrpptu0rZt2/S///0v6JjDhw9XgwYNrNdXXXWVmjVrpkWLFgW1i46O1u9+9zvrdWxsrH73u9+psLBQK1askCTNmzdPHTp0UPv27bV7927r60c/+pEkaenSpad0/h07dtSAAQOs102aNFG7du20ZcsWa9u8efM0YMAANWzYMKgPWVlZ8vl8ev/993/wcwYMGKAPPvhAkrRv3z6tWbNGN910k5KSkqztH3zwgRITE9WpUydJsq5XdnZ20LFuv/12SapxW7B169YaPHhwrZ9vjNHo0aP1t7/9Tf/85z81YsSIH+wzEG6EGyCMtm/fLklq165d0PbY2FidffbZ1vutW7dWdna2/v73vyspKUmDBw/WrFmzgsbbDBs2TP369dMNN9yg5ORkXXPNNXr55ZdPOuhs375dqampQWFBqhybUb3vAa1btz6h42dkZMjlcgVta9u2rSRZ6wBt3769xrU5Vh/OOeecoNcul0sZGRk11hVKTU3VWWeddczP3rRpk9atW6cmTZoEfQXaFRYWBu1/oudf23T7hg0bas+ePdbrTZs2afHixTX6kJWVVWsfajNgwAB9++232rx5sz7++GO5XC5lZmYGhZ4PPvhA/fr1swL29u3b5Xa7lZGREXSslJQUJSYmntDP/vnnn9esWbP06KOP6tprr/3B/gJ2YCo4cJqYNm2afv3rX2vBggV6++23deuttyonJ0effPKJWrRoobi4OL3//vtaunSpFi5cqMWLF2vu3Ln60Y9+pLfffltRUVFh7V9cXFxYj283v9+vzp07a/r06bW+n5aWFvT6RM//aD8PU22wtt/v18UXX6y77rqr1raBoHUsgarX+++/ry1btqhHjx4666yzNGDAAD3yyCPav3+/Vq1apQceeKDGvkeGz6M51rn369dPq1ev1syZM3X11VerUaNGx3VMIJwIN0AYtWrVSpK0YcMGnX322db2srIybd261foXekDnzp3VuXNn/fGPf9THH3+sfv36afbs2br//vslSW63WxdddJEuuugiTZ8+XQ8++KAmTpyopUuX1jjW8fTtnXfe0b59+4KqN19++WVQ30/W5s2bZYwJ+gW6ceNGSZUzcAKfsWHDhhr7Hq0PmzZtCnptjNHmzZvVpUuXoO3ffPONSkpKgqo3R352mzZttGbNGl100UXH/Us+1Nq0aaP9+/f/4M/uWP1r2bKlWrZsqQ8++EBbtmyxboVdcMEFys7O1rx58+Tz+XTBBRdY+7Rq1Up+v1+bNm2yqmSSVFBQoL17957Qzz4jI8NaYPDHP/6xcnNza1QDAbtxWwoIo6ysLMXGxuqRRx4J+hf7008/raKiIg0ZMkSSVFxcrIqKiqB9O3fuLLfbbU3N/f7772scv1u3bpJUY/ru8bjsssvk8/k0c+bMoO0PP/ywXC6XLr300hM+ZnXffPONXn/9det1cXGxnn/+eXXr1k0pKSlWH5YvX668vDyrXUlJiZ588kmlp6fXGOPy/PPPa9++fdbrV155Rd9++22NvlZUVARNVy4rK9MTTzyhJk2aqGfPnpKkq6++Wl9//bWeeuqpGn0/ePCgSkpKTuHsj8/VV1+tvLw8vfXWWzXe27t3r/X/RL169axttRkwYIDeffddLV++3Ao33bp1U4MGDTR16lTFxcVZ5y1VXndJmjFjRtBxAlWswP+Xx6tLly5atGiR1q9fr6FDh7IODhxH5QYIoyZNmmj8+PGaMmWKfvzjH+uKK67Qhg0b9Nhjj+m8887Tr371K0mVKwiPHj1av/jFL9S2bVtVVFTohRdeUFRUlH7+859Lku699169//77GjJkiFq1aqXCwkI99thjatGiRdCA3OM1dOhQXXjhhZo4caK2bdumrl276u2339aCBQs0duxYtWnT5pTOvW3btvrtb3+rzz77TMnJyXrmmWdUUFCgf/zjH1abcePG6aWXXtKll16qW2+9VY0aNdJzzz2nrVu36tVXXw0ahC1JjRo1Uv/+/TVy5EgVFBRoxowZysjI0I033hjULjU1VQ899JC2bdumtm3bau7cuVq9erWefPJJxcTESJKuv/56vfzyy7r55pu1dOlS9evXTz6fT19++aVefvlla12XcLrzzjv1xhtv6PLLL9evf/1r9ezZUyUlJfriiy/0yiuvaNu2bUpKSlJcXJw6duyouXPnqm3btmrUqJE6depkDRAeMGCA/vWvf8nlcln/L0RFRalv37566623NGjQIMXGxlqf27VrV40YMUJPPvmk9u7dq4EDB2r58uV67rnndOWVV+rCCy884XM5//zztWDBAl122WW66qqrNH/+fOtaA7ZzcqoWEGlqW+fGmMqp3+3btzcxMTEmOTnZ3HLLLWbPnj3W+1u2bDG/+c1vTJs2bYzX6zWNGjUyF154oXnnnXesNrm5ueYnP/mJSU1NNbGxsSY1NdVce+21NaYR16a2qeDGVE67vu2220xqaqqJiYkx55xzjvnLX/5i/H5/UDsdsZ7JD2nVqpUZMmSIeeutt0yXLl2Mx+Mx7du3r3Wq+1dffWWuuuoqk5iYaLxer+ndu7d58803g9oEpoK/9NJLZvz48aZp06YmLi7ODBkyxGzfvr3Wc/38889NZmam8Xq9plWrVkFrvASUlZWZhx56yJx77rnG4/GYhg0bmp49e5opU6aYoqKiUz7/Iw0cONAMHDgwaNu+ffvM+PHjTUZGhomNjTVJSUmmb9++5q9//as1bd0YYz7++GPTs2dPExsbW2Na+Lp166y1eKq7//77jSRzzz331OhLeXm5mTJlimndurWJiYkxaWlpZvz48ebQoUPHdS7G1H5dFixYYKKjo82wYcOClj8A7OQy5oilSAHgFKWnp6tTp0568803Q3K8ZcuW6cILL9S8efN01VVXHbPtoEGDtHv3bq1duzYknw2g7mHMDQAAiCiEGwAAEFEINwAAIKIw5gYAAEQUKjcAACCiEG4AAEBEOePCjTFGxcXF4m4cAACR6YwLN/v27VNCQkLQEu4AACBynHHhBgAARDbCDQAAiCiEGwAAEFEINwAAIKIQbgAAQEQh3AAAgIhCuAEAABGFcAMAACIK4QYAAEQUwg0AAIgohBsAABBRCDcAACCiEG4AAEBEIdwAAICIEu10ByJFWYVfu/eXym+MWjSs53R3AAA4Y1G5CZE1/7dXfae+q+ufXu50VwAAOKMRbkLEGx0lSSot9zncEwAAzmyEmxDxxFReykMVfod7AgDAmY1wEyKe6MpLSeUGAABnEW5CxBtz+LYUlRsAABxFuAmRQOWmwm9U4SPgAADgFMJNiHgODyiWqN4AAOAkwk2IBCo3EuEGAAAnEW5CxO12KTbq8IwpBhUDAOAYwk0IWTOmqNwAAOAYwk0IeawZU1RuAABwCuEmhAKVm0PlVG4AAHAK4SaEAqsUs5AfAADOcTTcvP/++xo6dKhSU1Plcrk0f/78H9xn2bJl6tGjhzwejzIyMvTss8+GvZ/Hy3q+FGNuAABwjKPhpqSkRF27dtWsWbOOq/3WrVs1ZMgQXXjhhVq9erXGjh2rG264QW+99VaYe3p8rOdLUbkBAMAx0U5++KWXXqpLL730uNvPnj1brVu31rRp0yRJHTp00IcffqiHH35YgwcPDlc3jxuzpQAAcF6dGnOTl5enrKysoG2DBw9WXl7eUfcpLS1VcXFx0Fe48HwpAACcV6fCTX5+vpKTk4O2JScnq7i4WAcPHqx1n5ycHCUkJFhfaWlpYetf1WwpbksBAOCUOhVuTsb48eNVVFRkfe3cuTNsn+VhQDEAAI5zdMzNiUpJSVFBQUHQtoKCAsXHxysuLq7WfTwejzwejx3dkzcwFZxF/AAAcEydqtxkZmYqNzc3aNuSJUuUmZnpUI+CBSo3LOIHAIBzHA03+/fv1+rVq7V69WpJlVO9V69erR07dkiqvKU0fPhwq/3NN9+sLVu26K677tKXX36pxx57TC+//LJuu+02J7pfQ9VsKSo3AAA4xdFw8/nnn6t79+7q3r27JCk7O1vdu3fXpEmTJEnffvutFXQkqXXr1lq4cKGWLFmirl27atq0afr73/9+WkwDl6rNlqJyAwCAYxwdczNo0CAZY476fm2rDw8aNEirVq0KY69OHpUbAACcV6fG3Jzuqp4tReUGAACnEG5CiKngAAA4j3ATQl6eLQUAgOMINyFE5QYAAOcRbkKIxy8AAOA8wk0IeWMPL+LHbCkAABxDuAkhLysUAwDgOMJNCMUdrtwcLKNyAwCAUwg3IcSDMwEAcB7hJoTiYqjcAADgNMJNCAWeLXWown/Mx0oAAIDwIdyEUCDc+PxG5T7CDQAATiDchFBgzI3EdHAAAJxCuAmh2Ci3XK7K7w8x7gYAAEcQbkLI5XJZg4pZ6wYAAGcQbkIsMO7mII9gAADAEYSbEKuq3BBuAABwAuEmxDyHBxVTuQEAwBmEmxCjcgMAgLMINyHmJdwAAOAowk2IMVsKAABnEW5CLLCQH5UbAACcQbgJMaaCAwDgLMJNiHm5LQUAgKMINyEWR+UGAABHEW5CLDDmppRwAwCAIwg3IUblBgAAZxFuQszDOjcAADiKcBNiVbOlGFAMAIATCDchxuMXAABwFuEmxFjEDwAAZxFuQozKDQAAziLchBgrFAMA4CzCTYixQjEAAM4i3IRYYMzNwTIqNwAAOIFwE2JxsZWVm9IKwg0AAE4g3ISYN5rbUgAAOIlwE2KByg0DigEAcAbhJsQClRuf36jcR/UGAAC7EW5CzBtbdUmp3gAAYD/CTYjFRrnlclV+z0J+AADYj3ATYi6Xq2qV4jJuSwEAYDfCTRhYC/kxHRwAANsRbsLAG81CfgAAOIVwEwbeWB6eCQCAUwg3YRCYDs5sKQAA7Ee4CYO4WFYpBgDAKYSbMAg8PJPbUgAA2I9wEwbWVHDCDQAAtiPchIEnhjE3AAA4hXATBlWVG8bcAABgN8JNGDDmBgAA5xBuwoAxNwAAOMfxcDNr1iylp6fL6/WqT58+Wr58+THbz5gxQ+3atVNcXJzS0tJ022236dChQzb19vh4CTcAADjG0XAzd+5cZWdna/LkyVq5cqW6du2qwYMHq7CwsNb2L774osaNG6fJkydr/fr1evrppzV37lxNmDDB5p4fm5cBxQAAOMbRcDN9+nTdeOONGjlypDp27KjZs2erXr16euaZZ2pt//HHH6tfv3765S9/qfT0dF1yySW69tprf7DaYzcvA4oBAHCMY+GmrKxMK1asUFZWVlVn3G5lZWUpLy+v1n369u2rFStWWGFmy5YtWrRokS677LKjfk5paamKi4uDvsItjsoNAACOiXbqg3fv3i2fz6fk5OSg7cnJyfryyy9r3eeXv/yldu/erf79+8sYo4qKCt18883HvC2Vk5OjKVOmhLTvP4TZUgAAOMfxAcUnYtmyZXrwwQf12GOPaeXKlXrttde0cOFC3XfffUfdZ/z48SoqKrK+du7cGfZ+MqAYAADnOFa5SUpKUlRUlAoKCoK2FxQUKCUlpdZ97rnnHl1//fW64YYbJEmdO3dWSUmJbrrpJk2cOFFud82s5vF45PF4Qn8Cx8AifgAAOMexyk1sbKx69uyp3Nxca5vf71dubq4yMzNr3efAgQM1AkxUVGWQMMaEr7MnyHP4thRjbgAAsJ9jlRtJys7O1ogRI9SrVy/17t1bM2bMUElJiUaOHClJGj58uJo3b66cnBxJ0tChQzV9+nR1795dffr00ebNm3XPPfdo6NChVsg5HbCIHwAAznE03AwbNky7du3SpEmTlJ+fr27dumnx4sXWIOMdO3YEVWr++Mc/yuVy6Y9//KO+/vprNWnSREOHDtUDDzzg1CnUijE3AAA4x2VOp/s5NiguLlZCQoKKiooUHx8fls/YtrtEg/66TPU90Vo7ZXBYPgMAANSuTs2WqitYoRgAAOcQbsIgMObG5zcq9zFjCgAAOxFuwiAwW0pi3A0AAHYj3ISBJ9otl6vye25NAQBgL8JNGLhcLnmjK29NlbKQHwAAtiLchElcLIOKAQBwAuEmTLzRPDwTAAAnEG7CxBuo3JQRbgAAsBPhJkwCY24OVTDmBgAAOxFuwsQbeHgmlRsAAGxFuAmTwIDi0grCDQAAdiLchEngthSVGwAA7EW4CZPAgGJmSwEAYC/CTZhYlRsW8QMAwFaEmzCJi2WdGwAAnEC4CRNrKjjhBgAAWxFuwiSOMTcAADiCcBMm3phAuGHMDQAAdiLchEkg3PDgTAAA7EW4CZPACsXclgIAwF6EmzCJo3IDAIAjCDdhErgtVcqYGwAAbEW4CRMqNwAAOINwEyYextwAAOAIwk2YMFsKAABnEG7CJI51bgAAcAThJkyqFvGjcgMAgJ0IN2ESR7gBAMARhJswCSziV+E3KvdxawoAALsQbsIkcFtKonoDAICdCDdh4ol2y+Wq/J4ZUwAA2IdwEyYul0veaFYpBgDAboSbMOLhmQAA2I9wE0Y8ggEAAPsRbsLIy0J+AADYjnATRjyCAQAA+xFuwogxNwAA2I9wE0ZxsaxSDACA3Qg3YRSYCk64AQDAPoSbMLLG3JQRbgAAsAvhJoys2VIVzJYCAMAuhJswCgwopnIDAIB9CDdhFGdVbgg3AADYhXATRtZtKSo3AADYhnATRlVTwRlzAwCAXQg3YeSJPjzmhqngAADYhnATRiziBwCA/Qg3YWQt4sdUcAAAbEO4CSOrcsOAYgAAbEO4CSPrwZlMBQcAwDaEmzDi8QsAANiPcBNGXhbxAwDAdoSbMIqzKjcMKAYAwC6Oh5tZs2YpPT1dXq9Xffr00fLly4/Zfu/evRo1apSaNWsmj8ejtm3batGiRTb19sQEKjelTAUHAMA20U5++Ny5c5Wdna3Zs2erT58+mjFjhgYPHqwNGzaoadOmNdqXlZXp4osvVtOmTfXKK6+oefPm2r59uxITE+3v/HGwKjeEGwAAbONouJk+fbpuvPFGjRw5UpI0e/ZsLVy4UM8884zGjRtXo/0zzzyj77//Xh9//LFiYmIkSenp6XZ2+YQEZktV+I3KfX7FRDleKAMAIOI59tu2rKxMK1asUFZWVlVn3G5lZWUpLy+v1n3eeOMNZWZmatSoUUpOTlanTp304IMPyuc7emWktLRUxcXFQV92CdyWklilGAAAuzgWbnbv3i2fz6fk5OSg7cnJycrPz691ny1btuiVV16Rz+fTokWLdM8992jatGm6//77j/o5OTk5SkhIsL7S0tJCeh7HEni2lMTDMwEAsEuduk/i9/vVtGlTPfnkk+rZs6eGDRumiRMnavbs2UfdZ/z48SoqKrK+du7caVt/XS5X1UJ+VG4AALCFY2NukpKSFBUVpYKCgqDtBQUFSklJqXWfZs2aKSYmRlFRVbd7OnTooPz8fJWVlSk2NrbGPh6PRx6PJ7SdPwFxMVE6VO4n3AAAYBPHKjexsbHq2bOncnNzrW1+v1+5ubnKzMysdZ9+/fpp8+bN8vurbvFs3LhRzZo1qzXYnA68zJgCAMBWjt6Wys7O1lNPPaXnnntO69ev1y233KKSkhJr9tTw4cM1fvx4q/0tt9yi77//XmPGjNHGjRu1cOFCPfjggxo1apRTp/CDAtPBGXMDAIA9HJ0KPmzYMO3atUuTJk1Sfn6+unXrpsWLF1uDjHfs2CG3uyp/paWl6a233tJtt92mLl26qHnz5hozZozuvvtup07hB3mo3AAAYCuXMcY43Qk7FRcXKyEhQUVFRYqPjw/75/30sY+0asdePXl9T11ybu1jiQAAQOjUqdlSdVFgOnhpBbelAACwA+EmzKznSxFuAACwBeEmzAKVG6aCAwBgD8JNmHmiqdwAAGAnwk2YBVYoLq2gcgMAgB0IN2EWqNywzg0AAPYg3IRZ1WwpKjcAANjhpMLNc889p4ULF1qv77rrLiUmJqpv377avn17yDoXCTyB21JUbgAAsMVJhZsHH3xQcXFxkqS8vDzNmjVLf/7zn5WUlKTbbrstpB2s67zWgGIqNwAA2OGkHr+wc+dOZWRkSJLmz5+vn//857rpppvUr18/DRo0KJT9q/Oo3AAAYK+TqtzUr19f3333nSTp7bff1sUXXyxJ8nq9OnjwYOh6FwGYCg4AgL1OqnJz8cUX64YbblD37t21ceNGXXbZZZKkdevWKT09PZT9q/MCU8FZxA8AAHucVOVm1qxZyszM1K5du/Tqq6+qcePGkqQVK1bo2muvDWkH6zoqNwAA2OukKjeJiYmaOXNmje1Tpkw55Q5FGqaCAwBgr5Oq3CxevFgffvih9XrWrFnq1q2bfvnLX2rPnj0h61wkCDw4k0X8AACwx0mFmzvvvFPFxcWSpC+++EK33367LrvsMm3dulXZ2dkh7WBdR+UGAAB7ndRtqa1bt6pjx46SpFdffVWXX365HnzwQa1cudIaXIxK1lRwxtwAAGCLk6rcxMbG6sCBA5Kkd955R5dccokkqVGjRlZFB5Wqni1F5QYAADucVOWmf//+ys7OVr9+/bR8+XLNnTtXkrRx40a1aNEipB2s67xUbgAAsNVJVW5mzpyp6OhovfLKK3r88cfVvHlzSdJ//vMf/fjHPw5pB+s6ayo4A4oBALDFSVVuWrZsqTfffLPG9ocffviUOxRpAmNuDlX4ZIyRy+VyuEcAAES2kwo3kuTz+TR//nytX79eknTuuefqiiuuUFRUVMg6FwkClRtjpHKfUWw04QYAgHA6qXCzefNmXXbZZfr666/Vrl07SVJOTo7S0tK0cOFCtWnTJqSdrMsCU8GlyungsdEndScQAAAcp5P6TXvrrbeqTZs22rlzp1auXKmVK1dqx44dat26tW699dZQ97FOqx5uWMgPAIDwO6nKzXvvvadPPvlEjRo1srY1btxYU6dOVb9+/ULWuUjgcrnkiXartMLPQn4AANjgpCo3Ho9H+/btq7F9//79io2NPeVORZqqVYqp3AAAEG4nFW4uv/xy3XTTTfr0009ljJExRp988oluvvlmXXHFFaHuY51X9XwpKjcAAITbSYWbRx55RG3atFFmZqa8Xq+8Xq/69u2rjIwMzZgxI8RdrPt4BAMAAPY5qTE3iYmJWrBggTZv3mxNBe/QoYMyMjJC2rlIwUJ+AADY57jDzQ897Xvp0qXW99OnTz/5HkUgb7WF/AAAQHgdd7hZtWrVcbVjBd6aqNwAAGCf4w431SszODFVs6Wo3AAAEG4sl2uDwGwpKjcAAIQf4cYGVG4AALAP4cYGLOIHAIB9CDc2sG5LEW4AAAg7wo0NApUbVigGACD8CDc28FC5AQDANoQbG1hjbqjcAAAQdoQbG1Q9OJPKDQAA4Ua4sQFTwQEAsA/hxgZMBQcAwD6EGxt4rNtSVG4AAAg3wo0NqNwAAGAfwo0NrKeCE24AAAg7wo0NvDEs4gcAgF0INzagcgMAgH0INzbwxDAVHAAAuxBubOCNZhE/AADsQrixgVW5YcwNAABhR7ixAVPBAQCwD+HGBt5qTwU3xjjcGwAAIhvhxgaByo1E9QYAgHA7LcLNrFmzlJ6eLq/Xqz59+mj58uXHtd+cOXPkcrl05ZVXhreDpygwFVwi3AAAEG6Oh5u5c+cqOztbkydP1sqVK9W1a1cNHjxYhYWFx9xv27ZtuuOOOzRgwACbenryYqJccrsqv2dQMQAA4eV4uJk+fbpuvPFGjRw5Uh07dtTs2bNVr149PfPMM0fdx+fz6brrrtOUKVN09tln29jbk+NyuVjIDwAAmzgabsrKyrRixQplZWVZ29xut7KyspSXl3fU/e699141bdpUv/3tb3/wM0pLS1VcXBz05QQW8gMAwB6Ohpvdu3fL5/MpOTk5aHtycrLy8/Nr3efDDz/U008/raeeeuq4PiMnJ0cJCQnWV1pa2in3+2SwkB8AAPZw/LbUidi3b5+uv/56PfXUU0pKSjqufcaPH6+ioiLra+fOnWHuZe2o3AAAYI9oJz88KSlJUVFRKigoCNpeUFCglJSUGu2/+uorbdu2TUOHDrW2+f2VlZDo6Ght2LBBbdq0CdrH4/HI4/GEofcnxlrIj8oNAABh5WjlJjY2Vj179lRubq61ze/3Kzc3V5mZmTXat2/fXl988YVWr15tfV1xxRW68MILtXr1asduOR2PwEJ+h6jcAAAQVo5WbiQpOztbI0aMUK9evdS7d2/NmDFDJSUlGjlypCRp+PDhat68uXJycuT1etWpU6eg/RMTEyWpxvbTDZUbAADs4Xi4GTZsmHbt2qVJkyYpPz9f3bp10+LFi61Bxjt27JDbXaeGBtWKqeAAANjDZc6whx0VFxcrISFBRUVFio+Pt+1zb3juM72zvlBTf9ZZ1/RuadvnAgBwpqn7JZE6gsoNAAD2INzYxBpzw4BiAADCinBjE08Mi/gBAGAHwo1NqNwAAGAPwo1NrBWKqdwAABBWhBubWM+WonIDAEBYEW5sQuUGAAB7EG5swlRwAADsQbixCQOKAQCwB+HGJl6mggMAYAvCjU2o3AAAYA/CjU2qwg2VGwAAwolwYxNuSwEAYA/CjU24LQUAgD0INzYJPFuKdW4AAAgvwo1NvDFUbgAAsAPhxibWIn5UbgAACCvCjU2YLQUAgD0INzYJzJYq8/nl8xuHewMAQOQi3NgkULmRpDKqNwAAhA3hxibVww2DigEACB/CjU2io9yKdrsksZAfAADhRLixEQv5AQAQfoQbG1kL+THmBgCAsCHc2Mh7uHJzqJzKDQAA4UK4sRGVGwAAwo9wYyNrzA0DigEACBvCjY0ClRtuSwEAED6EGxvxCAYAAMKPcGMjpoIDABB+hBsbea3bUlRuAAAIF8KNjajcAAAQfoQbG3mimQoOAEC4EW5s5I1hET8AAMKNcGMjKjcAAIQf4cZGnhgW8QMAINwINzbyHq7cHGJAMQAAYUO4sRGVGwAAwo9wYyOmggMAEH6EGxsFBhSziB8AAOFDuLFRYCo4lRsAAMKHcGMjpoIDABB+hBsbWWNuWMQPAICwIdzYKPDgTCo3AACED+HGRtZUcMINAABhQ7ixEbelAAAIP8KNjQK3pQ5RuQEAIGwINzaicgMAQPgRbmzEVHAAAMKPcGOjwCJ+FX6jCh8BBwCAcCDc2ChQuZGo3gAAEC6EGxsFxtxIhBsAAMKFcGMjt9ul2KjKS36IQcUAAITFaRFuZs2apfT0dHm9XvXp00fLly8/atunnnpKAwYMUMOGDdWwYUNlZWUds/3pxpoxReUGAICwcDzczJ07V9nZ2Zo8ebJWrlyprl27avDgwSosLKy1/bJly3Tttddq6dKlysvLU1pami655BJ9/fXXNvf85Hh4MjgAAGHlMsYYJzvQp08fnXfeeZo5c6Ykye/3Ky0tTX/4wx80bty4H9zf5/OpYcOGmjlzpoYPH/6D7YuLi5WQkKCioiLFx8efcv9PVL+p7+rrvQc1f1Q/dUtLtP3zAQCIdI5WbsrKyrRixQplZWVZ29xut7KyspSXl3dcxzhw4IDKy8vVqFGjWt8vLS1VcXFx0JeTrMoNY24AAAgLR8PN7t275fP5lJycHLQ9OTlZ+fn5x3WMu+++W6mpqUEBqbqcnBwlJCRYX2lpaafc71PBQn4AAISX42NuTsXUqVM1Z84cvf766/J6vbW2GT9+vIqKiqyvnTt32tzLYIGF/JgtBQBAeEQ7+eFJSUmKiopSQUFB0PaCggKlpKQcc9+//vWvmjp1qt555x116dLlqO08Ho88Hk9I+hsKzJYCACC8HK3cxMbGqmfPnsrNzbW2+f1+5ebmKjMz86j7/fnPf9Z9992nxYsXq1evXnZ0NWS4LQUAQHg5WrmRpOzsbI0YMUK9evVS7969NWPGDJWUlGjkyJGSpOHDh6t58+bKycmRJD300EOaNGmSXnzxRaWnp1tjc+rXr6/69es7dh7Hi9tSAACEl+PhZtiwYdq1a5cmTZqk/Px8devWTYsXL7YGGe/YsUNud1WB6fHHH1dZWZmuuuqqoONMnjxZf/rTn+zs+kmhcgMAQHg5Hm4kafTo0Ro9enSt7y1btizo9bZt28LfoTCqGnND5QYAgHCo07Ol6iJvTGXl5lA5lRsAAMKBcGMzKjcAAIQX4cZmVSsUU7kBACAcCDc281oDiqncAAAQDoQbm1G5AQAgvAg3NmMqOAAA4UW4sVlgQDGL+AEAEB6EG5sFpoJTuQEAIDwINzZjKjgAAOFFuLFZoHJzkNtSAACEBeHGZvW9lU+8KCkl3AAAEA6EG5vV91SGm32HKhzuCQAAkYlwY7NAuNlfWu5wTwAAiEyEG5s1OHxb6lC5X+U+ZkwBABBqhBubnXW4ciNJJaXcmgIAINQINzaLiXLLe/gRDIy7AQAg9Ag3DqjviZEk7adyAwBAyBFuHBAYd0PlBgCA0CPcOIAZUwAAhA/hxgGsdQMAQPgQbhwQWKWYMTcAAIQe4cYBgTE3+6ncAAAQcoQbBzTw1KzclJRWyBjjVJcAAIgYhBsH1D9ittSC1V+r+71LlP3yGie7BQBARCDcOODIdW5yFn2pMp9fr6/6Wuu+KXKyawAA1HmEGwdUVW7Ktf27EuUXH7Ley/vqO6e6BQBARCDcOCAxrrJys+dAudb8X3ClZsX2PU50CQCAiEG4cUBSfY8k6bv9pfry22JJUouGcZKkTYX7HesXAACRgHDjgKT6sZKk3fvL9GX+PknSkC7NJEnbdpeo3Od3rG8AANR1hBsHBCo3RQfLtfbryttSF7ZrqrNio1ThN9r+3QEnuwcAQJ1GuHFAQlyMotwuSVLhvlJJUoeUeLVpWl+StLlwn2N9AwCgriPcOMDtdikl3mu9Ton3KqFejDKscMO4GwAAThbhxiFnNznL+r5dSgNJssLNV7tKHOkTAACRgHDjkDZN6lvftz8cbgLbqNwAAHDyCDcOGXBOkvX94E4pkqrCzVe79vOcKQAATlK00x04U/2ofVPdcUlbSVL3tERJUqvG9RTtdulAmU/fFh1SamKcgz0EAKBuItw4xOVyafSPzgnaFhPlVqvG9fTVrhJ9tWs/4QYAgJPAbanTTODW1KYCxt0AAHAyCDenmfbN4iVJ674pdrgnAADUTYSb00yX5gmSpP/+315nOwIAQB1FuDnNdGuZKKnyAZq7Dq9eDAAAjh/h5jSTVN+jc1Mrb029s75AhcWH9OGm3So6UO5wzwAAqBuYLXUaurJbc637pljjX/tC0W6XKvxGCXExenbkeeresqHT3QMA4LRG5eY0dE3vNJ2dVPl4hgq/Ubw3WkUHy3XLP1fq+5Iyh3sHAMDpzWXOsKVwi4uLlZCQoKKiIsXHxzvdnaMqOliu9zbuUrvkBkpN9OonMz/Slt0lurZ3mnJ+1sXp7gEAcNqicnOaSoiL0RVdU9UupYEaeGP00FWVgWbOZzuZSQUAwDEQbuqI89Ib6cpuqTJGmvzGOvn9Z1TBDQCA40a4qUPGX9ZBZ8VGadWOvXrhk+1OdwcAgNMS4aYOSY73amxW5cM2//TvdXpw0XoVFB9yuFcAAJxeGFBcxxhjNGnBOqtyE+V26aL2TTX6Rxnq0iLR2c4BAHAaINzUQcYYLd1QqMeXfaXPtu2RJLlc0i97t9Sdg9spsV6swz0EAMA5hJs6bmPBPj22dLPmr/5GUuUsq4s6NFVG0/pq2aiemifGqXlinJLqe+R2uxzuLQAA4Ue4iRCfbPlOkxas1caC/bW+HxPlUnK8V55ot6LcLrldLkW5XcHfu1xyu1XLNpfcrsrtLlfle26X5Ha55Dr838DrQFv34XZHvu86vM0lWe+5VPkisM2lqjaBQHbk9qDXQfvqiM9wHXVfVfv8yuNUtdPhfd217Kvq/Qsc/yjHrDq/yvfdrqo+uasdy13b+Qf2cR/Zh1o+v/o+h4/ldv3wPjrcjyP30RH9t65F4E2bVfj8+nz7HjXwRiu98VmKjXYrJiqyhwx+X1Kmcp9fyfFep7sC1DmnRbiZNWuW/vKXvyg/P19du3bVo48+qt69ex+1/bx583TPPfdo27ZtOuecc/TQQw/psssuO67PitRwI1X+Avj4q++0Yvsebf+uRP+356C+2XtQ+cWHxMxxhFL1QHRkwKweiI4MV+5j7GOMZGTkN6r83hj5jZGRdKjcp0Pl/qA+xMVEKT4uWrHRbkW5XPJERyk22q3oKJei3S5Fu93VAnz1cF4V4AMhvvK/VW2ijtjuDnx/OMBHHXX74WMfud2toH8wuKx/XNS+/atd+/XAwvXaX1qh9ikN1Lt1IzVLiFOLhpVV2KT6sWp4Vqzqe6IVE1V5ngCqOB5u5s6dq+HDh2v27Nnq06ePZsyYoXnz5mnDhg1q2rRpjfYff/yxLrjgAuXk5Ojyyy/Xiy++qIceekgrV65Up06dfvDzIjncHE2Fz6+CfaXKLzqkcp9ffr+Rzxj5/JW/PHx+Vfu+6r/V3/cbc/iXTeX3/mq/fKxt/mO/b0zl5wR+iQV+gRkpeJuqfrnVur3Wfau/Drx/lGPqKPsGHfvIfU0tn3P0ff2H/1gF/8I2tfSj6tpIVd8HjlUZSk1VuxrXJnCdj97f6sevy1wuRcR5hIPbJUVHuRXjdlX+N8qlmKjKoBfjDgQ+t2KiA20Ov3+4fWxUtTZRVe8Htwkcs/L76MPvx1Q7VuXxA8eoPG5MdOVxA58RU0v/qt8yX/t1kR5a/KUOlfs06fJzZWTUKTWh8jwJcThOjoebPn366LzzztPMmTMlSX6/X2lpafrDH/6gcePG1Wg/bNgwlZSU6M0337S2nX/++erWrZtmz579g593JoYbIMAKQoeDUvXgExygKtspKGjVHs6CwlstwbDqM6pVZaofs9rfQEfeinO7qio7LRvV0679pSqvMCo+VC6/MTpU7pfPb+RySRU+o3KfXxV+owqfX+X+ysBd7vMHnVMgtFeGfAWFfRMI+9b7gdBeFfJ9J7G9+n/9h48fvF1Bn+eJidKlnVL0xddF2pC/T98WHZQ3OkrRUS4dKverzFd53pEiyu1STFRl9aqkzFdrm/qeaDVp4FGjs2LVsF6MPNFR8pvKhwq73S55o6PkckkxtYSvaLdLUYGgdjjcBVfuFPTadbgCV72a5nYFV+qq376VDt/mVdUt7hrbFNw+cEu68rvAe64a7arfKg8I/H9e7vOrwmd0oMyn//7fXn301XdqWC9GV3Zvrl3FpWreME5Rbpd8fqP6nsoqpzcmyvrMI2/Fh5In2q2mDt5SdfSp4GVlZVqxYoXGjx9vbXO73crKylJeXl6t++Tl5Sk7Ozto2+DBgzV//vxa25eWlqq0tNR6XVxcfOodB+qoylsuUtVfp3VLs4Q4p7vguMC/R0sr/Cr3+VXuqwpzFYHXfr/KK4zK/ZW//ALvl1f4K98LtPEZKxQGBcNqQTHwC7Q8aLtfZRWBY1RtD7Qtq22fw9+X+fw1zilQKZYqQ0W3tERtyN+n/aUVVpv9pRXaX1qhrbtL7LnQddiCwxNMnNSjZaJe+30/xz7f0XCze/du+Xw+JScnB21PTk7Wl19+Wes++fn5tbbPz8+vtX1OTo6mTJkSmg4DgMMCg7q9MVHWv8LrEnO4WlXhrww6lYHLqOxwWGtc36OEuBjt3l+q/9tzUI3PitX27w6o3OdXaYVfRQfL5DdSSWmFotwu7TtUIb8xKq3wy2+MFebKqoWqytBW+Zk+f+XrI6tmflNZyQv0L3AL3WeqKn3VK3+BCmTlOR0+N1W/dVr91nTVuR/Zrvo2mep7VlVIq3+GpKDbioHqVJsm9XVe60Zas3OvPt36fWWlc1+pXC6pXmyU9h+qUJnP6FC5z/qnTWDYwDF/Xjq5CmFstLMD/h0NN3YYP358UKWnuLhYaWlpDvYIAM5cLlflbaHoKB0znFUOnPZIktIa1bOre4gQjoabpKQkRUVFqaCgIGh7QUGBUlJSat0nJSXlhNp7PB55PJ7QdBgAAJz2HK0bxcbGqmfPnsrNzbW2+f1+5ebmKjMzs9Z9MjMzg9pL0pIlS47aHgAAnFkcvy2VnZ2tESNGqFevXurdu7dmzJihkpISjRw5UpI0fPhwNW/eXDk5OZKkMWPGaODAgZo2bZqGDBmiOXPm6PPPP9eTTz7p5GkAAIDThOPhZtiwYdq1a5cmTZqk/Px8devWTYsXL7YGDe/YsUNud1WBqW/fvnrxxRf1xz/+URMmTNA555yj+fPnH9caNwAAIPI5vs6N3VjnBgCAyBbZD2cBAABnHMINAACIKIQbAAAQUQg3AAAgohBuAABARCHcAACAiEK4AQAAEYVwAwAAIgrhBgAARBTHH79gt8CCzMXFxQ73BAAAnKgGDRrI5XIds80ZF2727dsnSUpLS3O4JwAA4EQdz+OTzrhnS/n9fn3zzTfHlfxOVHFxsdLS0rRz506eWxVGXGd7cJ3tw7W2B9fZHuG+zlRuauF2u9WiRYuwfkZ8fDx/cGzAdbYH19k+XGt7cJ3t4eR1ZkAxAACIKIQbAAAQUQg3IeTxeDR58mR5PB6nuxLRuM724Drbh2ttD66zPU6H63zGDSgGAACRjcoNAACIKIQbAAAQUQg3AAAgohBuAABARCHchMisWbOUnp4ur9erPn36aPny5U53qU7JycnReeedpwYNGqhp06a68sortWHDhqA2hw4d0qhRo9S4cWPVr19fP//5z1VQUBDUZseOHRoyZIjq1aunpk2b6s4771RFRYWdp1KnTJ06VS6XS2PHjrW2cZ1D4+uvv9avfvUrNW7cWHFxcercubM+//xz631jjCZNmqRmzZopLi5OWVlZ2rRpU9Axvv/+e1133XWKj49XYmKifvvb32r//v12n8ppzefz6Z577lHr1q0VFxenNm3a6L777lP1uTJc6xP3/vvva+jQoUpNTZXL5dL8+fOD3g/VNf3vf/+rAQMGyOv1Ki0tTX/+859DcwIGp2zOnDkmNjbWPPPMM2bdunXmxhtvNImJiaagoMDprtUZgwcPNv/4xz/M2rVrzerVq81ll11mWrZsafbv32+1ufnmm01aWprJzc01n3/+uTn//PNN3759rfcrKipMp06dTFZWllm1apVZtGiRSUpKMuPHj3filE57y5cvN+np6aZLly5mzJgx1nau86n7/vvvTatWrcyvf/1r8+mnn5otW7aYt956y2zevNlqM3XqVJOQkGDmz59v1qxZY6644grTunVrc/DgQavNj3/8Y9O1a1fzySefmA8++MBkZGSYa6+91olTOm098MADpnHjxubNN980W7duNfPmzTP169c3f/vb36w2XOsTt2jRIjNx4kTz2muvGUnm9ddfD3o/FNe0qKjIJCcnm+uuu86sXbvWvPTSSyYuLs488cQTp9x/wk0I9O7d24waNcp67fP5TGpqqsnJyXGwV3VbYWGhkWTee+89Y4wxe/fuNTExMWbevHlWm/Xr1xtJJi8vzxhT+YfR7Xab/Px8q83jjz9u4uPjTWlpqb0ncJrbt2+fOeecc8ySJUvMwIEDrXDDdQ6Nu+++2/Tv3/+o7/v9fpOSkmL+8pe/WNv27t1rPB6Peemll4wxxvzvf/8zksxnn31mtfnPf/5jXC6X+frrr8PX+TpmyJAh5je/+U3Qtp/97GfmuuuuM8ZwrUPhyHATqmv62GOPmYYNGwb9vXH33Xebdu3anXKfuS11isrKyrRixQplZWVZ29xut7KyspSXl+dgz+q2oqIiSVKjRo0kSStWrFB5eXnQdW7fvr1atmxpXee8vDx17txZycnJVpvBgweruLhY69ats7H3p79Ro0ZpyJAhQddT4jqHyhtvvKFevXrpF7/4hZo2baru3bvrqaeest7funWr8vPzg65zQkKC+vTpE3SdExMT1atXL6tNVlaW3G63Pv30U/tO5jTXt29f5ebmauPGjZKkNWvW6MMPP9Sll14qiWsdDqG6pnl5ebrgggsUGxtrtRk8eLA2bNigPXv2nFIfz7gHZ4ba7t275fP5gv6il6Tk5GR9+eWXDvWqbvP7/Ro7dqz69eunTp06SZLy8/MVGxurxMTEoLbJycnKz8+32tT2cwi8h0pz5szRypUr9dlnn9V4j+scGlu2bNHjjz+u7OxsTZgwQZ999pluvfVWxcbGasSIEdZ1qu06Vr/OTZs2DXo/OjpajRo14jpXM27cOBUXF6t9+/aKioqSz+fTAw88oOuuu06SuNZhEKprmp+fr9atW9c4RuC9hg0bnnQfCTc47YwaNUpr167Vhx9+6HRXIs7OnTs1ZswYLVmyRF6v1+nuRCy/369evXrpwQcflCR1795da9eu1ezZszVixAiHexdZXn75Zf3rX//Siy++qHPPPVerV6/W2LFjlZqayrU+g3Fb6hQlJSUpKiqqxmySgoICpaSkONSrumv06NF68803tXTpUrVo0cLanpKSorKyMu3duzeoffXrnJKSUuvPIfAeKm87FRYWqkePHoqOjlZ0dLTee+89PfLII4qOjlZycjLXOQSaNWumjh07Bm3r0KGDduzYIanqOh3r742UlBQVFhYGvV9RUaHvv/+e61zNnXfeqXHjxumaa65R586ddf311+u2225TTk6OJK51OITqmobz7xLCzSmKjY1Vz549lZuba23z+/3Kzc1VZmamgz2rW4wxGj16tF5//XW9++67NUqVPXv2VExMTNB13rBhg3bs2GFd58zMTH3xxRdBf6CWLFmi+Pj4Gr9ozlQXXXSRvvjiC61evdr66tWrl6677jrre67zqevXr1+NpQw2btyoVq1aSZJat26tlJSUoOtcXFysTz/9NOg67927VytWrLDavPvuu/L7/erTp48NZ1E3HDhwQG538K+yqKgo+f1+SVzrcAjVNc3MzNT777+v8vJyq82SJUvUrl27U7olJYmp4KEwZ84c4/F4zLPPPmv+97//mZtuuskkJiYGzSbBsd1yyy0mISHBLFu2zHz77bfW14EDB6w2N998s2nZsqV59913zeeff24yMzNNZmam9X5givIll1xiVq9ebRYvXmyaNGnCFOUfUH22lDFc51BYvny5iY6ONg888IDZtGmT+de//mXq1atn/vnPf1ptpk6dahITE82CBQvMf//7X/OTn/yk1qm03bt3N59++qn58MMPzTnnnHNGT0+uzYgRI0zz5s2tqeCvvfaaSUpKMnfddZfVhmt94vbt22dWrVplVq1aZSSZ6dOnm1WrVpnt27cbY0JzTffu3WuSk5PN9ddfb9auXWvmzJlj6tWrx1Tw08mjjz5qWrZsaWJjY03v3r3NJ5984nSX6hRJtX794x//sNocPHjQ/P73vzcNGzY09erVMz/96U/Nt99+G3Scbdu2mUsvvdTExcWZpKQkc/vtt5vy8nKbz6ZuOTLccJ1D49///rfp1KmT8Xg8pn379ubJJ58Met/v95t77rnHJCcnG4/HYy666CKzYcOGoDbfffedufbaa039+vVNfHy8GTlypNm3b5+dp3HaKy4uNmPGjDEtW7Y0Xq/XnH322WbixIlB04u51idu6dKltf6dPGLECGNM6K7pmjVrTP/+/Y3H4zHNmzc3U6dODUn/XcZUW8YRAACgjmPMDQAAiCiEGwAAEFEINwAAIKIQbgAAQEQh3AAAgIhCuAEAABGFcAMAACIK4QbAGW/ZsmVyuVw1nqkFoG4i3AAAgIhCuAEAABGFcAPAcX6/Xzk5OWrdurXi4uLUtWtXvfLKK5KqbhktXLhQXbp0kdfr1fnnn6+1a9cGHePVV1/VueeeK4/Ho/T0dE2bNi3o/dLSUt19991KS0uTx+NRRkaGnn766aA2K1asUK9evVSvXj317du3xpO9AdQNhBsAjsvJydHzzz+v2bNna926dbrtttv0q1/9Su+9957V5s4779S0adP02WefqUmTJho6dKjKy8slVYaSq6++Wtdcc42++OIL/elPf9I999yjZ5991tp/+PDheumll/TII49o/fr1euKJJ1S/fv2gfkycOFHTpk3T559/rujoaP3mN7+x5fwBhBYPzgTgqNLSUjVq1EjvvPOOMjMzre033HCDDhw4oJtuukkXXnih5syZo2HDhkmSvv/+e7Vo0ULPPvusrr76al133XXatWuX3n77bWv/u+66SwsXLtS6deu0ceNGtWvXTkuWLFFWVlaNPixbtkwXXnih3nnnHV100UWSpEWLFmnIkCE6ePCgvF5vmK8CgFCicgPAUZs3b9aBAwd08cUXq379+tbX888/r6+++spqVz34NGrUSO3atdP69eslSevXr1e/fv2CjtuvXz9t2rRJPp9Pq1evVlRUlAYOHHjMvnTp0sX6vlmzZpKkwsLCUz5HAPaKdroDAM5s+/fvlyQtXLhQzZs3D3rP4/EEBZyTFRcXd1ztYmJirO9dLpekyvFAAOoWKjcAHNWxY0d5PB7t2LFDGRkZQV9paWlWu08++cT6fs+ePdq4caM6dOggSerQoYM++uijoON+9NFHatu2raKiotS5c2f5/f6gMTwAIheVGwCOatCgge644w7ddttt8vv96t+/v4qKivTRRx8pPj5erVq1kiTde++9aty4sZKTkzVx4kQlJSXpyiuvlCTdfvvtOu+883Tfffdp2LBhysvL08yZM/XYY49JktLT0zVixAj95je/0SOPPKKuXbtq+/btKiws1NVXX+3UqQMIE8INAMfdd999atKkiXJycrRlyxYlJiaqR48emjBhgnVbaOrUqRozZow2bdqkbt266d///rdiY2MlST169NDLL7+sSZMm6b777lOzZs1077336te//rX1GY8//rgmTJig3//+9/ruu+/UsmVLTZgwwYnTBRBmzJYCcFoLzGTas2ePEhMTne4OgDqAMTcAACCiEG4AAEBE4bYUAACIKFRuAABARCHcAACAiEK4AQAAEYVwAwAAIgrhBgAARBTCDQAAiCiEGwAAEFEINwAAIKIQbgAAQET5fzzzzFBWAJG9AAAAAElFTkSuQmCC"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU70lEQVR4nO3deVxU9f4G8GcYGfZFEJBFBNkUWVRIcymXyCWvaVaSu6a5b5ll3hazRS2zNHfrpon7llluuZtbKrgvbKm4I/smA8x8f3/Mz8kRVFDgnIHn/Xrxus13DjPPDFx9POdzziiEEAJEREREMmQidQAiIiKiR2FRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhqmBXrlyBQqHA0qVLy/y9+/btg0KhwL59+8o9V3krKeuAAQPg5eVVbs+xdOlSKBQKXLlypdwek4jkjUWFiGRn6tSp2LRpk9QxJDd//vynKrhSMba8ZBxYVIiowvz444+IjY0t8/c9qqj07dsX9+7dQ926dcshnfwZ21/8xpaXjEMNqQMQkbS0Wi0KCgpgbm5e7o9tamparo+nVCqhVCrL9TGrm/z8fKhUKpiY8N+pZBz4m0pV3meffQaFQoG4uDj06dMHdnZ2cHJywieffAIhBK5du4auXbvC1tYWtWvXxsyZM4s9RnJyMgYNGgQXFxeYm5sjNDQUv/zyS7HtMjIyMGDAANjZ2cHe3h79+/dHRkZGibkuXbqEN954Aw4ODjA3N0d4eDg2b978TK/x0qVL6NGjB2xtbeHo6IixY8ciPz/fYFuFQoFRo0ZhxYoVaNiwIczMzLB9+3YAwI0bN/D222/DxcUFZmZmaNiwIX7++ediz3f9+nV069YNVlZWcHZ2xrvvvgu1Wl1su5JmVLRaLWbPno3g4GCYm5vDyckJHTt2xIkTJ/T5cnNz8csvv0ChUEChUGDAgAEAHj2jMn/+fP1rcXNzw8iRI4u9723atEFQUBAuXLiAtm3bwtLSEu7u7vjmm2+e+P4GBQWhbdu2xda1Wi3c3d3xxhtv6NdWr16NsLAw2NjYwNbWFsHBwZg9e/YTn+NhXl5eOH/+PPbv369/H9q0aQMASEtLw4QJExAcHAxra2vY2tqiU6dOOH36tMFj3J8bWr16NT7++GO4u7vD0tISWVlZAIB169YhMDAQ5ubmCAoKwq+//vrIn9msWbPQsGFDmJubw8XFBUOHDkV6enqp8hI9C+5RoWojMjISDRo0wPTp07FlyxZ8+eWXcHBwwKJFi9CuXTt8/fXXWLFiBSZMmIDnnnsOL774IgDg3r17aNOmDRISEjBq1Ch4e3tj3bp1GDBgADIyMjB27FgAgBACXbt2xcGDBzFs2DA0aNAAv/76K/r3718sy/nz59GyZUu4u7vjww8/hJWVFdauXYtu3bphw4YNeO21157qNfbo0QNeXl6YNm0ajh49ih9++AHp6elYtmyZwXZ79uzB2rVrMWrUKNSqVQteXl64c+cOnn/+eX2RcXJywrZt2zBo0CBkZWVh3Lhx+vfjpZdeQlJSEsaMGQM3NzdERUVhz549pco4aNAgLF26FJ06dcLgwYNRVFSEv/76C0ePHkV4eDiioqIwePBgNG3aFEOGDAEA+Pj4PPLxPvvsM0yZMgUREREYPnw4YmNjsWDBAhw/fhyHDh0y2KuTnp6Ojh07onv37ujRowfWr1+PiRMnIjg4GJ06dXrkc0RGRuKzzz7D7du3Ubt2bf36wYMHcfPmTbz11lsAgJ07d6Jnz5546aWX8PXXXwMALl68iEOHDul/T0pr1qxZGD16NKytrfHRRx8BAFxcXAAA//zzDzZt2oQ333wT3t7euHPnDhYtWoTWrVvjwoULcHNzM3isL774AiqVChMmTIBarYZKpcKWLVsQGRmJ4OBgTJs2Denp6Rg0aBDc3d2LZRk6dCiWLl2KgQMHYsyYMbh8+TLmzp2LkydP6t/jx+UleiaCqIqbPHmyACCGDBmiXysqKhIeHh5CoVCI6dOn69fT09OFhYWF6N+/v35t1qxZAoBYvny5fq2goEA0b95cWFtbi6ysLCGEEJs2bRIAxDfffGPwPC+88IIAIJYsWaJff+mll0RwcLDIz8/Xr2m1WtGiRQvh5+enX9u7d68AIPbu3Vuq1/jqq68arI8YMUIAEKdPn9avARAmJibi/PnzBtsOGjRIuLq6ipSUFIP1t956S9jZ2Ym8vDyD92Pt2rX6bXJzc4Wvr2+xrP379xd169bV396zZ48AIMaMGVPsNWi1Wv1/W1lZGfwM7luyZIkAIC5fviyEECI5OVmoVCrRvn17odFo9NvNnTtXABA///yzfq1169YCgFi2bJl+Ta1Wi9q1a4vXX3+92HM9KDY2VgAQc+bMMVgfMWKEsLa21r83Y8eOFba2tqKoqOixj1daDRs2FK1bty62np+fb/B6hRDi8uXLwszMTHz++ef6tfu/P/Xq1dNnvC84OFh4eHiI7Oxs/dq+ffsEAIOf2V9//SUAiBUrVhh8//bt24utPyov0bPgoR+qNgYPHqz/b6VSifDwcAghMGjQIP26vb09AgIC8M8//+jXtm7ditq1a6Nnz576NVNTU4wZMwY5OTnYv3+/frsaNWpg+PDhBs8zevRogxxpaWnYs2cPevTogezsbKSkpCAlJQWpqano0KED4uPjcePGjad6jSNHjjS4ff+5t27darDeunVrBAYG6m8LIbBhwwZ06dIFQgh9ppSUFHTo0AGZmZmIiYnRP5arq6vB4Q5LS0v93o/H2bBhAxQKBSZPnlzsPoVCUfoX+v927dqFgoICjBs3zmDm4p133oGtrS22bNlisL21tTX69Omjv61SqdC0aVODn3dJ/P390ahRI6xZs0a/ptFosH79enTp0gUWFhYAdL8/ubm52LlzZ5lfS1mYmZnpX69Go0Fqaiqsra0REBCg/zk9qH///vqMAHDz5k2cPXsW/fr1g7W1tX69devWCA4ONvjedevWwc7ODi+//LLB70VYWBisra2xd+/eCnqVRDosKlRteHp6Gty2s7ODubk5atWqVWz9wWPvV69ehZ+fX7HhwwYNGujvv/+/rq6uBn/wA0BAQIDB7YSEBAgh8Mknn8DJycng6/5f4MnJyU/1Gv38/Axu+/j4wMTEpNhMh7e3t8Htu3fvIiMjA4sXLy6WaeDAgQaZrl69Cl9f32LF4uHXWZLExES4ubnBwcGhrC+tRPff+4efW6VSoV69evr77/Pw8CiWu2bNmgY/70eJjIzEoUOH9CVy3759SE5ORmRkpH6bESNGwN/fH506dYKHhwfefvtt/fxPedJqtfj+++/h5+cHMzMz1KpVC05OTjhz5gwyMzOLbf/wz/v+++Lr61ts24fX4uPjkZmZCWdn52K/Gzk5OU/9u0pUWpxRoWqjpLNFHnUGiRCiwnJotVoAwIQJE9ChQ4cStynpL5Cn8ai9FA/+6/rBTH369ClxpgYAQkJCyiWTlJ7l5x0ZGYlJkyZh3bp1GDduHNauXQs7Ozt07NhRv42zszNOnTqFHTt2YNu2bdi2bRuWLFmCfv36lTh8/bSmTp2KTz75BG+//Ta++OILODg4wMTEBOPGjdP/LB/08M+7LLRaLZydnbFixYoS73dycnrqxyYqDRYVoieoW7cuzpw5A61Wa7BX5dKlS/r77//v7t27kZOTY7BX5eHriNSrVw+A7vBRREREuWaNj483+NdzQkICtFrtE68O6+TkBBsbG2g0midmqlu3Ls6dOwchhEERKs31Unx8fLBjxw6kpaU9dq9KaQ8D3X/vY2Nj9e8rABQUFODy5cvl+v56e3ujadOmWLNmDUaNGoWNGzeiW7duMDMzM9hOpVKhS5cu6NKlC7RaLUaMGIFFixbhk08+KXMBfdT7sH79erRt2xb/+9//DNYzMjKK7SEsyf33LSEhodh9D6/5+Phg165daNmy5RMLz9McviN6Eh76IXqCV155Bbdv3zaYTygqKsKcOXNgbW2N1q1b67crKirCggUL9NtpNBrMmTPH4PGcnZ3Rpk0bLFq0CLdu3Sr2fHfv3n3qrPPmzTO4ff+5H3dGC6Db0/D6669jw4YNOHfu3GMzvfLKK7h58ybWr1+vX8vLy8PixYufmO/111+HEAJTpkwpdt+DezWsrKweeVr3gyIiIqBSqfDDDz8YfP///vc/ZGZmonPnzk98jLKIjIzE0aNH8fPPPyMlJcXgsA8ApKamGtw2MTHR74m6f/p2YWEhLl26VOLP/mGPeh+USmWxvUDr1q0r9WyTm5sbgoKCsGzZMuTk5OjX9+/fj7Nnzxps26NHD2g0GnzxxRfFHqeoqMggX2l/bkRlwT0qRE8wZMgQLFq0CAMGDEB0dDS8vLywfv16HDp0CLNmzYKNjQ0AoEuXLmjZsiU+/PBDXLlyBYGBgdi4cWOJMwPz5s1Dq1atEBwcjHfeeQf16tXDnTt3cOTIEVy/fr3Y9TBK6/Lly3j11VfRsWNHHDlyBMuXL0evXr0QGhr6xO+dPn069u7di2bNmuGdd95BYGAg0tLSEBMTg127diEtLQ2AblB17ty56NevH6Kjo+Hq6oqoqChYWlo+8Tnatm2Lvn374ocffkB8fDw6duwIrVaLv/76C23btsWoUaMAAGFhYdi1axe+++47uLm5wdvbG82aNSv2eE5OTpg0aRKmTJmCjh074tVXX0VsbCzmz5+P5557zmBwtjz06NEDEyZMwIQJE+Dg4FBsj83gwYORlpaGdu3awcPDA1evXsWcOXPQqFEj/UzTjRs30KBBA/Tv3/+JV3ENCwvDggUL8OWXX8LX1xfOzs5o164d/vOf/+Dzzz/HwIED0aJFC5w9exYrVqww2Kv0JFOnTkXXrl3RsmVLDBw4EOnp6Zg7dy6CgoIMykvr1q0xdOhQTJs2DadOnUL79u1hamqK+Ph4rFu3DrNnz9YPVj8qL9EzkehsI6JKc//U3bt37xqs9+/fX1hZWRXbvnXr1qJhw4YGa3fu3BEDBw4UtWrVEiqVSgQHBxucbnxfamqq6Nu3r7C1tRV2dnaib9++4uTJk8VOTxZCiMTERNGvXz9Ru3ZtYWpqKtzd3cV//vMfsX79ev02ZT09+cKFC+KNN94QNjY2ombNmmLUqFHi3r17BtsCECNHjizxce7cuSNGjhwp6tSpI0xNTUXt2rXFSy+9JBYvXmyw3dWrV8Wrr74qLC0tRa1atcTYsWP1p6s+7vRkIXSnbM+YMUPUr19fqFQq4eTkJDp16iSio6P121y6dEm8+OKLwsLCQgDQn6r88OnJ982dO1fUr19fmJqaChcXFzF8+HCRnp5usE1JP9dHZXycli1bCgBi8ODBxe5bv369aN++vXB2dhYqlUp4enqKoUOHilu3bum3uXz5ssFrepzbt2+Lzp07CxsbGwFAf+pvfn6+eO+994Srq6uwsLAQLVu2FEeOHBGtW7c2OD34/u/PunXrSnz81atXi/r16wszMzMRFBQkNm/eLF5//XVRv379YtsuXrxYhIWFCQsLC2FjYyOCg4PFBx98IG7evPnEvETPQiFEBU4NElGluH/Rs7t375ZqRoHoURo1agQnJ6cKP8WaqLQ4o0JEVA0VFhaiqKjIYG3fvn04ffo0L31PssIZFSKiaujGjRuIiIhAnz594ObmhkuXLmHhwoWoXbs2hg0bJnU8Ij0WFSKiaqhmzZoICwvDTz/9hLt378LKygqdO3fG9OnT4ejoKHU8Ij3OqBAREZFscUaFiIiIZItFhYiIiGTLqIuKEAJZWVkV+rksREREJB2jLirZ2dmws7NDdna21FGIiIioAhh1USEiIqKqjUWFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRaWaa9OmDcaNG1fq7ZcuXQp7e/sKy1NW+/btg0KhQEZGBoDyySe310hEJJm4OGDbNiA+XrIILCpUpURGRiIuLq7U23t5eWHWrFnP9BhERFVOWhrQsSMQEAC88grg76+7nZ5e6VFYVEhyQggUFRWVy2NZWFjA2dlZ8scgIjJqvXoBu3YZru3aBfTsWelRWFRkqE2bNhg9ejTGjRuHmjVrwsXFBT/++CNyc3MxcOBA2NjYwNfXF9u2bTP4vv3796Np06YwMzODq6srPvzwQ4MCkJubi379+sHa2hqurq6YOXNmsedWq9WYMGEC3N3dYWVlhWbNmmHfvn2lzn7lyhUoFAqsXr0aLVq0gLm5OYKCgrB//379NvcP12zbtg1hYWEwMzPDwYMHodVqMW3aNHh7e8PCwgKhoaFYv369weNv3boV/v7+sLCwQNu2bXHlyhWD+0s6bPP777/jueeeg7m5OWrVqoXXXntN/z5fvXoV7777LhQKBRQKxSMfY8GCBfDx8YFKpUJAQACioqIM7lcoFPjpp5/w2muvwdLSEn5+fti8eXOp3zciItmIiwN27AA0GsN1jUa3XtmHgYQRy8zMFABEZmZmqbbXarUiV11Y6V9arbZMr6t169bCxsZGfPHFFyIuLk588cUXQqlUik6dOonFixeLuLg4MXz4cOHo6Chyc3OFEEJcv35dWFpaihEjRoiLFy+KX3/9VdSqVUtMnjxZ/7jDhw8Xnp6eYteuXeLMmTPiP//5j7CxsRFjx47VbzN48GDRokULceDAAZGQkCBmzJghzMzMRFxcnBBCiCVLlgg7O7tHZr98+bIAIDw8PMT69evFhQsXxODBg4WNjY1ISUkRQgixd+9eAUCEhISIP//8UyQkJIjU1FTx5Zdfivr164vt27eLxMREsWTJEmFmZib27dsnhBAiKSlJmJmZifHjx4tLly6J5cuXCxcXFwFApKenl5jvjz/+EEqlUnz66afiwoUL4tSpU2Lq1KlCCCFSU1OFh4eH+Pzzz8WtW7fErVu3SnyMjRs3ClNTUzFv3jwRGxsrZs6cKZRKpdizZ49+m/uveeXKlSI+Pl6MGTNGWFtbi9TU1DL97ImIJLd1qxDAo7+2bq3UOAohhKjcalR+srKyYGdnh8zMTNja2j5x+7yCIgR+uqMSkhm68HkHWKpqlHr7Nm3aQKPR4K+//gIAaDQa2NnZoXv37li2bBkA4Pbt23B1dcWRI0fw/PPP46OPPsKGDRtw8eJF/Z6B+fPnY+LEicjMzEReXh4cHR2xfPlyvPnmmwCAtLQ0eHh4YMiQIZg1axaSkpJQr149JCUlwc3NTZ8nIiICTZs2xdSpU7F06VKMGzdOP7z6sCtXrsDb2xvTp0/HxIkTAQBFRUXw9vbG6NGj8cEHH2Dfvn1o27YtNm3ahK5duwLQ7clxcHDArl270Lx5c/3jDR48GHl5eVi5ciX++9//4rfffsP58+f193/44Yf4+uuvkZ6eDnt7+2L5WrRogXr16mH58uUl5vXy8sK4ceMMBooffoyWLVuiYcOGWLx4sX6bHj16IDc3F1u2bAGg26Py8ccf44svvgCg23tlbW2Nbdu2oWPHjo/4SRMRyVBcnG425XH3+/lVWpzS/+1JlSokJET/30qlEo6OjggODtavubi4AACSk5MBABcvXkTz5s31JQXQ/QWbk5OD69evIz09HQUFBWjWrJn+fgcHBwQ88Mt49uxZaDQa+Pv7G2RRq9VwdHQsU/4Hy0aNGjUQHh6OixcvGmwTHh6u/++EhATk5eXh5ZdfNtimoKAAjRs31r/GB/M//DwlOXXqFN55550yZX/YxYsXMWTIEIO1li1bYvbs2QZrD/7MrKysYGtrq//5EBEZDX9/oEMH3UzKg4d/lEogIqJSSwpQzYqKhakSFz7vIMnzlpWpqanBbYVCYbB2v5BotdpnC/eAnJwcKJVKREdHQ6k0zGxtbV1uz3OflZWVwXMDwJYtW+Du7m6wnZmZ2VM/h4WFxVN/b1mV9DMrz58PEVGlWbVKNzi744GjEBERuvVKVq2KikKhKNMhGGPSoEEDbNiwAUIIfYk5dOgQbGxs4OHhAQcHB5iamuLvv/+Gp6cnACA9PR1xcXFo3bo1AKBx48bQaDRITk7GCy+88Ex5jh49ihdffBGA7tBPdHQ0Ro0a9cjtAwMDYWZmhqSkJH2ekl7jwwOqR48efWyOkJAQ7N69GwMHDizxfpVKBc3DA2MlPO+hQ4fQv39//dqhQ4cQGBj42O8jIjJaNWsC27frBmcTEgBf30rfk3Jf1fxbuxoaMWIEZs2ahdGjR2PUqFGIjY3F5MmTMX78eJiYmMDa2hqDBg3C+++/D0dHRzg7O+Ojjz6Cicm/J375+/ujd+/e6NevH2bOnInGjRvj7t272L17N0JCQtC5c+dS55k3bx78/PzQoEEDfP/990hPT8fbb7/9yO1tbGwwYcIEvPvuu9BqtWjVqhUyMzNx6NAh2Nraon///hg2bBhmzpyJ999/H4MHD0Z0dDSWLl362ByTJ0/GSy+9BB8fH7z11lsoKirC1q1b9fMzXl5eOHDgAN566y2YmZmhVq1axR7j/fffR48ePdC4cWNERETg999/x8aNG7Hr4VP3iIiqGj8/yQrKfTw9uYpwd3fH1q1bcezYMYSGhmLYsGEYNGgQPv74Y/02M2bMwAsvvIAuXbogIiICrVq1QlhYmMHjLFmyBP369cN7772HgIAAdOvWDcePH9fvhSmt6dOnY/r06QgNDcXBgwexefPmEkvAg7744gt88sknmDZtGho0aICOHTtiy5Yt8Pb2BgB4enpiw4YN2LRpE0JDQ7Fw4UJMnTr1sY/Zpk0brFu3Dps3b0ajRo3Qrl07HDt2TH//559/jitXrsDHxwdOTk4lPka3bt0we/ZsfPvtt2jYsCEWLVqEJUuWoE2bNmV6T4iIqOyq1Vk/VPHun/Vz8uRJNGrUSOo4RERk5LhHhYiIiGSLRYWIiIhkS9Ki8tlnn+kvXX7/q379+lJGomfk5eUFIQQP+xARUbmQ/Kyfhg0bGpw9UaOG5JGIiIhIJiRvBTVq1EDt2rWljkFEREQPycgrgL2lStIMks+oxMfHw83NDfXq1UPv3r2RlJT0yG3VajWysrIMvoiIiKj8HYxPQdtv92Ht8WuS5pC0qDRr1gxLly7F9u3bsWDBAly+fBkvvPACsrOzS9x+2rRpsLOz03/VqVOnkhMTERFVbUII/HjgH/T7+W+k5xViXfQ1aLXSXclEVtdRycjIQN26dfHdd99h0KBBxe5Xq9VQq9X621lZWahTpw6vo0JERFQO8gqKMHHDWfx++iYA4I0wD3zZLQjmT/GZdeVF8hmVB9nb28Pf3x8JCQkl3m9mZvZMH1BHREREJUtKzcOQqBO4dDsbNUwUmNwlEH2er6v//DipSD6j8qCcnBwkJibC1dVV6ihERETVxoG4u+gy9yAu3c5GLWsVVr7zPPo295K8pAASF5UJEyZg//79uHLlCg4fPozXXnsNSqUSPXv2lDKW5Nq0aYNx48ZJHUNPbnmIiKh8CCGwYF8iBiw5hsx7hQitY4/fR7dCU28HqaPpSXro5/r16+jZsydSU1Ph5OSEVq1a4ejRo4/8cDgqvYKCAqhU0p5SRkRE8pWrLsIH689gy9lbAIDI8Dr4vFtDmNWQbh6lJJLuUVm9ejVu3rwJtVqN69evY/Xq1fDx8ZEy0qPFxQHbtgHx8RX6NAMGDMD+/fsxe/Zs/dV6ExMTMWjQIHh7e8PCwgIBAQGYPXt2se/r1q0bvvrqK7i5uSEgIAAAcPjwYTRq1Ajm5uYIDw/Hpk2boFAocOrUKf33njt3Dp06dYK1tTVcXFzQt29fpKSkPDLPlStXKvQ9ICKiinUlJRfd5x/GlrO3YKpU4KvXgjD99WDZlRRAZsO0spSWBvTqBezY8e9ahw7AqlVAzZrl/nSzZ89GXFwcgoKC8PnnnwMAatasCQ8PD6xbtw6Ojo44fPgwhgwZAldXV/To0UP/vbt374atrS127twJQHdWVJcuXfDKK69g5cqVuHr1arFDOBkZGWjXrh0GDx6M77//Hvfu3cPEiRPRo0cP7Nmzp8Q83ONFRGS89sYmY+yqk8jKL4KTjRkW9mmCsLryOdTzMBaVJ+nVC3jgEv8AdLd79gS2by/3p7Ozs4NKpYKlpaXBFXunTJmi/29vb28cOXIEa9euNSgqVlZW+Omnn/SHfBYuXAiFQoEff/wR5ubmCAwMxI0bN/DOO+/ov2fu3Llo3Lgxpk6dql/7+eefUadOHcTFxcHf37/EPEREZFyEEJi/LxHf/hkLIYAmnvZY0CcMLrbmUkd7LBaVx4mLM9yTcp9Go1uPjwf8/Colyrx58/Dzzz8jKSkJ9+7dQ0FBQbEP/gsODjaYS4mNjUVISAjMzf/9JWzatKnB95w+fRp79+6FtbV1sedMTEyEv79/+b4QIiKqdDnqIkxYexrbz98GAPRq5onJXQJleajnYSwqj5OY+Pj7ExIqpaisXr0aEyZMwMyZM9G8eXPY2NhgxowZ+Pvvvw22s7KyKvNj5+TkoEuXLvj666+L3cfTxImIjN/llFwMWXYC8ck5UClNMKVrQ/Rs6il1rFJjUXmcJw32+vpWyNOqVCpoNBr97UOHDqFFixYYMWKEfi3xSSUKQEBAAJYvXw61Wq2/UN7x48cNtmnSpAk2bNgALy+vR35y9cN5iIjIOOy5dAdjV59Cdn4RnG3MsLBvGJp4lv98ZUWS1QXfZMffXzc4q3xo15hSqVuvoL0pXl5e+Pvvv3HlyhWkpKTAz88PJ06cwI4dOxAXF4dPPvmkWOEoSa9evaDVajFkyBBcvHgRO3bswLfffgsA+ov4jBw5EmlpaejZsyeOHz+OxMRE7NixAwMHDtSXk4fzaLXaCnndRERUPrRagTm74zHolxPIzi9CeN2a+GN0K6MrKQCLypOtWgVERBiuRUTo1ivIhAkToFQqERgYCCcnJ3To0AHdu3dHZGQkmjVrhtTUVIO9K49ia2uL33//HadOnUKjRo3w0Ucf4dNPPwUA/dyKm5sbDh06BI1Gg/bt2yM4OBjjxo2Dvb09TExMSszzuE+4JiIiaWXnF2LY8mjM3BkHIYA+z3ti5TvPw1nmQ7OPIqsPJSyrrKws2NnZVc6HEsbH62ZSfH0rbYC2IqxYsQIDBw5EZmYmLCwspI5DRETlKPFuDoYsO4HEu7lQKU3wRbeGiHzOeOZRSsIZldLy8zPKgrJs2TLUq1cP7u7uOH36tP4aKSwpRERVy84LdzB+zSlkq4tQ29YcC/uGoVEde6ljPTMWlSru9u3b+PTTT3H79m24urrizTffxFdffSV1LCIiKidarcAPe+Ixa5fuyulNvRwwr3cTONmYSZysfPDQDxERkZHKyi/E+DWnsOtiMgBgQAsvfNS5AUyVVWcElXtUiIiIjFBCcjaGLIvGPym5UNUwwdTXgvFGmIfUscodiwoREZGR2XH+NsavOYXcAg3c7HTzKCEe9lLHqhAsKkREREZCqxX4flcc5uxJAAA089bNo9SyrhrzKCVhUSEiIjICmfcKMW71SeyNvQsAGNjSC/99pWrNo5SERYWIiEjm4u5kY8iyE7iSmgezGiaY1j0Y3ZtUvXmUkrCoEBERydj2c7fw3trTyC3QwN3eAov6hiHI3U7qWJWGRYWIiEiGNFqB73bGYt5e3YfQtvBxxJyejeFYhedRSsKiQkREJDOZeYUYs/ok9sfp5lEGt/LGh53qo0YVn0cpCYsKERGRjMTezsaQqBO4mpoHc1MTfP16CLo2cpc6lmRYVIiIiGRiy5lbeH/9aeQVaOBRUzeP0tCt+syjlIRFhYiISGIarcCMHbFYuF83j9LKtxbm9GyMmlYqiZNJj0WFiIhIQhl5BRi96iT+ik8BAAx9sR7e7xBQLedRSsKiQkREJJELN7MwdPkJXEu7BwtTJb55IwRdQt2kjiUrLCpEREQS2Hz6Jj5Yfxr5hVrUcbDA4r7haOBqK3Us2WFRISIiqkRFGi2+2RGLxQf+AQC84KebR7G35DxKSVhUiIiIKklabgFGr4rBoYRUAMDwNj6Y0D4AShOFxMnki0WFiIioEpy/mYkhy6JxI+MeLFVKzHgjFJ1DXKWOJXssKkRERBXst1M3MHHDGeQXalHX0RKL+4YjoLaN1LGMAosKERFRBSnSaDFt2yX87+BlAECbACfMjmwMO0tTiZMZDxYVIiKiCpCao8aolSdx5B/dPMqotr5492V/zqOUEYsKERFROTt3IxNDo3TzKFYqJWb2CEXHIM6jPA0WFSIionK0MeY6Jm08C3WRFt61rLC4bxj8XDiP8rRYVIiIiMpBoUaLr7ZcxNLDVwAAL9V3xneRjWBnwXmUZ8GiQkRE9IxSctQYsSIGxy6nAQDGtPPFuAh/mHAe5ZmxqBARET2D09cyMGx5NG5l5sParAZm9ghFh4a1pY5VZbCoEBERPaV1J67ho03nUFCkRT0n3TyKrzPnUcoTiwoREVEZFRRp8eWWC1h25CoAIKKBC76LDIWtOedRyhuLChERURkkZ+dj5IoYHL+SDgB4N8Ifo9v5ch6lgrCoEBERldLJpHQMXx6D21n5sDGrge8jGyEi0EXqWFUaiwoREVEprDmehE82nUeBRgsfJyss7hcOHydrqWNVeSwqREREj1FQpMWU389jxd9JAID2gS6Y2SMUNpxHqRQsKkRERI+QnJWP4StiEH01HQoF8N7L/hjRhvMolYlFhYiIqATRV9MxfHk0krPVsDGvgR/eaoy29Z2ljlXtsKgQERE9ZOXfSZi8+RwKNQJ+ztZY3C8c3rWspI5VLbGoEBER/T91kQafbT6PVceuAQA6BdXGjDdDYW3Gvy6lwneeiIgIwJ2sfAxbHo2TSRlQKIAJ7QMwoo0PFArOo0iJRYWIiKq9E1fSMHxFDO5mq2FrXgM/9GyMNgGcR5EDFhUiIqq2hBBY/ncSpmw+jyKtQICLDRb3C0NdR86jyIWJ1AHumz59OhQKBcaNGyd1FCIiqgbyCzWYuOEMPtl0DkVagc4hrtg4ogVLiszIYo/K8ePHsWjRIoSEhEgdhYiIqoFbmfcwLCoap69nwkQBfNCxPoa+WI/zKDIk+R6VnJwc9O7dGz/++CNq1qwpdRwiIqrijl1OQ5c5B3H6eibsLEyxdGBTDGvNoVm5kryojBw5Ep07d0ZERMQTt1Wr1cjKyjL4IiIiKg0hBJYduYJePx5FSk4B6te2we+jWuFFfyepo9FjSHroZ/Xq1YiJicHx48dLtf20adMwZcqUCk5FRERVTX6hBh9vOof10dcBAF1C3fD168GwVMliAoIeQ7I9KteuXcPYsWOxYsUKmJubl+p7Jk2ahMzMTP3XtWvXKjglEREZu5sZ99Bj0RGsj74OEwXw0SsN8MNbjVhSjIRCCCGkeOJNmzbhtddeg1Kp1K9pNBooFAqYmJhArVYb3FeSrKws2NnZITMzE7a2thUdmYiIjMyRxFSMWhmD1NwC1LQ0xZyeTdDKr5bUsagMJKuTL730Es6ePWuwNnDgQNSvXx8TJ058YkkhIiJ6FCEElhy6gq+2XoRGKxDoaotFfcNQx8FS6mhURpIVFRsbGwQFBRmsWVlZwdHRsdg6ERFRaeUXavDfjWex8eQNAEC3Rm6Y1j0EFir+A9gY8QAdERFVGdfT8zA0Khrnb2ZBaaLAf19pgLdbevHUYyMm2YxKeeCMChER3Xc4IQUjV8YgPa8QDlYqzO3VGC18OI9i7LhHhYiIjJoQAv87eBlTt16EVgBB7rZY1Dcc7vYWUkejcsCiQkRERutegQYfbjyD307dBAB0b+KOqa8Fw9yU8yhVBYsKEREZpWtpunmUC7d08yifdG6A/i04j1LVsKgQEZHRORifglGrYpCRVwhHKxXm9W6C5+s5Pvkb4+KAxETA1xfw86v4oPTMWFSIiMhoCCHw41//YPq2S9AKIMTDDgv7hMHtSfMoaWlAr17Ajh3/rnXoAKxaBfADcWWNZ/0QEZFRyCsowgfrz+CPM7cAAG+EeeDLbkGlm0fp2BHYtQvQaP5dUyqBiAhg+/YKSkzlgUWFiIhkLyk1D0OiTuDS7WzUMFFgcpdA9Hm+bunmUeLigICAx9/Pw0CyxUM/REQka/vj7mLMqpPIvFeIWtYqzO8dhqbeDqV/gMTEx9+fkMCiImMsKkREJEtCCCzc/w9m7NDNo4TWscfCPk3galfG66P4+Dz+fl/fpw9JFc5E6gBEREQPy1UXYdTKk/h6u66kRIbXwdqhz5e9pACAv79ucPbhD7tVKnXr3JsiaywqREQkK1dSctF9/mFsOXsLpkoFvnotCNNfD4ZZjWe4iNuqVbrB2QdFROjWSdY4TEtERLKxNzYZY1edRFZ+EZxszLCwTxOE1S3DPMqTxMfrZlJ4HRWjwRkVIiKSnBAC8/cl4ts/YyEE0MTTHgv6hMHF1rx8n8jPjwXFyLCoEBGRpHLURZiw9jS2n78NAOjVzBOTuwQ+26EeqjJYVIiISDKXU3IxZNkJxCfnwFSpwOddg9CzqafUsUhGWFSIiEgSey7dwdjVp5CdXwRnGzMs6BOGsLq8nD0ZYlEhIqJKpdUKzN2bgO93xUEIILxuTczv3QTO5T2PQlUCiwoREVWa7PxCvLf2NP68cAcA0Od5T3z6n4ZQ1eDVMqhkLCpERFQpEu/mYMiyE0i8mwuV0gRfdGuIyOc4j0KPx6JCREQVbueFOxi/5hSy1UWobWuOhX3D0KiOvdSxyAiwqBARUYXRagV+2BOPWbviAQBNvRwwr3cTONmYSZyMjAWLChERVYis/EKMX3MKuy4mAwAGtPDCR50bwFTJeRQqPRYVIiIqdwnJ2RiyLBr/pORCVcMEU18LxhthHlLHIiPEokJEROVqx/nbGL/mFHILNHCz082jhHjYSx2LjBSLChERlQutVuD7XXGYsycBANDMWzePUsua8yj09FhUiIjomWXeK8S41SexN/YuAGBgSy/89xXOo9CzY1EhIqJnEncnG0OWncCV1DyY1TDBtO7B6N6E8yhUPlhUiIjoqW0/dwvvrT2N3AIN3O0tsKhvGILc7aSORVUIiwoREZWZRivw3c5YzNubCABo4eOIOT0bw5HzKFTOWFSIiKhMMvMKMWb1SeyP082jDG7ljQ871UcNzqNQBWBRISKiUou9nY0hUSdwNTUP5qYm+Pr1EHRt5C51LKrCWFSIiKhUtpy5hffXn0ZegQYeNXXzKA3dOI9CFYtFhYiIHkujFZixIxYL9+vmUVr51sKcno1R00olcTKqDlhUiIjokTLyCjB61Un8FZ8CABj6Yj283yGA8yhUaVhUiIioRBdvZWFI1AlcS7sHC1MlvnkjBF1C3aSORdUMiwoRERWz+fRNTFx/BvcKNajjYIFFfcIR6GYrdSyqhlhUiIhIr0ijxTc7YrH4wD8AgBf8dPMo9pacRyFpsKgQEREAID1XN49yMEE3jzK8jQ8mtA+A0kQhcTKqzlhUiIgI529mYmhUNK6n34OlSokZb4Sic4ir1LGIWFSIiKq7307dwMQNZ5BfqEVdR0ss7huOgNo2UsciAsCiQkRUbRVptJi27RL+d/AyAKBNgBNmRzaGnaWpxMmI/sWiQkRUDaXmqDFq5Ukc+ScVADCqrS/efdmf8ygkOywqRETVzLkbunmUGxn3YKVSYmaPUHQM4jwKyROLChFRNbIx5jombTwLdZEW3rWssLhvGPxcOI9C8sWiQkRUDRRqtJi69SKWHLoCAGhX3xnfRzaCnQXnUUjeWFSIiKq4lBw1Rq6Iwd+X0wAAY9r5YlyEP0w4j0JGgEWFiKgKO3M9A0OjonErMx/WZjUws0coOjSsLXUsolJjUSEiqqLWnbiGjzadQ0GRFvWcdPMovs6cRyHjwqJCRFTFFGq0+PKPC/jlyFUAQEQDF3wXGQpbc86jkPExkfLJFyxYgJCQENja2sLW1hbNmzfHtm3bpIxERGTU7mar0fvHv/Ul5d0IfyzuG8aSQkZL0j0qHh4emD59Ovz8/CCEwC+//IKuXbvi5MmTaNiwoZTRiIiMzsmkdAxfHoPbWfmwMauB7yMbISLQRepYRM9EIYQQUod4kIODA2bMmIFBgwY9cdusrCzY2dkhMzMTtra2lZCOiEie1h6/ho83nUOBRgsfJyss7hcOHydrqWMRPTPZzKhoNBqsW7cOubm5aN68eYnbqNVqqNVq/e2srKzKikdEJEsFRVp8/sd5LD+aBABoH+iCmT1CYcNDPVRFSF5Uzp49i+bNmyM/Px/W1tb49ddfERgYWOK206ZNw5QpUyo5IRGRPCVn52PE8hicuJoOhQIYH+GPkW19eX0UqlIkP/RTUFCApKQkZGZmYv369fjpp5+wf//+EstKSXtU6tSpw0M/RFTtxCSlY/jyaNzJUsPGvAZmv9UI7epzHoWqHsmLysMiIiLg4+ODRYsWPXFbzqgQUXW06lgSPv3tHAo1An7O1ljcLxzetaykjkVUISQ/9PMwrVZrsNeEiIh01EUafLb5AlYd082jdAqqjRlvhsLaTHZ/lBOVG0l/uydNmoROnTrB09MT2dnZWLlyJfbt24cdO3ZIGYuISHbuZOVj2PJonEzKgEIBTGgfgBFtfKBQcB6FqjZJi0pycjL69euHW7duwc7ODiEhIdixYwdefvllKWMREcnKiStpGL4iBnez1bA1r4EfejZGmwBnqWMRVQrZzaiUBWdUiKgqE0Jgxd9JmPL7eRRqBAJcbLC4XxjqOnIehaoPHtgkIpKh/EINJv92HmtOXAMAdA5xxTevh8CK8yhUzfA3nohIZm5n5mPo8micvpYBEwXwQcf6GPpiPc6jULXEokJEJCPHLqdhxIoYpOSoYWdhijk9G+NFfyepYxFJhkWFiEgGhBCIOnoVn/9+AUVagfq1bbC4bzg8HS2ljkYkKRYVIiKJ5Rdq8Mmmc1gXfR0A0CXUDV+/HgxLFf+IJuL/C4iIJHQz4x6GLY/GmeuZMFEAkzo1wOAXvDmPQvT/WFSIiCRy9J9UjFwRg9TcAtS0NMWcnk3Qyq+W1LGIZIVFhYiokgkhsPTwFXy55SI0WoFAV1ss6huGOg6cRyF6GIsKEVElyi/U4L8bz2LjyRsAgG6N3DCtewgsVEqJkxHJE4sKEVEluZ6eh2HLo3HuRhaUJgr895UGeLulF+dRiB6DRYWIqBIcTkzBqJUnkZZbAAcrFeb2aowWPuU0jxIXByQmAr6+gJ9f+TwmkUywqBARVSAhBP538DKmbbsEjVYgyN0Wi/qGw93e4tkfPC0N6NULePAT5zt0AFatAmrWfPbHJ5IBfighEVEFuVegwaSNZ7Dp1E0AQPcm7pj6WjDMTctpHqVjR2DXLkCj+XdNqQQiIoDt28vnOYgkxqJCRFQBrqXlYWhUNC7c0s2jfNK5Afq3KMd5lLg4ICDg8ffzMBBVATz0Q0RUzg7Gp2D0qhik5xXC0UqFeb2b4Pl6juX7JImJj78/IYFFhaoEFhUionIihMBPf13GtG0XoRVAiIcdFvYJg1t5zKM8zMfn8ff7+pb/cxJJwETqAEREVUFeQRHGrD6Fr7bqSsobYR5YO7R5xZQUAPD31w3OKh+ad1Eqdevcm0JVBIsKEdEzSkrNQ/f5h/H76ZuoYaLAF10bYsYbIeU3NPsoq1bpBmcfFBGhWyeqIjhMS0T0DA7E3cXoVSeRea8QtaxVmN87DE29HSo3RHy8biaF11GhKogzKkRET0EIgYX7/8GMHZegFUBoHXss7NMErnYVdKjncfz8WFCoymJRISIqo1x1ET5YfwZbzt4CAESG18Hn3RrCrAY/r4eovLGoEBGVwZWUXAyNikbsnWyYKhX47NWG6NXUk5/XQ1RBWFSIiEppX2wyxqw6iaz8IjjZmGFhnyYIq1vJ8yhE1QyLChHJk4w+aE8Igfn7EvHtn7EQAmjiaY8FfcLgYmsuaS6i6qDMpyf3798fBw4cqIgsRES6D9rr2FF3efhXXtFdL6RjRyA9XZI4OeoijFgRgxk7dCWlZ1NPrBryPEsKUSUpc1HJzMxEREQE/Pz8MHXqVNy4caMichFRddWrl+6D9h60axfQs2elR7mckovX5h3CtnO3YapUYOprwZjWPZhDs0SV6Kmuo3L37l1ERUXhl19+wYULFxAREYFBgwaha9euMDU1rYicJeJ1VIiqGBl90N6eS3cwdvUpZOcXwdnGDAv6hCGsbs1KeW4i+tdTXZnWyckJ48ePx+nTp/H333/D19cXffv2hZubG959913Ex8eXd04iqg5K80F7FUyrFZizOx6DfjmB7PwihNetiT9Gt2JJIZLIM11C/9atW9i5cyd27twJpVKJV155BWfPnkVgYCC+//778spIRNWFxB+0l51fiGHLozFzZxyEAPo874mV7zwPZ86jEEmmzId+CgsLsXnzZixZsgR//vknQkJCMHjwYPTq1Ut/+OXXX3/F22+/jfQKHn7joR+iKqhjR91Mikbz75pSqfsMm+3bK+xpE+/mYMiyE0i8mwuV0gRfdGuIyOc8K+z5iKh0ynx6squrK7RaLXr27Iljx46hUaNGxbZp27Yt7O3tyyEeEVU7q1bpBmd37Ph3rYI/aG/nhTsYv+YUstVFqG1rjoV9w9Cojn2FPR8RlV6Z96hERUXhzTffhLm59LtCuUeFqAqrhA/a02oFftgTj1m7dHN1Tb0cMK93EzjZmFXI8xFR2fHTk4moWsrKL8T4Naex6+IdAMCAFl74qHMDmCqfaXSPiMoZr0xLRNVOQnIOhkSdwD93c6GqYYKprwXjjTAPqWMRUQlYVIioWtlx/jbeW3saOeoiuNqZY1HfMIR42Esdi4gegUWFiKoFrVZg1q44/LBHdy2WZt66eZRa1pxHIZIzFhUiqvIy7xXi3TWnsOdSMgBgYEsv/PcVzqMQGQMWFSKq0uLvZGNIVDQup+TCrIYJpnUPRvcmnEchMhYsKkRUZW0/dwvvrT2N3AIN3O0tsKhvGILc7aSORURlwKJCRFWORivw3c5YzNur++ygFj6OmNOzMRw5j0JkdFhUiKhKycwrxJjVJ7E/7i4AYHArb3zYqT5qcB6FyCixqBBRlRF7OxtDok7gamoezE1N8PXrIejayF3qWET0DFhUiKhK2HLmFt5ffxp5BRp41NTNozR04zwKkbFjUSEio6bRCnz7ZywW7NPNo7TyrYU5PRujppVK4mREVB5YVIjIaGXkFWD0qpP4Kz4FADD0xXp4v0MA51GIqhAWFSIyShdvZWFI1AlcS7sHC1MlvnkjBF1C3aSORUTljEWFiIzO5tM3MXH9Gdwr1KCOgwUW9QlHoBs/QZ2oKmJRISKjUaTR4psdsVh84B8AwAt+unkUe0vOoxBVVSwqRGQU0nN18ygHE3TzKMPb+GBC+wAoTRQSJyOiiiTpxNm0adPw3HPPwcbGBs7OzujWrRtiY2OljEREMnT+Zia6zD2IgwkpsFQpMa9XE0zsWJ8lhagakLSo7N+/HyNHjsTRo0exc+dOFBYWon379sjNzZUyFhHJyG+nbuD1BYdxPf0e6jpa4tcRLdE5xFXqWERUSRRCCCF1iPvu3r0LZ2dn7N+/Hy+++OITt8/KyoKdnR0yMzNha8tBOqKqpEijxbRtl/C/g5cBAG0CnDA7sjHsLE0lTkZElUlWMyqZmZkAAAcHhxLvV6vVUKvV+ttZWVmVkouIKldqjhqjV53E4cRUAMCotr5492V/HuohqoZks0dFq9Xi1VdfRUZGBg4ePFjiNp999hmmTJlSbJ17VIiqjnM3MjE0Kho3Mu7BSqXEzB6h6BjEQz1E1ZVsisrw4cOxbds2HDx4EB4eHiVuU9IelTp16rCoEFURG2OuY9LGs1AXaeFdywqL+4bBz8VG6lhEJCFZHPoZNWoU/vjjDxw4cOCRJQUAzMzMYGZmVonJiKgyFGq0mLr1IpYcugIAaFffGd9HNoKdBedRiKo7SYuKEAKjR4/Gr7/+in379sHb21vKOEQkgZQcNUauiMHfl9MAAGPa+WJchD9MOI9CRJC4qIwcORIrV67Eb7/9BhsbG9y+fRsAYGdnBwsLCymjEVElOHM9A0OjonErMx/WZjUws0coOjSsLXUsIpIRSWdUFIqS/8W0ZMkSDBgw4Infz9OTiYzXuhPX8NGmcygo0qKek24exdeZ8yhEZEjyQz9EVL0UarT48o8L+OXIVQBARAMXfBcZCltzzqMQUXGyGKYlourhbrZuHuXYFd08yrsR/hjdzpfzKET0SCwqRFQpTialY/jyGNzOyoeNWQ18H9kIEYEuUsciIpljUSGiCrf2+DV8vOkcCjRa+DhZYXG/cPg4WUsdi4iMAIsKEVWYgiItPv/jPJYfTQIAtA90wcweobDhPAoRlRKLChFViOTsfIxYHoMTV9OhUADjI/wxsi3nUYiobFhUiKjcxSSlY/jyaNzJUsPGvAZmv9UI7epzHoWIyo5FhYjK1apjSfj0t3Mo1Aj4OVtjcb9weNeykjoWERkpFhUiKhfqIg0+23wBq47p5lE6BdXGjDdDYW3GP2aI6OnxTxAiemZ3svIxbHk0TiZlQKEAJrQPwIg2Po+8+jQRUWmxqBDRMzlxJQ3DV8TgbrYatuY18EPPxmgT4Cx1LCKqIlhUiOipCCGw4u8kTPn9PAo1AgEuNljcLwx1HTmPQkTlh0WFiMosv1CDyb+dx5oT1wAAnUNc8c3rIbDiPAoRlTP+qUJEZXI7Mx9Dl0fj9LUMmCiADzrWx9AX63EehYgqBIsKEZXasctpGLEiBik5athZmGJOz8Z40d9J6lhEVIWxqBDREwkhEHX0Kj7//QKKtAL1a9tgcd9weDpaSh2NiKo4FhUieqz8Qg0+2XQO66KvAwC6hLrh69eDYaniHx9EVPH4Jw0RPdLNjHsYtjwaZ65nwkQBTOrUAINf8OY8ChFVGhYVIirR0X9SMXJFDFJzC1DT0hRzejZBK79aUsciomqGRYWIDAghsPTwFXy55SI0WoFAV1ss6huGOg6cRyGiyseiQkR6+YUa/HfjWWw8eQMA0K2RG6Z1D4GFSilxMiKqrlhUiAgAcD09D8OWR+PcjSwoTRSY1Kk+BrXiPAoRSYtFhYhwODEFo1aeRFpuARysVJjbszFa+HIehYikx6JCVI0JIfC/g5cxbdslaLQCQe62WNgnDB41OY9CRPLAokJUTd0r0GDSxjPYdOomAKB7Y3dM7R4Mc1POoxCRfLCoEFVD19LyMDQqGhdu6eZRPu7cAANaeHEehYhkh0WFqJo5GJ+C0atikJ5XCEcrFeb1boLn6zlKHYuIqEQsKkTVhBACP/11GdO2XYRWACEedljYJwxu9hZSRyMieiQWFaJqIK+gCBM3nMXvp3XzKG+EeeDLbkGcRyEi2WNRIariklLzMCTqBC7dzkYNEwUmdwlEn+frch6FiIwCiwpRFXYg7i5GrzqJzHuFqGWtwvzeYWjq7SB1LCKiUmNRIaqChBBYuP8fzNhxCVoBhNaxx8I+TeBqx3kUIjIuLCpEVUyuuggfrD+DLWdvAQB6hHvg866cRyEi48SiQlSFXE3NxZBl0Yi9kw1TpQKTuzRE72aenEchIqPFokJUReyLTcaYVSeRlV8EJxszLOjdBOFenEchIuPGokJk5IQQmL8vEd/+GQshgMae9ljYJwwutuZSRyMiemYsKkRGLEddhPfXnca2c7cBAD2beuKzVwNhVoPzKERUNbCoEBmpyym5GLLsBOKTc2CqVGDKq0Ho1cxT6lhEROWKRYXICO25dAdjV59Cdn4RnG3MsKBPGMLq1pQ6FhFRuWNRITIiWq3AvL0J+G5XHIQAwurWxILeTeDMeRQiqqJYVIiMRHZ+Id5bexp/XrgDAOjzvCc+/U9DqGqYSJyMiKjisKgQGYHEuzkYsuwEEu/mQqU0wRfdGiLyOc6jEFHVx6JCJHM7L9zB+DWnkK0uQm1bcyzo0wSNPTmPQkTVA4sKkUxptQI/7InHrF3xAIDnvGpiXu8mcLbhPAoRVR8sKkQylJVfiPFrTmPXRd08Sv/mdfFR50DOoxBRtcOiQiQzCck5GBJ1Av/czYWqhgm+6haEN8PrSB2LiEgSLCpEMrLj/G28t/Y0ctRFcLUzx6K+YQjxsJc6FhGRZFhUiGRAqxWYtSsOP+xJAAA09XbA/N5NUMvaTOJkRETSYlEhkljmvUK8u+YU9lxKBgAMaOGFjzo3gKmS8yhERCwqRBKKv5ONIVHRuJySC7MaJpj6WjBeD/OQOhYRkWxI+k+2AwcOoEuXLnBzc4NCocCmTZukjENUqbafu4Vu8w7hckou3O0tsH5YC5YUIqKHSFpUcnNzERoainnz5kkZg6hSabQCM3ZcwrDlMcgt0KB5PUdsHtUSwR52UkcjIpIdSQ/9dOrUCZ06dZIyAlGlyswrxJjVJ7E/7i4AYFArb0zqVB81OI9CRFQio5pRUavVUKvV+ttZWVkSpiEqm9jb2RgSdQJXU/NgbmqC6d1D0K2xu9SxiIhkzaj+GTdt2jTY2dnpv+rU4UWwyDhsOXMLr80/hKupefp5FJYUIqInM6qiMmnSJGRmZuq/rl27JnUkosfSaAW+3n4JI1fGIK9Ag5a+jvh9dCsEuXMehYioNIzq0I+ZmRnMzHgBLDIOGXkFGL3qJP6KTwEADHmxHj7oEMB5FCKiMjCqokJkLC7eysKQqBO4lnYP5qYm+OaNULwa6iZ1LCIioyNpUcnJyUFCQoL+9uXLl3Hq1Ck4ODjA09NTwmRET2/z6ZuYuP4M7hVqUMfBAov6hCPQzVbqWERERkkhhBBSPfm+ffvQtm3bYuv9+/fH0qVLn/j9WVlZsLOzQ2ZmJmxt+RcBSatIo8U3O2Kx+MA/AIAX/Grhh7cao6aVSuJkRETGS9Ki8qxYVEgu0nN18ygHE3TzKMNa++D9DgFQmigkTkZEZNw4o0L0jM7fzMTQqGhcT78HC1MlZrwZgv+EcB6FiKg8sKgQPYPfTt3AxA1nkF+oRV1HSyzqG4b6tbl3j4iovLCoED2FIo0W07Zdwv8OXgYAtPZ3wg9vNYadpanEyYiIqhYWFaIySs1RY/SqkzicmAoAGNnWB+Nf5jwKEVFFYFEhKoNzN3TzKDcy7sFSpcTMN0PRKdhV6lhERFUWiwpRKW2MuY5JG89CXaSFl6MlFvcLh7+LjdSxiIiqNBYVoico1GgxdetFLDl0BQDQNsAJs95qDDsLzqMQEVU0FhWix0jJUWPkihj8fTkNADCmnS/GRfjDhPMoRESVgkWF6BHOXM/A0Kho3MrMh5VKiZk9GqFjUG2pYxERVSssKkQlWHfiGj7adA4FRVrUq2WFxf3C4OvMeRQiosrGokL0gEKNFl/+cQG/HLkKAIho4IzvIhvB1pzzKEREUmBRIfp/d7N18yjHrujmUcZF+GFMOz/OoxARSYhFhQjAqWsZGBYVjdtZ+bAxq4HvIhvh5UAXqWMREVV7LCpU7a09fg0fbzqHAo0WPk5WWNwvHD5O1lLHIiIisKhQNVZQpMXnf5zH8qNJAID2gS6Y2SMUNpxHISKSDRYVqpaSs/MxYnkMTlxNh0IBvBvhj1FtfTmPQkQkMywqVO3EJKVj+PJo3MlSw8asBma91QgvNeA8ChGRHLGoULWy6lgSPv3tHAo1An7O1ljUNwz1OI9CRCRbLCpULaiLNPhs8wWsOqabR+nYsDa+7REKazP+X4CISM74pzRVeXey8jFseTROJmVAoQAmtA/AiDY+UCg4j0JEJHcsKlSlnbiShuErYnA3Ww1b8xqY3bMx2gY4SxcoLg5ITAR8fQE/P+lyEBEZCRYVqpKEEFjxdxKm/H4ehRqBABcbLOobBq9aVtIESksDevUCduz4d61DB2DVKqBmTWkyEREZAYUQQkgd4mllZWXBzs4OmZmZsLW1lToOyYS6SIPJv53H6uPXAACdg13xzRshsJJyHqVjR2DXLkCj+XdNqQQiIoDt26XLRUQkcywqVKXcztTNo5y6lgETBfBBx/oY+mI9aedR4uKAgIDH38/DQEREJeKhH6oyjl1Ow4gVMUjJUcPOwhRzejbGi/5OUsfSzaQ8TkICiwoR0SOwqJDRE0Ig6uhVfP77BRRpBerXtsHivuHwdLSUOpqOj8/j7/f1rZwcRERGyETqAETPIr9Qgw/Wn8Gnv51HkVbgPyGu2DiihXxKCgD4++sGZ5VKw3WlUrfOvSlERI/EokJG62bGPfRYdATroq/DRAH895X6mNOzMSxVMtxRuGqVbnD2QRERunUiInokDtOSUTr6TypGrohBam4B7C1NMbdnE7TyqyV1rCeLj9fNpPA6KkREpSLDf3oSPZoQAksPX8GXWy5CoxUIdLXFor5hqOMgo0M9j+Pnx4JCRFQGLCpkNPILNfjvxrPYePIGAKBrIzdM7x4CC5XyCd9JRETGikWFjMKNjHsYGnUC525kQWmiwKRO9TGolTc/r4eIqIpjUSHZO5yYglErTyIttwAOVirM7dkYLXyNYB6FiIieGYsKyZYQAj8fuoKpW3XzKEHutljYJwweNY1kHoWIiJ4ZiwrJ0r0CDSZtPINNp24CALo3dsfU7sEwN+U8ChFRdcKiQrJzLS0PQ6OiceGWbh7l484NMKCFF+dRiIiqIRaVR4mL031GC693UakOxqdg9KoYpOcVwtFKhbm9mqC5j6PUsYiISCIsKg9LSwN69QJ27Ph3rUMH3RVEa9aULlcVJ4TAT39dxrRtF6EVQLC7HRb2DYO7vYXU0YiISEK8Mu3DOnYEdu0CNJp/15RK3eXOt28vn+cgA3kFRZi44Sx+P62bR3m9iQe+ei2I8yhERMSiYiAuDggIePz9PAxUrpJS8zAk6gQu3c5GDRMFPu0SiL7P1+U8ChERAeChH0OJiY+/PyGBRaUc/RV/F6NWnkTmvULUslZhfu8wNPV2kDoWERHJCIvKg3x8Hn+/r2/l5KjihBBYdOAffLP9ErQCCK1jj4V9msDVjvMoRERkyETqALLi768bnFU+NBuhVOrWuTflmeUVFGHUqpOYvk1XUnqEe2DNkOdZUoiIqEQsKg9btUo3OPugiAjdOj2Tq6m56D7/MLacuQVTpQJfdgvC16+HcGiWiIgeicO0jxIfr5tJ4XVUysW+2GSMWXUSWflFcLIxw4LeTRDuxXkUIiJ6PM6oPIqfHwtKORBCYP6+RHz7ZyyEABp72mNhnzC42JpLHY2IiIwAiwpVmBx1Ed5fdxrbzt0GAPRsWgefvdoQZjV4qIeIiEqHRYUqxOWUXAxZdgLxyTkwVSow5dUg9GrmKXUsIiIyMiwqVO72XLqDsatPITu/CM42ZljQJwxhdfnxA0REVHayOOtn3rx58PLygrm5OZo1a4Zjx45JHYmeglYrMGd3PAb9cgLZ+UUIq1sTf4xuxZJCRERPTfKismbNGowfPx6TJ09GTEwMQkND0aFDByQnJ0sdjcogR12EYcujMXNnHIQA+jzviVXvPA9nDs0SEdEzkPz05GbNmuG5557D3LlzAQBarRZ16tTB6NGj8eGHHz72eyvq9GR1kQZ5as2TNyQAwK3MfIxZfRIJyTlQKU3wRbeGiHyO8yhERPTsJJ1RKSgoQHR0NCZNmqRfMzExQUREBI4cOVJse7VaDbVarb+dlZVVIbl2nL+DMatOVshjV2W1bc2xoE8TNPbkoR4iIiofkh76SUlJgUajgYuLi8G6i4sLbt++XWz7adOmwc7OTv9Vp06dyopKT/CCXy1sHt2SJYWIiMqVUZ31M2nSJIwfP15/Oysrq0LKSpcQV/wn2LXcH7cqMzFRSB2BiIiqIEmLSq1ataBUKnHnzh2D9Tt37qB27drFtjczM4OZmVmF51IoFFDw710iIiLJSXroR6VSISwsDLt379avabVa7N69G82bN5cwGREREcmB5Id+xo8fj/79+yM8PBxNmzbFrFmzkJubi4EDB0odjYiIiCQmeVGJjIzE3bt38emnn+L27dto1KgRtm/fXmzAloiIiKofya+j8iwq6joqREREJA+SX5mWiIiI6FFYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2WFSIiIhItlhUiIiISLZYVIiIiEi2JP9QQqoC4uKAxETA1xfw85M6DRERVSHco0JPLy0N6NgRCAgAXnkF8PfX3U5PlzoZERFVESwq9PR69QJ27TJc27UL6NlTmjxERFTlsKjQ04mLA3bsADQaw3WNRrceHy9NLiIiqlJYVOjpJCY+/v6EhMrJQUREVRqLCj0dH5/H3+/rWzk5iIioSmNRoafj7w906AAolYbrSqVunWf/EBFROWBRoae3ahUQEWG4FhGhWyciIioHCiGEkDrE08rKyoKdnR0yMzNha2srdZzqKz5eN5PC66gQEVE54wXf6Nn5+bGgEBFRheChHyIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpItFhUiIiKSLRYVIiIiki0WFSIiIpIto76E/v2PKcrKypI4CREREZWVjY0NFArFY7cx6qKSnZ0NAKhTp47ESYiIiKisSvOhwkb96clarRY3b94sVSMrq6ysLNSpUwfXrl3jJzM/Ad+r0uN7VXp8r0qP71Xp8b0qm4p+v6r8HhUTExN4eHhU6HPY2tryl7mU+F6VHt+r0uN7VXp8r0qP71XZSPl+cZiWiIiIZItFhYiIiGSLReURzMzMMHnyZJiZmUkdRfb4XpUe36vS43tVenyvSo/vVdnI4f0y6mFaIiIiqtq4R4WIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WlFL766iu0aNEClpaWsLe3lzqOrMybNw9eXl4wNzdHs2bNcOzYMakjydKBAwfQpUsXuLm5QaFQYNOmTVJHkq1p06bhueeeg42NDZydndGtWzfExsZKHUuWFixYgJCQEP3FuJo3b45t27ZJHcsoTJ8+HQqFAuPGjZM6iux89tlnUCgUBl/169eXLA+LSikUFBTgzTffxPDhw6WOIitr1qzB+PHjMXnyZMTExCA0NBQdOnRAcnKy1NFkJzc3F6GhoZg3b57UUWRv//79GDlyJI4ePYqdO3eisLAQ7du3R25urtTRZMfDwwPTp09HdHQ0Tpw4gXbt2qFr1644f/681NFk7fjx41i0aBFCQkKkjiJbDRs2xK1bt/RfBw8elC6MoFJbsmSJsLOzkzqGbDRt2lSMHDlSf1uj0Qg3Nzcxbdo0CVPJHwDx66+/Sh3DaCQnJwsAYv/+/VJHMQo1a9YUP/30k9QxZCs7O1v4+fmJnTt3itatW4uxY8dKHUl2Jk+eLEJDQ6WOocc9KvRUCgoKEB0djYiICP2aiYkJIiIicOTIEQmTUVWTmZkJAHBwcJA4ibxpNBqsXr0aubm5aN68udRxZGvkyJHo3LmzwZ9dVFx8fDzc3NxQr1499O7dG0lJSZJlMeoPJSTppKSkQKPRwMXFxWDdxcUFly5dkigVVTVarRbjxo1Dy5YtERQUJHUcWTp79iyaN2+O/Px8WFtb49dff0VgYKDUsWRp9erViImJwfHjx6WOImvNmjXD0qVLERAQgFu3bmHKlCl44YUXcO7cOdjY2FR6nmq7R+XDDz8sNiz08Bf/wiWS1siRI3Hu3DmsXr1a6iiyFRAQgFOnTuHvv//G8OHD0b9/f1y4cEHqWLJz7do1jB07FitWrIC5ubnUcWStU6dOePPNNxESEoIOHTpg69atyMjIwNq1ayXJU233qLz33nsYMGDAY7epV69e5YQxQrVq1YJSqcSdO3cM1u/cuYPatWtLlIqqklGjRuGPP/7AgQMH4OHhIXUc2VKpVPD19QUAhIWF4fjx45g9ezYWLVokcTJ5iY6ORnJyMpo0aaJf02g0OHDgAObOnQu1Wg2lUilhQvmyt7eHv78/EhISJHn+altUnJyc4OTkJHUMo6VSqRAWFobdu3ejW7duAHS76Xfv3o1Ro0ZJG46MmhACo0ePxq+//op9+/bB29tb6khGRavVQq1WSx1Ddl566SWcPXvWYG3gwIGoX78+Jk6cyJLyGDk5OUhMTETfvn0lef5qW1TKIikpCWlpaUhKSoJGo8GpU6cAAL6+vrC2tpY2nITGjx+P/v37Izw8HE2bNsWsWbOQm5uLgQMHSh1NdnJycgz+NXL58mWcOnUKDg4O8PT0lDCZ/IwcORIrV67Eb7/9BhsbG9y+fRsAYGdnBwsLC4nTycukSZPQqVMneHp6Ijs7GytXrsS+ffuwY8cOqaPJjo2NTbE5JysrKzg6OnL+6SETJkxAly5dULduXdy8eROTJ0+GUqlEz549pQkk9WlHxqB///4CQLGvvXv3Sh1NcnPmzBGenp5CpVKJpk2biqNHj0odSZb27t1b4u9Q//79pY4mOyW9TwDEkiVLpI4mO2+//baoW7euUKlUwsnJSbz00kvizz//lDqW0eDpySWLjIwUrq6uQqVSCXd3dxEZGSkSEhIky6MQQojKr0dERERET1Ztz/ohIiIi+WNRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISIiItliUSEiIiLZYlEhIiIi2WJRISLZuHv3LmrXro2pU6fq1w4fPgyVSoXdu3dLmIyIpMLP+iEiWdm6dSu6deuGw4cPIyAgAI0aNULXrl3x3XffSR2NiCTAokJEsjNy5Ejs2rUL4eHhOHv2LI4fPw4zMzOpYxGRBFhUiEh27t27h6CgIFy7dg3R0dEIDg6WOhIRSYQzKkQkO4mJibh58ya0Wi2uXLkidRwikhD3qBCRrBQUFKBp06Zo1KgRAgICMGvWLJw9exbOzs5SRyMiCbCoEJGsvP/++1i/fj1Onz4Na2trtG7dGnZ2dvjjjz+kjkZEEuChHyKSjX379mHWrFmIioqCra0tTExMEBUVhb/++gsLFiyQOh4RSYB7VIiIiEi2uEeFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhki0WFiIiIZItFhYiIiGSLRYWIiIhk6/8AZ/5S5llBxEcAAAAASUVORK5CYII="
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:autora.skl.bms:BMS fitting started\n",
+ " 9%|▉ | 9/100 [00:00<00:03, 28.62it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(_a0_**X0)\n",
+ " 21%|██ | 21/100 [00:00<00:02, 31.02it/s]/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n",
+ " warnings.warn('Covariance of the parameters could not be estimated',\n",
+ "100%|██████████| 100/100 [00:03<00:00, 32.37it/s]\n",
+ "INFO:autora.skl.bms:BMS fitting finished\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTf0lEQVR4nO3deVxV1cLG8d8BBUEm5wkBZ9EEZ0IUMC2ze01tvGqlZVamqdnobVAb1GbNZiu10mzSZqcsQFFxnnHCAU0URyYVkLPeP3jjRk5YHPYBnu/ncz7dvc+wHs+97+vTWuvsbTPGGEREREQs4GJ1ABERESm/VERERETEMioiIiIiYhkVEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLOHURMcaQnp6OrrkmIiJSNjl1EcnIyMDX15eMjAyro4iIiIgDOHURERERkbJNRUREREQsoyIiIiIillEREREREcuoiIiIiIhlVERERETEMioiIiIiYhkVEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLqIiUE4MGDaJPnz5X9J4ZM2bg5+fnkDwiImK99cknmbvuIOuTT1qWQUVEilVQUBCTJ0+2OoaIiFzGpPmJ9H1nOaO/3Ejfd5YzaX6iJTlURERERMqZ9ckneS92T6Fz78XusWRmREXEAl9//TWtWrXCw8ODatWq0b17d7Kysgqe//DDDwkODqZSpUo0b96cd955p9D7Dxw4wG233Yafnx9Vq1ald+/e7Nu3r+D5vLw8Ro8ejZ+fH9WqVePxxx/HGHPZXDNmzCAgIABPT0/69u3L8ePHCz2flJRE7969qVWrFl5eXnTo0IFffvml4Pno6Gj279/Pww8/jM1mw2azAXD8+HH69etHvXr18PT0pFWrVnz++ed/56sTEZFisPdY1hWddyQVkf9XUutkKSkp9OvXj3vuuYfExERiYmK46aabCorCrFmzePbZZ3nxxRdJTExkwoQJPPPMM8ycOROA3NxcevTogbe3N0uXLiU+Ph4vLy+uv/56cnJyAHjttdeYMWMGH3/8McuWLePEiRPMmzfvkrkSEhIYPHgww4cPZ8OGDXTt2pUXXnih0GsyMzO54YYbWLJkCevXr+f666+nV69eJCcnAzB37lz8/f157rnnSElJISUlBYCzZ8/Srl07fvrpJ7Zs2cJ9993HnXfeyapVq4r1uxURkaJpUL3yFZ13KOPE0tLSDGDS0tIcOs7En7eZwCd+LHhM/Hmbw8Zau3atAcy+ffsu+HyjRo3M7NmzC517/vnnTXh4uDHGmE8//dQ0a9bM2O32guezs7ONh4eHWbhwoTHGmDp16piXX3654Pnc3Fzj7+9vevfufdFc/fr1MzfccEOhc7fffrvx9fW95J+nZcuWZurUqQXHgYGB5o033rjke4wx5l//+pd55JFHLvs6ERFxjL/+3TfJgX/3XUqFkq8+zuVi62Q9WtamTUCVYh8vNDSUbt260apVK3r06MF1113HLbfcQpUqVcjKyiIpKYnBgwczZMiQgvecO3cOX19fADZu3Mju3bvx9vYu9Llnz54lKSmJtLQ0UlJSCAsLK3iuQoUKtG/f/pLLM4mJifTt27fQufDwcBYsWFBwnJmZybhx4/jpp59ISUnh3LlznDlzpmBG5GLy8vKYMGECX375Jb///js5OTlkZ2fj6el5+S9MREQc4smewfRoWZu9x7JoUL2yQ/7OK4pyX0QutU7miP9SXF1dWbx4McuXL2fRokVMnTqVp556ioSEhIK/mKdNm1aoSPzxPsgvA+3atWPWrFnnfXaNGjWKPe+fPfrooyxevJhXX32Vxo0b4+HhwS233FKwJHQxr7zyClOmTGHy5Mm0atWKypUrM2rUqMu+T0REHKtNQBXLCsgfyn0RsWKdzGazERERQUREBM8++yyBgYHMmzeP0aNHU7duXfbs2cOAAQMu+N62bdvyxRdfULNmTXx8fC74mjp16pCQkEBkZCSQP6Oydu1a2rZte9FMwcHBJCQkFDq3cuXKQsfx8fEMGjSoYOYkMzOz0CZZADc3N/Ly8s57X+/evbnjjjsAsNvt7Ny5kxYtWlw0j4iIlA/lfrNqm4AqPBDVsNC5oVENHdYQExISmDBhAmvWrCE5OZm5c+dy9OhRgoODARg/fjwTJ07kzTffZOfOnWzevJnp06fz+uuvAzBgwACqV69O7969Wbp0KXv37iUmJoYRI0Zw8OBBAEaOHMmkSZP49ttv2b59Ow8++CCnTp26ZK4RI0awYMECXn31VXbt2sVbb71VaFkGoEmTJsydO5cNGzawceNG+vfvj91uL/SaoKAg4uLi+P333zl27FjB+/6YBUpMTOT+++/nyJEjxfF1iohIaWfJzpQiKqnNqsYYs27/CfPN2gNm3f4TDh1n27ZtpkePHqZGjRrG3d3dNG3atNBmT2OMmTVrlmndurVxc3MzVapUMZGRkWbu3LkFz6ekpJi77rrLVK9e3bi7u5uGDRuaIUOGFHxPubm5ZuTIkcbHx8f4+fmZ0aNHm7vuuuuSm1WNMeajjz4y/v7+xsPDw/Tq1cu8+uqrhTar7t2713Tt2tV4eHiY+vXrm7feestERUWZkSNHFrxmxYoVJiQkxLi7u5s//ud1/Phx07t3b+Pl5WVq1qxpnn766SLlERGRss9mTBEuMGGR9PR0fH19SUtLu+gyhIiIiJReDl2aGTduXMGFrf54NG/e3JFDioiISCni8M2qLVu2LHT1zQoVyv3+WBEREfl/Dm8FFSpUoHbt2o4eRkRERK5QTmYOFT0rYnOxWZbB4b+a2bVrF3Xr1qVhw4YMGDDgkhe/ys7OJj09vdBDREREit/u77ayr0Z7lt07w9IcDt2sOn/+fDIzM2nWrBkpKSmMHz+e33//nS1btpx3ZVDI31Myfvz4885rs6qIiEjxMHZD3H/eoeNXj+LBWfZXaEjdtO1U9KxoSZ4S/dXMqVOnCAwM5PXXX2fw4MHnPZ+dnU12dnbBcXp6OvXr11cRERERKQbHEo+yJ/oeOqb+CMDqGj0J+nU6Na6qZVmmEt056ufnR9OmTdm9e/cFn3d3d8fd3b0kI4mIiJQLaycuwv/pgXS0H+Ys7iTc/AqRXw63dH8IlPCVVTMzM0lKSqJOnTolOayIiEi5lZ2eTUz7R2j33x7Ush9mt3sLkr9aRdTXD1leQsDBReTRRx8lNjaWffv2sXz5cvr27Yurqyv9+vVz5LBl3qBBg+jTp0/BcXR0NKNGjbIsz6X8nWzjxo2jdevWDskjIlKe7Pl5O3trX0302vzbhMS2Gka9Q2toekuIxcn+x6FF5ODBg/Tr149mzZpx2223Ua1aNVauXOnwu8TKP+PMxeZibDYb3377rdUxREScgrEb4u74gNr/akvzMxs4ZqvOqqe/J2rTW3hU9bA6XiEO3SMyZ84cR368iIiI/MWJXcfZGTWEyJR5AKytei3+S2bSsbVzboso93fftYLdbufll1+mcePGuLu7ExAQwIsvvljw/ObNm7nmmmvw8PCgWrVq3HfffWRmZhb587Ozs3n00UepV68elStXJiwsjJiYmEKviY+PJzo6Gk9PT6pUqUKPHj04efIkgwYNIjY2lilTphRcln/fvn0AbNmyhZ49e+Ll5UWtWrW48847C+6wC5CVlcVdd92Fl5cXderU4bXXXitS3kmTJlGrVi28vb0ZPHgwZ8+eLfT86tWrufbaa6levTq+vr5ERUWxbt26gueDgoIA6Nu3LzabreA4KSmJ3r17U6tWLby8vOjQoUOhq/yKiJQ161/7lezmIVydMo8cKhJz42u0ObKAWk5aQkBF5H8OroGNc/L/6WBjxoxh0qRJPPPMM2zbto3Zs2dTq1b+T6eysrLo0aMHVapUYfXq1Xz11Vf88ssvDB8+vMifP3z4cFasWMGcOXPYtGkTt956K9dffz27du0CYMOGDXTr1o0WLVqwYsUKli1bRq9evcjLy2PKlCmEh4czZMgQUlJSSElJoX79+pw6dYprrrmGNm3asGbNGhYsWMCRI0e47bbbCsZ97LHHiI2N5bvvvmPRokXExMQUKgwX8uWXXzJu3DgmTJjAmjVrqFOnDu+8806h12RkZDBw4ECWLVvGypUradKkCTfccAMZGRlAflEBmD59OikpKQXHmZmZ3HDDDSxZsoT169dz/fXX06tXr0teVE9EpDTKycwh5uonCX20O3Xsh0hya86e2QlEfzcalwpO/le9lbf+vZy0tDQDFNze3mEWPWvMWJ//PRY967Ch0tPTjbu7u5k2bdoFn//ggw9MlSpVTGZmZsG5n376ybi4uJjDhw8bY4wZOHCg6d27d8HzUVFRZuTIkcYYY/bv329cXV3N77//Xuhzu3XrZsaMGWOMMaZfv34mIiLiohn//Hl/eP755811111X6NyBAwcMYHbs2GEyMjKMm5ub+fLLLwueP378uPHw8Djvs/4sPDzcPPjgg4XOhYWFmdDQ0Iu+Jy8vz3h7e5sffvih4Bxg5s2bd9H3/KFly5Zm6tSpl32diEhpsWfBDrPVs50xYAyY2OD7TdbRLKtjFZmT16QScHANxE8ufC5+ssNmRhITE8nOzqZbt24XfT40NJTKlSsXnIuIiMBut7Njx47Lfv7mzZvJy8ujadOmeHl5FTxiY2NJSkoC/jcjciU2btzIb7/9Vugz/7iTclJSEklJSeTk5BAWFlbwnqpVq9KsWbNLfm5iYmKh9wCEh4cXOj5y5AhDhgyhSZMm+Pr64uPjQ2Zm5mVnNjIzM3n00UcJDg7Gz88PLy8vEhMTNSMiImWCsRuW3v0xNa5vS4vTazlhq8rKx+cSue09PKt7Wh2vyHQr3OMXvrgax3eDf/tiH87Dw7G7lTMzM3F1dWXt2rW4uroWes7Ly+tvZ8jMzKRXr1689NJL5z1Xp06di16krjgMHDiQ48ePM2XKFAIDA3F3dyc8PJycnJxLvu/RRx9l8eLFvPrqqzRu3BgPDw9uueWWy75PRMTZndp7ksTI++ly8CsA1vt1pfbiT7m6fT2Lk105zYhUa3xl5/+hJk2a4OHhwZIlSy74fHBwMBs3biQrK6vgXHx8PC4uLpedXQBo06YNeXl5pKam0rhx40KPP+6CHBISctHxAdzc3MjLyyt0rm3btmzdupWgoKDzPrdy5co0atSIihUrkpCQUPCekydPsnPnzkvmDQ4OLvQegJUrVxY6jo+PZ8SIEdxwww20bNkSd3f3QptkASpWrHhe5vj4eAYNGkTfvn1p1aoVtWvXLth4KyJSWm2cGkdWk1DCD35FLhWIuX4SIUcWU6cUlhBQEcmf9YgYVfhcxMMOmQ0BqFSpEk888QSPP/44n3zyCUlJSaxcuZKPPvoIgAEDBlCpUiUGDhzIli1b+O2333jooYe48847Cza0XkrTpk0ZMGAAd911F3PnzmXv3r2sWrWKiRMn8tNPPwH5m2VXr17Ngw8+yKZNm9i+fTvvvvtuwV/uQUFBJCQksG/fPo4dO4bdbmfYsGGcOHGCfv36sXr1apKSkli4cCF33303eXl5eHl5MXjwYB577DF+/fVXtmzZwqBBg3BxufT/xEaOHMnHH3/M9OnT2blzJ2PHjmXr1q2FXtOkSRM+/fRTEhMTSUhIYMCAAefN6gQFBbFkyRIOHz7MyZMnC943d+5cNmzYwMaNG+nfvz92u71o/0WJiDiZ3NO5xHR+mlYjoqmXd4C9FZuwa+YKouc/gaub6+U/wFlZvUnlUkpss6oxxhxYbcyGz/P/6WB5eXnmhRdeMIGBgaZixYomICDATJgwoeD5TZs2ma5du5pKlSqZqlWrmiFDhpiMjIyC5y+1WdUYY3Jycsyzzz5rgoKCTMWKFU2dOnVM3759zaZNmwpeExMTYzp16mTc3d2Nn5+f6dGjhzl58qQxxpgdO3aYq6++2nh4eBjA7N271xhjzM6dO03fvn2Nn5+f8fDwMM2bNzejRo0ydrvdGGNMRkaGueOOO4ynp6epVauWefnlly+48fWvXnzxRVO9enXj5eVlBg4caB5//PFCm1XXrVtn2rdvbypVqmSaNGlivvrqKxMYGGjeeOONgtd8//33pnHjxqZChQomMDDQGGPM3r17TdeuXY2Hh4epX7++eeutt4qUR0TE2exbsttsrhxWsCE1rsk9JiMl4/JvLAVK9O67Vyo9PR1fX1/dfVdERMolYzfEP/gZoe8/iDeZnLL5kTjqA8Jfv9XqaMVGm1VFREScUFpyGlsih9J5/+cAbPCNpMb8TwkPD7A4WfHSHhEREREns+ndeDIahhKx/3PO4UpM9xdolfor9cpYCQHNiIiIiDiNc2fPsez6F+gS+zyu2NlfoSEZ780menDY5d9cSqmIiIiIOIGDy/Zx4oYBRGcsB2BZw7sIiZ1KoH/Z3iOppRkRERGLLX/oc7y7hBKSsZw0fFg+fDadk2biU8ZLCGhGRERExDLpB9PZFDWczns+BWCTdyeq/jyLTp2DrA1WgjQjIiIiYoEtHyVwskEbOu/5lDxciIkeR4vUWPzLUQkBzYiIiIiUqLycPJb+axKdfxlLBfI46BrIiamziB4aYXU0S6iIiIiIlJDfVyRztOedRKfFARAf2I+r4t7FP8DX4mTW0dJMOTFo0CD69OljdQwAZsyYgZ+f3xW9x2az8e233zokj4hISVgx+isqR4TSOi2ODLxYdv8ndNozC99yXEJAMyIiIiIOlXk4kw2RI+i8azoAWyqH4f39LDpf08jiZM5BMyIiIiIOsu2TNRwNaEvnXdOxYyMm4imapS4lUCWkgIqIBb7++mtatWqFh4cH1apVo3v37mRlZRU8/+GHHxIcHEylSpVo3rw577zzTqH3HzhwgNtuuw0/Pz+qVq1K79692bdvX8HzeXl5jB49Gj8/P6pVq8bjjz/O5e5t+MdyyY8//kizZs3w9PTklltu4fTp08ycOZOgoCCqVKnCiBEjyMvLK3jfyZMnueuuu6hSpQqenp707NmTXbt2nffZAQEBeHp60rdvX44fP37e+N999x1t27alUqVKNGzYkPHjx3Pu3Lkr+VpFRJyG/ZydmJ4v0WRgOA1yd/G7a302vxlD9LIXqOhZ0ep4zsXiu/9eUlpamgFMWlpakV5vtxuTmWnNw24v2p/p0KFDpkKFCub11183e/fuNZs2bTJvv/22ycjIv53zZ599ZurUqWO++eYbs2fPHvPNN9+YqlWrmhkzZhhjjMnJyTHBwcHmnnvuMZs2bTLbtm0z/fv3N82aNTPZ2dnGGGNeeuklU6VKFfPNN9+Ybdu2mcGDBxtvb2/Tu3fvi+aaPn26qVixorn22mvNunXrTGxsrKlWrZq57rrrzG233Wa2bt1qfvjhB+Pm5mbmzJlT8L4bb7zRBAcHm7i4OLNhwwbTo0cP07hxY5OTk2OMMWblypXGxcXFvPTSS2bHjh1mypQpxs/Pz/j6+hZ8RlxcnPHx8TEzZswwSUlJZtGiRSYoKMiMGzeu4DWAmTdvXtG+ZBERCx1afdCsrXKNMWAMmOX+t5qTe05YHctplakikplZ8N97iT8yM4v2Z1q7dq0BzL59+y74fKNGjczs2bMLnXv++edNeHi4McaYTz/91DRr1szY/9R8srOzjYeHh1m4cKExxpg6deqYl19+ueD53Nxc4+/vf9kiApjdu3cXnLv//vuNp6dnQUkyxpgePXqY+++/3xhjzM6dOw1g4uPjC54/duyY8fDwMF9++aUxxph+/fqZG264odBYt99+e6Ei0q1bNzNhwoRCr/n0009NnTp1Co5VRESkNFjx+Fxz3FbVGDAZVDZxd39s7HlF/DfVckqbVUtYaGgo3bp1o1WrVvTo0YPrrruOW265hSpVqpCVlUVSUhKDBw9myJAhBe85d+4cvr75u6o3btzI7t278fb2LvS5Z8+eJSkpibS0NFJSUggL+98NkipUqED79u0vuzzj6elJo0b/W7esVasWQUFBeHl5FTqXmpoKQGJiIhUqVCg0VrVq1WjWrBmJiYkFr+nbt2+hccLDw1mwYEHB8caNG4mPj+fFF18sOJeXl8fZs2c5ffo0np6el8wtImK1rNQs1kaNJnL7BwBs82yP57ez6XJtE4uTOb8yVUQ8PSEz07qxi8LV1ZXFixezfPlyFi1axNSpU3nqqadISEgo+At32rRphf5y/+N9AJmZmbRr145Zs2ad99k1atT4R3+GihULr1vabLYLnrPb7f9onL/KzMxk/Pjx3HTTTec9V6lSpWIdS0Qu4uAaOL4bqjUG//ZWpylVtn++HrdB/YjM2YEdG3Fhj9Ppl+dw83KzOlqpUKaKiM0GlStbneLybDYbERERRERE8OyzzxIYGMi8efMYPXo0devWZc+ePQwYMOCC723bti1ffPEFNWvWxMfnwjdDqlOnDgkJCURGRgL5Mypr166lbdu2xfrnCA4O5ty5cyQkJNCpUycAjh8/zo4dO2jRokXBaxISEgq9b+XKlef9mXbs2EHjxo2LNZ+IFNHisRA/+X/HEaPg2vFWpSk17OfsxPV9g04/jsGNXFJc6nL45U+JfuQaq6OVKmWqiJQGCQkJLFmyhOuuu46aNWuSkJDA0aNHCQ4OBmD8+PGMGDECX19frr/+erKzs1mzZg0nT55k9OjRDBgwgFdeeYXevXvz3HPP4e/vz/79+5k7dy6PP/44/v7+jBw5kkmTJtGkSROaN2/O66+/zqlTp4r9z9KkSRN69+7NkCFDeP/99/H29ubJJ5+kXr169O7dG4ARI0YQERHBq6++Su/evVm4cGGhZRmAZ599ln//+98EBARwyy234OLiwsaNG9myZQsvvPBCsecWkT85uKZwCYH84+Bemhm5hCMbUjjYbSDRJxYDsLJOX5rGTqNNk2oWJyt99PPdEubj40NcXBw33HADTZs25emnn+a1116jZ8+eANx77718+OGHTJ8+nVatWhEVFcWMGTNo0KABkL+PIy4ujoCAAG666SaCg4MZPHgwZ8+eLZgheeSRR7jzzjsZOHAg4eHheHt7n7dPo7hMnz6ddu3a8e9//5vw8HCMMfz8888FSzpXX30106ZNY8qUKYSGhrJo0SKefvrpQp/Ro0cPfvzxRxYtWkSHDh24+uqreeONNwgMDHRIZhH5k+O7r+y8sOqZH3BtG0K7E4s5jQdxA94n7OA3VFUJ+Vts5nI7GC2Unp6Or68vaWlpF12GEBGRf+DgGviw2/nn712iGZG/OHPiDKuiHyNq89sAbPdojdvXn9PwhuYWJyvdNCMiIlKe+bfP3xPyZxEPq4T8xc6vN3GwboeCEhLT7hEaHF6pElIMNCMiIiL61cxFGLsh7taphM19nEpkc8SlNgdfmEm7MddZHa3MUBERERG5gKNbjrDvmrvpcHQ+AAm1etHot4+oHvzPLpUghWlpRkRE5C9WPzcfQkLocHQ+Z6hE7O1v0/HQdyohDqCf74qIiPy/s6fOktD1SaI2TAFgZ6VWuMz5nKjeLS1OVnapiIiIiAC7v9tK3n/6E3V2EwCxoSMIi3mJSn66wrMjaWlGRETKNWM3xP7nHer1aU+zs5s4aqvJ6nE/EbVhikpICdCMiIiIlFvHEo+S1HUwUUd+AGB1jZ4E/TqdDlfVsjhZ+aEZERERKZfWTlpM3lUhhB35gWzciL1pCu0P/0QNlZASpSJiAWMM9913H1WrVsVms7Fhwwaio6MZNWpUsY4zbtw4WrduXayf+XfFxMRgs9mu6J43QUFBTJ482WGZRKR8yk7PJqb9o7Qbcx217IfZ7d6C/V+tJuqbEdhcbFbHK3e0NGOBBQsWMGPGDGJiYmjYsCHVq1dn7ty5BfdnERERx9jz83ayb+lP9Jn1AMRe9SAdY1/Fo6qHxcnKLxURCyQlJVGnTh06depUcK5q1aoWJhIRKduM3bD0rmm0nzUKT85w3FaN3WM+JurFG62OVu5paaaEDRo0iIceeojk5GRsNhtBQUEA5y3NBAUFMWHCBO655x68vb0JCAjggw8+KPRZTzzxBE2bNsXT05OGDRvyzDPPkJubW+QsfyyXLFy4kDZt2uDh4cE111xDamoq8+fPJzg4GB8fH/r378/p06cL3pednc2IESOoWbMmlSpVonPnzqxevbrQZ//88880bdoUDw8Punbtyr59+84bf9myZXTp0gUPDw/q16/PiBEjyMrKKnJ+EZGiOLHrOAn+NxM56348OcPaqtdybt1mwlRCnEKJFZFJkyZhs9mKfR9EIcZAVpY1jyJeKX/KlCk899xz+Pv7k5KSct5f4H/22muv0b59e9avX8+DDz7I0KFD2bFjR8Hz3t7ezJgxg23btjFlyhSmTZvGG2+8ccVf27hx43jrrbdYvnw5Bw4c4LbbbmPy5MnMnj2bn376iUWLFjF16tSC1z/++ON88803zJw5k3Xr1tG4cWN69OjBiRMnADhw4AA33XQTvXr1YsOGDdx77708+eSThcZMSkri+uuv5+abb2bTpk188cUXLFu2jOHDh19xfhGRi1n/2q9kNw/l6pR55FCRmBtfo82RBdRqXcfqaPIHUwJWrVplgoKCTEhIiBk5cmSR35eWlmYAk5aWVrQ3ZGYak18JSv6RmVnkP9cbb7xhAgMDC52Liooq9N0EBgaaO+64o+DYbrebmjVrmnffffein/vKK6+Ydu3aFRyPHTvWhIaGXvT1v/32mwHML7/8UnBu4sSJBjBJSUkF5+6//37To0cPY4wxmZmZpmLFimbWrFkFz+fk5Ji6deual19+2RhjzJgxY0yLFi0KjfXEE08YwJw8edIYY8zgwYPNfffdV+g1S5cuNS4uLubMmTMF38Ebb7xx0fwiIheTnZFtfgt7wuRhMwZMklszkzh7ndWx5AIcPiOSmZnJgAEDmDZtGlWqVHH0cGVKSEhIwX+22WzUrl2b1NTUgnNffPEFERER1K5dGy8vL55++mmSk5P/0Ti1atUqWOr587k/xk1KSiI3N5eIiIiC5ytWrEjHjh1JTEwEIDExkbCwsEJjhIeHFzreuHEjM2bMwMvLq+DRo0cP7HY7e/fuveI/g4jIH/Yt3sXuWhFEJ7yEC4a45vdR68BamvdrY3U0uQCHb1YdNmwY//rXv+jevTsvvPDCJV+bnZ1NdnZ2wXF6evqVDebpCZmZfyfmP+fpWewf+ddf0dhsNux2OwArVqxgwIABjB8/nh49euDr68ucOXN47bXX/tE4NpvtkuMWl8zMTO6//35GjBhx3nMBAQHFOpaIlA/Gblg2eDptZozAiyxO2Kqy87EPiXypr9XR5BIcWkTmzJnDunXrLrkP4s8mTpzI+PHj//6ANhtUrvz331+KLF++nMDAQJ566qmCc/v373f4uI0aNcLNzY34+HgCAwMByM3NZfXq1QX7f4KDg/n+++8LvW/lypWFjtu2bcu2bdto3LixwzOLSNl3au9JEiPvp8vBrwBY79eV2os+4eoO/hYnk8tx2NLMgQMHGDlyJLNmzaJSpaJdq3/MmDGkpaUVPA4cOOCoeKVekyZNSE5OZs6cOSQlJfHmm28yb948h49buXJlhg4dymOPPcaCBQvYtm0bQ4YM4fTp0wwePBiABx54gF27dvHYY4+xY8cOZs+ezYwZMwp9zhNPPMHy5csZPnw4GzZsYNeuXXz33XfarCoiV2zj1DiymoQSfvArcqlAzPWTCDmymDoqIaWCw4rI2rVrSU1NpW3btlSoUIEKFSoQGxvLm2++SYUKFcjLyzvvPe7u7vj4+BR6yIXdeOONPPzwwwwfPpzWrVuzfPlynnnmmRIZe9KkSdx8883ceeedtG3blt27d7Nw4cKCPUABAQF88803fPvtt4SGhvLee+8xYcKEQp8REhJCbGwsO3fupEuXLrRp04Znn32WunXrlsifQURKv9zTucR0eYarRnSlXt4B9lVszK4Zy4me/wSubq5Wx5MishlTxN+dXqGMjIzzlgruvvtumjdvzhNPPMFVV1112c9IT0/H19eXtLQ0lRIRESmQHLOH9H/356qsBACWNrmHNnFT8KrtZXEyuVIO2yPi7e19XtmoXLky1apVK1IJERER+StjN8Q/+Bkh7w8jgAzS8GXrqA/o8sZtVkeTv0mXeBcRkVIhLTmNLZFD6bz/cwA2+nSh+oLP6BSuX9qVZg5bmikOWpoRERGAze8vx2/4AOqf28c5XFnabTyRPz+pvSBlgGZERETEaZ07e45lPV+kS8xzuGJnf4WGZLw7i673Xm11NCkmKiIiIuKUDi7bx4kb7iA6Ix6AZQ3vJCT2LQL9NUNelujuuyIi4nSWP/Q53l1CCcmIJw0f4h+cReekT/ApQglZn3ySuesOsj75ZAkklX9KMyIiIuI0Mg5lsLHLcDrv+QSATd6dqPLjZ0RENijS+yfNT+S92D0Fxw9ENeTJnsEOySrFQzMiIiLiFLZ8lMCJwNZ03vMJebgQEzWWFqmx1C9iCVmffLJQCQF4L3aPZkacnIqIiIhYKi8nj5hrX6T5vREEntvDQddAtr4TR3TMOCpUKvrE/d5jWVd0XpyDlmZERMQyhxIOkNrjDqLT4gBYHvAfWsa9i3+g3xV/VoPqF77p6cXOi3PQjIiIiFhixeiv8AwPoXVaHBl4sWzITML3zsb3b5QQgDYBVXggqmGhc0OjGtImoEoxpBVH0QXNRESkRGUezmR95Ei67PoYgC2VO+L9/WwCr2lULJ+/Pvkke49l0aB6ZZWQUkBFRERESsy2T9bgcW9/GuTuwo6NuIj/ErFoLBU9K1odTSyiPSIiIuJw9nN24m58lYj5T1GRcxxy9Sf1tc+IHhlldTSxmIqIiIg4VMqa30m57i6iT/4KwIp6txC89ANaN9CyiWizqoiIOFDCmG9x7xhC25O/koUnSwd9xNXJX+KnEiL/TzMiIiJS7LJSs1gbNZrI7R8AsM2zHR5zZ9OlR1OLk4mz0YyIiIgUq+2fr+dw/fZEbv8AOzZiOj5O4yPLaaASIhegGRERESkW9nN24m6eTKfvn8SNXFJc6nL45U+JfuQaq6OJE1MRERGRf+zIhhQOdB9E9PFFAKys04emsR/Spkk1i5OJs9PSjIiI/COrnv0R17YhtD++iNN4EDfgfcIOzqWqSogUgWZERETkbzlz4gyroh8javPbAGz3aE3FL2cT+e9gi5NJaaIiIiIiV2zn15uw3dGfqOytAMS0G034rxNw93G3OJmUNlqaERGRIjN2Q+zNbxJwa0eaZG/liEtt1k5YSPSa11RC5G/RjIiIiBTJ0a2p7Ot6N1FHfwZgVc1/0zDmY9oF17A4mZRmmhEREZHLWvPCAmjVig5Hf+YMlYi99S06pHxPdZUQ+Yc0IyIiIhd19tRZEro+SdSGKQDscr8KPv+cqL5XWZxMygoVERERuaDd320l7z/9iTq7CYDY0BGExbxEJb9KFieTskRLMyIiUoixG+L6vUu9Pu1pdnYTR201WT3uJ6I2TFEJkWKnGRERESlwfMcxdkcPJvLw9wCsrn49Qb/NoMNVtSxOJmWVZkRERASAdS//Qm6LEMIOf082bsT2nUy7lJ+ooRIiDqQZERGRci47PZsV1zxF9NrXANjt3oK8T2YTdVuoxcmkPFAREREpx/b8vJ3sW/oTfWY9AHEth9I+5lU8q3tanEzKCy3NiIiUQ8ZuiLtrGrX/1ZbgM+s5bqtGwn+/I3LLOyohUqI0IyIiUs6c2HWcnVFDiEyZB8Daqt2pt3gmYW3rWpxMyiPNiIiIlCPrX/+N7OahXJ0yjxwqEvPvV2lzZCG1VULEIpoREREpB3KzcojvPpbIlS/hgmGPWzOyP55N9IC2VkeTck5FRESkjNu3eBen+/Qn+vQaAOKaD6Fd7BtUrlnZ4mQiWpoRESmzjN2w9J7pVL+uDS1Or+GkrQorH/uGyMQPVELEaWhGRESkDDq19yTboh6gy4EvAVjv15Xaiz7h6g7+FicTKUwzIiIiZczGt5aS1SSUTge+JJcKxFw/iZAji6mjEiJOSDMiIiJlRO7pXOJ7PEeXZRNwxc6+io05PW020QM7WB1N5KJUREREyoDkmD2k9+pPdGYCAEub3E2buDfxqu1lcTKRS9PSjIhIKRc/9DP8urbmqswE0vBl+agv6LLzY5UQKRU0IyIiUkqlJaexJfJBIvbPBmCjTxeq/fwpnSICLU4mUnSaERERKYU2v7+c9Eatidg/m3O4EtPtea46+hv+KiFSyji0iLz77ruEhITg4+ODj48P4eHhzJ8/35FDioiUaefOniPmmucIfiCS+uf2kVyhAdunLSP6l6dxdXO1Op7IFXPo0oy/vz+TJk2iSZMmGGOYOXMmvXv3Zv369bRs2dKRQ4uIlDkHl+3jxA13EJ0RD8CyhncSEvsWAf4+FicT+ftsxhhTkgNWrVqVV155hcGDB1/2tenp6fj6+pKWloaPj/4PTUTKr+Uj5tBy6v34kk463mwe+i4R7wywOpbIP1Zim1Xz8vL46quvyMrKIjw8/IKvyc7OJjs7u+A4PT29pOKJiDiljEMZbOwynM57PgFgs1c4fj/NIiKygcXJRIqHwzerbt68GS8vL9zd3XnggQeYN28eLVq0uOBrJ06ciK+vb8Gjfv36jo4nIuK0tk5fxYnANnTe8wl5uBATNZbgo3HUVwmRMsThSzM5OTkkJyeTlpbG119/zYcffkhsbOwFy8iFZkTq16+vpRkRKVfycvJY+u+XiFg8loqc46BrICfe/IyQBztbHU2k2JX4HpHu3bvTqFEj3n///cu+VntERKS8OZRwgNQed9I6LRaA5QH/oWXcu/gG+lkbTMRBSvw6Ina7vdCsh4iI5FvxyNd4hofQOi2WDLxYNmQm4Xtnq4RImebQzapjxoyhZ8+eBAQEkJGRwezZs4mJiWHhwoWOHFZEpFTJPJzJ+qhRdNn5EQBbKnfE+7tZdO7W2OJkIo7n0CKSmprKXXfdRUpKCr6+voSEhLBw4UKuvfZaRw4rIlJqJH62lkr39KNL7i7s2Ijt9F86Lx5LRc+KVkcTKRElvkfkSmiPiIiUVfZzduJufJVO85/GjVwOufqT+tpntB4ZZXU0kRKlm96JiJSwlDW/k3LdQKJPLgFgRb1baB77Pq0bVbU4mUjJ003vRERKUMKYb3HvGELbk0vIwpOlAz/k6uQvqaISIuWUZkRERErA6WOnWRM5msjE/EsXJHq0xf2b2XTp2cziZCLWUhEREXGwHV9soMJd/YjM2Y4dG3EdH6PTkudx83KzOpqI5bQ0IyLiIPZzdmL6vEHQf8JolLOdFJe6bHh5MdEJL6mEiPw/zYiIiDhA6sYUkrsNIvr4IgBW1ulD09gPadukmsXJRJyLZkRERIrZqmd/xKVNCO2PL+I0HsT1f4+wg3OpqhIich7NiIiIFJMzJ86wKvoxoja/DcCOSqFU+OpzIv8dbHEyEeelIiIiUgx2frMZ24B+RGVvBSCm7cOE/zYRdx93i5OJODcVERGRf8DYDXG3vUXYN49RiWxSXWpx4IVPiB5zXbGNsT75JHuPZdGgemXaBFQpts8VcQYqIiIif9PRrans63o3UUd/BmBVzX/R4NePadeyZrGNMWl+Iu/F7ik4fiCqIU/21FKPlB3arCoi8jeseWEBhLSiw9GfOYs7sbe+RYeUH6hRjCVkffLJQiUE4L3YPaxPPllsY4hYTTMiIiJX4OypsyRcM4ao9ZMB2OV+FXz+OVF9ryr2sfYey7roeS3RSFmhIiIiUkS7v99G3u39iDq7CYDYkIfo+NtLeFT1cMh4DapXvqLzIqWRlmZERC7D2A1x/d6lXu92NDu7iaO2Gqwa+xNRG990WAkBaBNQhQeiGhY6NzSqoWZDpEyxGWOM1SEuJj09HV9fX9LS0vDx8bE6joiUQ8d3HGN39GDCDn8PwOrq1xO4ZDo1Q2qXWAb9akbKMhUREZGLWPfyL9Qdcxe17Slk48bKPi/R5asRuFTQZLJIcdEeERGRv8jJzGF516eIXvMqAEluwZz79HOibgu1OJlI2aMiIiLyJ3vm7yD75n5En1kPQFzLobSPeRXP6p4WJxMpmzS/KCJC/obUpQM/pNYNbQk+s57jtmokjPmWyC3vqISIOJBmRETEEs60AfNk0gl2RA6hy6G5AKyt2p16i2cS1raupblEygMVEREpcc502fINb/xGrUfv5Gr77+RQkeX/mkDkt6O1IVWkhOj/0kSkRF3RZcsProGNc/L/WcxyT+cSEz6GkNHdqGP/nb0Vm5L02Uqif3xUJUSkBGlGRERKVJEvW754LMRP/t9xxCi4dnyxZNi/ZDeZvfsTnbUagLhm99IubjKVa+qKpSIlTbVfREpUkS5bfnBN4RIC+cf/cGbE2A3L7p1Bte6taZm1mpO2Kqx49Gsit09TCRGxiIqIiJSoIl22/PjuC7/5YueLIG3/KVYE/YfOH92NF1ms94vmbMImwl+5+W9/poj8c1qaEZES92TPYHq0rH3xX81Ua3zhN17s/GVsfGsp1UbdQae8ZHKpQHyP5+ny/WO4urn+rc8TkeKjIiIilmgTUOXiP9v1b5+/J6TQHpGH889fgXNncll23XN0WTYBV+zsq9iY09NmEz2ww9/OLSLFS/eaERHndXBN/nJMtcZXXEKSY/aQ1msArTJXArC08SBax76Jd11vRyQVkb9JRUREypz4oZ/R6r0H8SGDNHzZOuJ9Ok253epYInIBWpoRkTIjLTmNLVHDiNg3C4CNPp2p9vNndIoItDiZiFyMfjUjImXC5g+Wk96oNRH7ZnEOV2K6Pc9VR2PwVwkRcWqaERGRUu3c2XMsu2ECnX97jgrkkVyhAWlvzyL6vnCro4lIEaiIiEipdTB+Pyd6DiA6Ix6AZQ3uICTubQL8tadMpLTQ0oyIlErLR8zBu3MoIRnxpONN/NDP6LznU3xUQkRKFc2IiEipknEog42RD9E5aSYAm73C8f1xFhFRDSxOJiJ/h2ZERKTU2Dp9FScC29A5aSZ5uBAT+SzBR+MIUAkRKbU0IyIiTi8vJ4+l/36JiMVjqcg5DroGcOLNWUQ/2NnqaCLyD6mIiIhTO5RwgNQedxKdFgvA8vq303Lpe/gH+lkbTESKhZZmRMRprXjkazzCQ2mdFksmlVl27wzC932Or0qISJmhGRERcTpZqVms6zKSLjs/AmBr5Q54fTebzt3+3t13RcR5aUZERJxK4mdrSfVvS5edH2HHRkyn/9I0NZ5AlRCRMkkzIiLiFOzn7MTd+Cqd5j+NG7kccvUn9dVPiR4VbXU0EXEgh86ITJw4kQ4dOuDt7U3NmjXp06cPO3bscOSQIlIKpaz5nQ01ryN6/hO4kcuKejfjsWMjrVVCRMo8hxaR2NhYhg0bxsqVK1m8eDG5ublcd911ZGVlOXJYESlFEv77HW4dQ2l7cglZeLJ04IdcnfwVVRpVtTqaiJQAmzHGlNRgR48epWbNmsTGxhIZGXnZ16enp+Pr60taWho+Prpss0hZcvrYadZEPULktvcASPRoi/s3s2nYs5nFyUSkJJXoHpG0tDQAqla98L/pZGdnk52dXXCcnp5eIrlEpGTt+GIDFe7qT2ROIgAxHR+n05LncfNysziZiJS0EvvVjN1uZ9SoUURERHDVVVdd8DUTJ07E19e34FG/fv2SiiciJcB+zk5MnzcI+k8YjXISOexSh3UvLSY64SWVEJFyqsSWZoYOHcr8+fNZtmwZ/v7+F3zNhWZE6tevr6UZkTIgddNhDlwzkHbHFwGQULs3jWM+pFqz6hYnExErlcjSzPDhw/nxxx+Ji4u7aAkBcHd3x93dvSQiiRSvg2vg+G6o1hj821udxumsHvcTQc/dTTtzlNN4sKbf63T57H5sLjaro4mIxRxaRIwxPPTQQ8ybN4+YmBgaNNAdMqUMWjwW4if/7zhiFFw73qo0TuXMiTOsin6cqM1vAbCjUiiuX35OZK9gi5OJiLNw6B6RYcOG8dlnnzF79my8vb05fPgwhw8f5syZM44cVqTkHFxTuIRA/vHBNVakcSq75m3hYN2OBSUkpu3DBB1JoLFKiIj8iUOLyLvvvktaWhrR0dHUqVOn4PHFF184cliRknN895WdLweM3RB361Tq39SeJtlbSHWpxZoXFhC99nXcfbT0KiKFOXxpRqRMq3aR+59c7HwZd3RrKvu63k3k0Z8BWFXzXzT49WPat6xpcTIRcVa66Z3IP+HfPn9PyJ9FPFwuN6yueWEBJiSEDkd/5izuxN4ylQ4pP1BDJURELqFEr6x6pXRlVSk1yvGvZrLTs1kZ/SRR6ycDsMv9Ksys2TS9uZW1wUSkVFAREZG/bff328i7vT/Nzm4EILbVcDrGvIxHVQ+Lk4lIaaGlGRG5YsZuiOv3LvV6t6PZ2Y0ctdVg9dgfido0VSVERK5Iid5rRkRKv+M7jrE7ejCRh78HYE21HgT8OoMOIbUtTiYipZFmRESkyNa9/Au5LUIIO/w92bgR2+cN2h7+mZoqISLyN2lGREQuKyczh+XXPE306lcASHIL5twns4m6vbW1wUSk1FMREZFL2jN/B9k39yf6zDoA4lo8QPvY1/Cs7mlxMhEpC7Q0IyIXZOyGpQM/pNYNbQk+s47jtmokjPmWyK3vqoSISLHRjIiInOdk0gl2RA6hy6G5AKyr0o26v3xCWNu6FicTkbJGMyIiUsiGyTGcbRrC1YfmkkNFYm54mdapi6itEiIiDqAZEREBIPd0LvHdxxK5YhIuGPZWbMrZj2cTfUc7q6OJSBmmIiIi7F+ym8ze/YnOWg1AXLN7aRc3mco1K1ucTETKOi3NiJRjxm5YNmQmVbu3oWXWak7aqrDi0a+J3D5NJURESoRmRESsZOHN8tL2n2JrlwfofOALANb7RVNrwSeEh9Uv0RwiUr6piIhYZfFYiJ/8v+OIUXDt+BIZeuNbS6k26g465SWTSwXir3uOLj88jquba4mMLyLyBy3NiFjh4JrCJQTyjw+uceiw586eIybyWa56KBr/vGT2V2jEzo/jiV44RiVERCyhIiJiheO7r+x8MTgQt5fEGpFEL30eV+wsbTSIqvvX0/Lujg4bU0TkclRERKxQrfGVnf+H4h+chW9UKK0yV5CGL8tHzKHL7ul41/V2yHgiIkWlIiJiBf/2+XtC/izi4WLfsJp+II34BncQ8e4d+JDBRp/OZCzbSKcptxfrOCIif5fNGGOsDnEx6enp+Pr6kpaWho+Pj9VxRIqfA381s/mDFfgN60/9c/s4hyvLrhlL55/GUKGS9qiLiPNQEREpY/Jy8ljacwKdfx1PBfI4UCGIU2/PptV94VZHExE5j/7VSKQMORi/n+M33EF0+jIA4oMGcFXs29QP8LU4mYjIhWmPiEgZsXzkF3h3DiU0fRnpeBP/wKdE7P0MX5UQEXFimhERKeUyDmWwMfIhOifNBGCz19X4/jCLiOiGFicTEbk8zYiIlGJbp6/iRGAbOifNJA8XYro8Q/DRpQSohIhIKaEZEZFSKC8nj6W9XiZi0bNU5BwHXQM4Pvkzood3sTqaiMgVURERKWUOJRwgtcedRKfFArC8/m20XPo+/oF+1gYTEfkbtDQjUoqseOwbPMJDaZ0WSyaVWTZ4OuH75uCrEiIipZRmRERKgazULNZGjiJyx4cAbK3cgcrfzqZzd8dcEl5EpKRoRkTEySV+tpZU/7ZE7vgQOzZiwsfQNDWeIJUQESkDNCMi4qTs5+zE9X6NTj8/hRu5pLjU48hrnxE9KtrqaCIixUZFRMQJHV53iEPd7yL65BIAVta9iWZx02jdqKrFyUREipeWZkScTMJ/v6Ni+xDanlxCFp4svWsaYQe+popKiIiUQZoREXESp4+dZk3UI0Ruew+ARI+2uH8zmy49m1mcTETEcVRERJzAji82UOGu/kTmJAIQ0+ExOv36Am5ebhYnExFxLC3NiFjIfs5OTJ83CPpPGI1yEjnsUod1Ly0metXLKiEiUi5oRkTEIqmbDpN8zSCijy8EIKH2jTSO+Yi2zapbnExEpORoRkTEAqvH/YStdQjtjy/kDJWI6/cuHX//lmoqISJSzmhGRKQEnT11loSox4naNBWAHZVCcf1iNpE3trA4mYiINVRERErIrnlboF8/orK3ABDT9mHCf5uIu4+7xclERKyjpRkRBzN2Q+ytb1H/pvY0yd5Cqkst1jw/n+i1r6uEiEi5pxkREQc6ujWVvdfcQ1TqTwCsrnEDQb9Np33LmhYnExFxDg6dEYmLi6NXr17UrVsXm83Gt99+68jhRIrHwTWwcU7+P/+BNS8uxISE0DH1J87iTuzNb9L+8I/UUAkRESng0BmRrKwsQkNDueeee7jpppscOZRI8Vg8FuIn/+84YhRcO/6KPiI7PZsVXccQve4NAHa5t8TM+pyom1sVX04RkTLCoUWkZ8+e9OzZ05FDiBSfg2sKlxDIPw7uBf7ti/QRST9s49xt/Yk+uxGA2FbD6RjzMh5VPYo3q4hIGeFUm1Wzs7NJT08v9BApMcd3X9n5PzF2Q1z/96h7Yzuand3IMVt1Vj3zA1GbpqqEiIhcglMVkYkTJ+Lr61vwqF+/vtWRpDyp1vjKzv+/4zuOsapeXyI/H4oHZ1lT7TrsGzbT8bl/OyCkiEjZ4lRFZMyYMaSlpRU8Dhw4YHUkKU/82+fvCfmziIcvuSyz7pUl5LYIIezwd2TjRkzv12l7eD41Q2o7NquISBnhVD/fdXd3x91d11UQC107Pn9PyPHd+TMhFykhOZk5LL/maSJXv4oLhiS35pz75HOib29dsnlFREo5pyoiIk7Bv/0lZ0H2LtjBmZsHEH16LQCxLR6gQ+xreFb3LKmEIiJlhkOLSGZmJrt3/2+j3969e9mwYQNVq1YlICDAkUOLFDtjNyy7+yPafjKSypzmhK0qu574iKiJfayOJiJSatmMMcZRHx4TE0PXrl3POz9w4EBmzJhx2fenp6fj6+tLWloaPj4+DkgoUjQnk06wPeo+wn//BoB1Va6hzqJPqNO+nsXJRERKN4cWkX9KRUScwYbJMdR89E7q5h0klwrE3zCByO8ewaWCU+31FhEplbRHROQick/nEn/tOCKXT8QFw56KTcn+eDbRd7SzOpqISJmhIiJyAfuX7Caj9wCis1YBENf0XtrGTcarVmWLk4mIlC2aWxb5E2M3LBsyk6rd23BV1ipO2qqw4tGvidwxTSVERMQBNCMi8v/S9p9ia5cH6HzgCwA2+EZRc+GnhIfpCr8iIo6iGRERYNM7y8hoFEqnA19wDldirn2RVqlLqKsSIiLiUJoRkXLt3NlzLOvxPF3iXsAVO/srNCTjvdlEDw6zOpqISLmgIiLl1oG4vZz61wCiM1cAsKzRQELjphJY19viZCIi5YeWZqRcWj5sFr5RobTKXEEavix/6HM6756Bt0qIiEiJ0oyIlCvpB9PZFDmMzns/A2CTdwRV58+iU0SgxclERMonzYhIubH5gxWcatCazns/y9+Q2nU8LVJj8FcJERGxjGZEpMzLy8ljac8JdP51PBXI40CFIE69NYvo+ztZHU1EpNxTEZEy7fcVyRy7/g6i05cCsCxoAK1i36Z+gK/FyUREBLQ0I2XYilFf4NUphND0paTjTfwDn9J572f4qoSIiDgNzYhImZNxKIMNUSPosnsGAJu9rsb3h1lERDe0NpiIiJxHMyJSpmydvooTgW3osnsGebgQ0+UZmh+JI0AlRETEKWlGRMqEvJw8lt74ChELn6Ei5/jdtT7HJs8iengXq6OJiMglqIhIqZey+iCHr7uT6FMxACyvfxstYt+jXoMq1gYTEZHL0tKMlGorH/uGSmEhtDkVQyaVWXrPdML3zcFPJUREpFTQjIiUSlmpWayNHEXkjg8B2ObZHs9vZ9Pl2iaW5lqffJK9x7JoUL0ybQJUhkRELkdFREqdxFnrqHR3PyJzd2LHRtzVT9Bp8XjcvNwszTVpfiLvxe4pOH4gqiFP9gy2MJGIiPPT0oyUGvZzdmL+/SqN7riaBrk7SXGpx8bXlhC9YqLlJWR98slCJQTgvdg9rE8+aVEiEZHSQUVESoXD6w6xvlYPon96DDdyWVn3Jty3b6TN6K5WRwNg77GsKzovIiL5VETE6SU89T0V24fQ7sQvZOFJ3J0fEHbga6o2qWZ1tAINqle+ovMiIpJPRUSc1uljp4lrOZSwCb2pZo6T6NGGIz+vI/KTIdhcbFbHK6RNQBUeiCp80bShUQ21YVVE5DJsxhhjdYiLSU9Px9fXl7S0NHx8fKyOIyVox5cbqXBnPxrlJAIQ0/5Rwpe8gLuPu8XJLk2/mhERuTIqIuJU7OfsLL31Ta7+9gncyeGwSx1+f3Em7Z681upoIiLiAPr5rjiNo1uOsK/rIKKOLQAgoVYvGv32Ee2Ca1icTEREHEV7RMQprB73E4S0osOxBZyhEnH/eYeOh76jukqIiEiZphkRsdTZU2dJiHqcqE1TAdhRKQTXLz4n8sYWFicTEZGSoCIiltk1bwv060dU9hYAYtuMIuzXiVTyq2RxMhERKSlampESZ+yG2Fvfov5N7WmSvYWjtpqseX4+UeveUAkRESlnNCMiJepY4lH2RN9DVOqPAKyu0ZOgX6fT/qpaFicTERErlNsZkfXJJ5m77qDuBVKC1k5YiP2qVnRM/ZGzuBN785u0P/wTNZyphBxcAxvn5P9TREQcrlzOiOguqSUrOz2blV3HELXuDQB2ubfEzPqcqJtbWZzsLxaPhfjJ/zuOGAXXjrcqjYhIuVDuZkR0l9SSlfRjIvtqhRWUkNhWw/E/tJqmzlZCDq4pXEIg/1gzIyIiDlXuiojukloyjN0QN+B96vRqR7OzGzlmq86qZ34gatNUPKp6WB3vfMd3X9l5EREpFuVuaUZ3SXW84zuOsTv6XiIPfwfAmmrXUf+XGXRsXcfiZJdQrfGVnRcRkWJR7mZEdJdUx1r3yhJyWoQSdvg7snEj5sbXaHt4PrWcuYQA+LfP3xPyZxEP558XERGHKbc3vdNdUotXTmYOy7s9TeSqV3HBkOTWnNyZn9P8P62tjnZlDq7JX46p1lglRESkBJS7pZk/tAmoogJSTPYu3MmZm/oTfXotAHHB99M+7nU8q3tanOxv+KN8/LE3RGVERMShym0RkX/O2A3L7vmYtjNHUJnTnLBVZdcTHxE5sY/V0f4+/YRXRKRElbs9IlI8Tu09ycqA2+gy814qc5p1Va4he9UmwkpzCdFPeEVESlyJFJG3336boKAgKlWqRFhYGKtWrSqJYcVBNkyJ5XSTEMJ//5pcKhDT8yVapy6mTvt6Vkf7Z/QTXhGREufwIvLFF18wevRoxo4dy7p16wgNDaVHjx6kpqY6emgpZrmnc4mJeIqQUV2pm3eQvRWbsGvmCqJ/fhyXCmVgck0/4RURKXEO/9vj9ddfZ8iQIdx99920aNGC9957D09PTz7++GNHDy3FaP+S3eyo2Zno5RNwwRDXdDA1ktfR4q4ytJlTP+EVESlxDt2smpOTw9q1axkzZkzBORcXF7p3786KFSscOfQlJSfDd99ZNnzpYgz1f/uEbt8OJ5BMTtn8SHx4GpGv3WJ1Mse4djwE99JPeEVESohDi8ixY8fIy8ujVq3Cd1etVasW27dvP+/12dnZZGdnFxynp6c7JNf27TBihEM+ukzx5RTvMpQ+zAFgg28kNRd+RnhYfYuTOZh/exUQEZES4lQ/3504cSLjxzv+p5K1a8Pttzt8mFKt2dFlDF95BzVO7yfP5sqaXs/R/qsncHVztTqaiIiUIQ69smpOTg6enp58/fXX9OnTp+D8wIEDOXXqFN/9ZX3kQjMi9evXd8iVVeUizp2D55+HF14Aux0aNoTZsyEszOpkIiJSBjl0s6qbmxvt2rVjyZIlBefsdjtLliwhPDz8vNe7u7vj4+NT6CElaO9eiIyE557LLyEDB8KGDSohIiLiMA5fmhk9ejQDBw6kffv2dOzYkcmTJ5OVlcXdd9/t6KHlSsyeDUOHQno6+PjA++/Df/5jdSoRESnjHF5Ebr/9do4ePcqzzz7L4cOHad26NQsWLDhvA6tYJD0dhg2Dzz7LP46IyP/PQUGWxhIRkfKh3N59V4CVK6F///wlGRcXePZZeOopqOBUe5hFRKQM09845VFeHkyYAOPH5//noCCYNQs6dbI6mYiIlDMqIuVNcjLccQcsXZp/3L8/vPMO+Ppam0tERMqlMnCDECmyL7+EkJD8EuLtDZ9+mj8TohIiIiIW0YxIeZCZmX8p2enT84/DwvJ/JdOwobW5RESk3NOMSFm3ejW0aZNfQmw2ePrp/BkRlRAREXECmhEpq/Ly4JVX4Jln8q+WWr9+/s9yIyOtTiYiIlJARaQsOngQ7rwTYmLyj2+7Dd57D6pUsTSWiIjIX2lppqyZOzd/Q2pMDFSuDB9/DHPmqISIiIhT0oxIWZGVBQ8/DNOm5R+3b5+/IbVJE2tziYiIXIJmRMqCdeugXbv8EmKzwZNPQny8SoiIiDg9zYiUZnY7vPEGjBkDublQr17+tUG6di3WYdYnn2TvsSwaVK9MmwAt8YiISPFRESmtDh2CQYNg8eL8475982dEqlUr1mEmzU/kvdg9BccPRDXkyZ7BxTqGiIiUX1qaKY2+/z5/Q+rixeDpCR98AN98U+wlZH3yyUIlBOC92D2sTz5ZrOOIiEj5pSJSmpw+DQ8+CL17w/Hj+RcqW7sWhgzJ3xtSzPYey7qi8yIiIldKRaS02LQJOnSAd9/NP37kEVixApo3d9iQDapXvqLzIiIiV0pFxNkZA1Om5JeQbdugdm1YtAhefRXc3R06dJuAKjwQVfhS8EOjGmrDqoiIFBubMcZYHeJi0tPT8fX1JS0tDR8fH6vjlLwjR/I3pC5YkH/cqxd89BHUqFGiMfSrGRERcRQVEWf188/5JeToUahUCV5/HR54wCF7QURERKyin+86m7Nn4fHHYerU/OOQkPwrpLZsaW0uERERB9AeEWeyZQt07Pi/EjJyJCQkqISIiEiZpSLiDIyBt9/O35C6eTPUrJm/NDN5cv6yjIiISBmlpRmrHT0K99wDP/6Yf9yzJ0yfDrVqWZtLRESkBGhGxEqLFuXvAfnxx/yf4r75Jvz0k0qIiIiUG5oRsUJ2Nvz3v/m/hAFo0QI+/zy/lIiIiJQjKiIlLTER+veHDRvyj4cNg1deAQ8PS2OJiIhYQUszJcUYeP99aNcuv4RUr55/87q33lIJERGRckszIiXh+HG491749tv842uvhZkzoU4dS2OJiIhYTTMijrZkSf7ej2+/hYoV4bXX8i/ZrhIiIiKiGRGHycmBZ57J3/9hTP5dcmfPhjZtrE4mIiLiNFREHGHnzvwNqWvX5h/ff3/+L2Q8Pa3NJSIi4mS0NFOcjIGPP86f9Vi7FqpWhblz4b33VEJEREQuQDMixeXkSbjvPvj66/zjrl3h00+hXj1rc4mIiDgxzYgUh9jY/A2pX38NFSrApEmweLFKiIiIyGVoRuSfyM2FceNg4sT8ZZkmTfI3pLZvb3UyERGRUkFF5O9KSsrfkLpqVf7xPffAlCng5WVtLhERkVJESzNXyhj45BNo3Tq/hPj5wZdfwkcfqYSIiIhcIc2IXIm0NBg6NP8GdQCRkfkbUgMCrM0lIiJSSmlGpKji4yE0NL+EuLrCCy/Ar7+qhIiIiPwDmhG5nHPn8kvH88+D3Q4NG+ZvSA0LszqZiIhIqacicil798Idd8Dy5fnHd90FU6eCj4+1uURERMoILc1czOzZ+RtSly/PLx6zZ+ffMVclREREpNhoRuSv0tNh+PD8TagAnTrBrFkQFGRpLBERkbJIMyJ/tnJl/n1iPv0UXFzyL1YWG6sSIiIi4iAOKyIvvvginTp1wtPTEz8/P0cNUzzy8vI3pHbuDHv2QGAgxMXB2LH5l2wXERERh3BYEcnJyeHWW29l6NChjhqieCQn59+g7pln8gtJv36wcSNERFidTEREpMxz2L/ujx8/HoAZM2Y4aoh/7ssv4f774dSp/KuivvNO/q9kbDark4mIiJQLTrXukJ2dTXZ2dsFxenq6YwbKzIQRI2D69PzjsLD8DamNGjlmPBEREbkgp9qsOnHiRHx9fQse9evXd8xA06bllxCbDZ56CpYuVQkRERGxwBUVkSeffBKbzXbJx/bt2/92mDFjxpCWllbwOHDgwN/+rEt66CG4/Xb47bf8TaoVKzpmHBEREbmkK1qaeeSRRxg0aNAlX9OwYcO/Hcbd3R13d/e//f4iq1AB5sxx/DgiIiJySVdURGrUqEGNGjUclUVERETKGYdtVk1OTubEiRMkJyeTl5fHhg0bAGjcuDFeXl6OGlZERERKEZsxxjjigwcNGsTMmTPPO//bb78RHR1dpM9IT0/H19eXtLQ0fHSPFxERkTLHYUWkOKiIiIiIlG1O9fNdERERKV9URERERMQyKiIiIiJiGRURERERsYyKiIiIiFhGRUREREQsoyIiIiIillEREREREcuoiIiIiIhlHHavmeLwx0Vf09PTLU4iIiIiV8rb2xubzXbJ1zh1EcnIyACgfv36FicRERGRK1WUW7Q49b1m7HY7hw4dKlKjulLp6enUr1+fAwcO6D42l6Hvquj0XRWdvqui03d1ZfR9FZ2jv6tSPyPi4uKCv7+/Q8fw8fHR/1CLSN9V0em7Kjp9V0Wn7+rK6PsqOiu/K21WFREREcuoiIiIiIhlym0RcXd3Z+zYsbi7u1sdxenpuyo6fVdFp++q6PRdXRl9X0XnDN+VU29WFRERkbKt3M6IiIiIiPVURERERMQyKiIiIiJiGRURERERsYyKCPDiiy/SqVMnPD098fPzszqOU3n77bcJCgqiUqVKhIWFsWrVKqsjOaW4uDh69epF3bp1sdlsfPvtt1ZHcloTJ06kQ4cOeHt7U7NmTfr06cOOHTusjuWU3n33XUJCQgouNhUeHs78+fOtjlUqTJo0CZvNxqhRo6yO4nTGjRuHzWYr9GjevLlleVREgJycHG699VaGDh1qdRSn8sUXXzB69GjGjh3LunXrCA0NpUePHqSmplodzelkZWURGhrK22+/bXUUpxcbG8uwYcNYuXIlixcvJjc3l+uuu46srCyrozkdf39/Jk2axNq1a1mzZg3XXHMNvXv3ZuvWrVZHc2qrV6/m/fffJyQkxOooTqtly5akpKQUPJYtW2ZdGCMFpk+fbnx9fa2O4TQ6duxohg0bVnCcl5dn6tatayZOnGhhKucHmHnz5lkdo9RITU01gImNjbU6SqlQpUoV8+GHH1odw2llZGSYJk2amMWLF5uoqCgzcuRIqyM5nbFjx5rQ0FCrYxTQjIhcUE5ODmvXrqV79+4F51xcXOjevTsrVqywMJmUNWlpaQBUrVrV4iTOLS8vjzlz5pCVlUV4eLjVcZzWsGHD+Ne//lXo/3fJ+Xbt2kXdunVp2LAhAwYMIDk52bIsTn3TO7HOsWPHyMvLo1atWoXO16pVi+3bt1uUSsoau93OqFGjiIiI4KqrrrI6jlPavHkz4eHhnD17Fi8vL+bNm0eLFi2sjuWU5syZw7p161i9erXVUZxaWFgYM2bMoFmzZqSkpDB+/Hi6dOnCli1b8Pb2LvE8ZXZG5MknnzxvM85fH/oLVcRaw4YNY8uWLcyZM8fqKE6rWbNmbNiwgYSEBIYOHcrAgQPZtm2b1bGczoEDBxg5ciSzZs2iUqVKVsdxaj179uTWW28lJCSEHj168PPPP3Pq1Cm+/PJLS/KU2RmRRx55hEGDBl3yNQ0bNiyZMKVQ9erVcXV15ciRI4XOHzlyhNq1a1uUSsqS4cOH8+OPPxIXF4e/v7/VcZyWm5sbjRs3BqBdu3asXr2aKVOm8P7771uczLmsXbuW1NRU2rZtW3AuLy+PuLg43nrrLbKzs3F1dbUwofPy8/OjadOm7N6925Lxy2wRqVGjBjVq1LA6Rqnl5uZGu3btWLJkCX369AHyp9GXLFnC8OHDrQ0npZoxhoceeoh58+YRExNDgwYNrI5UqtjtdrKzs62O4XS6devG5s2bC527++67ad68OU888YRKyCVkZmaSlJTEnXfeacn4ZbaIXInk5GROnDhBcnIyeXl5bNiwAYDGjRvj5eVlbTgLjR49moEDB9K+fXs6duzI5MmTycrK4u6777Y6mtPJzMws9G8Te/fuZcOGDVStWpWAgAALkzmfYcOGMXv2bL777ju8vb05fPgwAL6+vnh4eFiczrmMGTOGnj17EhAQQEZGBrNnzyYmJoaFCxdaHc3peHt7n7fPqHLlylSrVk37j/7i0UcfpVevXgQGBnLo0CHGjh2Lq6sr/fr1syaQ1T/bcQYDBw40wHmP3377zepolps6daoJCAgwbm5upmPHjmblypVWR3JKv/322wX/NzRw4ECrozmdC31PgJk+fbrV0ZzOPffcYwIDA42bm5upUaOG6datm1m0aJHVsUoN/Xz3wm6//XZTp04d4+bmZurVq2duv/12s3v3bsvy2IwxpuTrj4iIiEgZ/tWMiIiIOD8VEREREbGMioiIiIhYRkVERERELKMiIiIiIpZRERERERHLqIiIiIiIZVRERERExDIqIiIiImIZFRERERGxjIqIiIiIWEZFRERERCzzf3+mSb/vxuOEAAAAAElFTkSuQmCC"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# running a new cycle taking into account the seed data and model\n",
+ "# TODO: need to find a way to incorporate the seed data into the cycle\n",
+ "cycle = Cycle(\n",
+ " metadata=study_metadata,\n",
+ " theorist=bms_theorist,\n",
+ " experimentalist=popper_experimentalist,\n",
+ " experiment_runner=synthetic_experiment_runner,\n",
+ ")\n",
+ "cycle.run(num_cycles=1)\n",
+ "\n",
+ "# plot output of architecture search\n",
+ "all_obs = np.row_stack(seed_cycle.data.observations)\n",
+ "x_obs, y_obs = all_obs[:, 0], all_obs[:, 1]\n",
+ "plt.scatter(x_obs, y_obs, s=10, label=\"seed data\")\n",
+ "\n",
+ "all_obs = np.row_stack(cycle.data.observations)\n",
+ "x_obs, y_obs = all_obs[:, 0], all_obs[:, 1]\n",
+ "plt.scatter(x_obs, y_obs, s=10, label=\"collected data\")\n",
+ "\n",
+ "x_pred = np.array(study_metadata.independent_variables[0].allowed_values).reshape(\n",
+ " ground_truth_resolution, 1\n",
+ ")\n",
+ "y_pred_seed = seed_cycle.data.theories[0].predict(x_pred)\n",
+ "y_pred_final = cycle.data.theories[0].predict(x_pred)\n",
+ "plt.plot(x_pred, y_pred_seed, color=\"blue\", label=\"seed model\")\n",
+ "plt.plot(x_pred, y_pred_final, color=\"red\", label=\"final model\")\n",
+ "plt.legend()\n",
+ "plt.show()\n"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/example/cycle/simple_cycle_uncertainty_experimentalist.ipynb b/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb
similarity index 97%
rename from example/cycle/simple_cycle_uncertainty_experimentalist.ipynb
rename to docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb
index 0b6c64313..7fc16de7b 100644
--- a/example/cycle/simple_cycle_uncertainty_experimentalist.ipynb
+++ b/docs/cycle/simple_cycle_uncertainty_experimentalist.ipynb
@@ -11,6 +11,18 @@
"collapsed": false
}
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
{
"cell_type": "code",
"execution_count": null,
diff --git a/example/pipeline/Experimentalist Pipeline Examples.ipynb b/docs/pipeline/Experimentalist Pipeline Examples.ipynb
similarity index 73%
rename from example/pipeline/Experimentalist Pipeline Examples.ipynb
rename to docs/pipeline/Experimentalist Pipeline Examples.ipynb
index 1f28a8c32..71f367052 100644
--- a/example/pipeline/Experimentalist Pipeline Examples.ipynb
+++ b/docs/pipeline/Experimentalist Pipeline Examples.ipynb
@@ -1,38 +1,46 @@
{
"cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Introduction\n",
+ "This notebook demonstrates the use of the `Pipeline` class to create Experimentalists. Experimentalists consist of two main components:\n",
+ "1. Condition Generation - Creating combinations of independent variables to test\n",
+ "2. Experimental Design - Ensuring conditions meet design constraints.\n",
+ "\n",
+ "The `Pipeline` class allows us to define a series of functions to generate and process a pool of conditions that conform to an experimental design."
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"outputs": [],
"source": [
- "import numpy as np\n",
- "\n",
- "from functools import partial\n",
- "from autora.variable import DV, IV, ValueType, VariableCollection\n",
- "from autora.experimentalist.pipeline import Pipeline\n",
- "from autora.experimentalist.pool import grid_pool\n",
- "from autora.experimentalist.filter import weber_filter\n",
- "from autora.experimentalist.sampler import random_sampler"
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
],
"metadata": {
"collapsed": false
}
},
{
- "cell_type": "markdown",
+ "cell_type": "code",
+ "execution_count": 3,
+ "outputs": [],
"source": [
- "# Introduction\n",
- "This notebook demonstrates the use of the `Pipeline` class to create Experimentalists. Experimentalists consist of two main components:\n",
- "1. Condition Generation - Creating combinations of independent variables to test\n",
- "2. Experimental Design - Ensuring conditions meet design constraints.\n",
+ "import numpy as np\n",
"\n",
- "The `Pipeline` class allows us to define a series of functions to generate and process a pool of conditions that conform to an experimental design.\n"
+ "from autora.variable import DV, IV, ValueType, VariableCollection\n",
+ "from autora.experimentalist.pipeline import Pipeline\n",
+ "from autora.experimentalist.pooler import grid_pool\n",
+ "from autora.experimentalist.filter import weber_filter\n",
+ "from autora.experimentalist.sampler import random_sampler"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
@@ -58,15 +66,12 @@
"The examples in this notebook will create a Weber line-lengths experiment. The Weber experiment tests human detection of differences between the lengths of two lines. The first example will sample a pool with simple random sampling. We will first define the independent and dependent variables (IVs and DVs, respectively).\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"outputs": [],
"source": [
"# Specifying Dependent and Independent Variables\n",
@@ -102,10 +107,7 @@
")"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -125,8 +127,17 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "outputs": [],
+ "execution_count": 5,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "Pipeline(steps=[('grid_pool', ), ('weber_filer', ), ('random_sampler', )], params={'grid_pool': {'ivs': [IV(name='S1', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 1 Intensity', rescale=1, is_covariate=False), IV(name='S2', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 2 Intensity', rescale=1, is_covariate=False)]}, 'random_sampler': {'n': 10}})"
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"## Set up pipeline functions with the partial function\n",
"# Random Sampler\n",
@@ -153,16 +164,23 @@
"The pipeline is run twice below to illustrate that random sampling is performed. Rerunning the cell will produce different results.\n"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
+ "collapsed": false
}
},
{
"cell_type": "code",
- "execution_count": null,
- "outputs": [],
+ "execution_count": 6,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sampled Conditions:\n",
+ " Run 1: [(3.75, 3.75), (0.0, 3.75), (2.5, 5.0), (3.75, 5.0), (1.25, 1.25), (2.5, 3.75), (2.5, 2.5), (1.25, 3.75), (1.25, 2.5), (0.0, 0.0)]\n",
+ " Run 2: [(1.25, 5.0), (0.0, 5.0), (5.0, 5.0), (0.0, 1.25), (1.25, 2.5), (2.5, 2.5), (1.25, 3.75), (3.75, 3.75), (2.5, 3.75), (0.0, 0.0)]\n"
+ ]
+ }
+ ],
"source": [
"# Run the Pipeline\n",
"results1 = pipeline_random_samp.run()\n",
@@ -172,10 +190,7 @@
" f'Run 2: {results2}')"
],
"metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
+ "collapsed": false
}
},
{
@@ -189,8 +204,18 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "outputs": [],
+ "execution_count": 7,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sampled Conditions:\n",
+ " Run 1: [(1.25, 2.5), (0.0, 2.5), (3.75, 5.0), (0.0, 3.75), (0.0, 0.0), (0.0, 1.25), (2.5, 2.5), (1.25, 1.25), (3.75, 3.75), (1.25, 3.75)]\n",
+ " Run 2: []\n"
+ ]
+ }
+ ],
"source": [
"## Set up pipeline functions with the partial function\n",
"# Pool Function\n",
@@ -236,8 +261,17 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "outputs": [],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "Pipeline(steps=[('grid_pool', ), ('weber_filer', ), ('random_sampler', )], params={'grid_pool__ivs': [IV(name='S1', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 1 Intensity', rescale=1, is_covariate=False), IV(name='S2', value_range=None, allowed_values=array([0. , 1.25, 2.5 , 3.75, 5. ]), units='intensity', type=, variable_label='Stimulus 2 Intensity', rescale=1, is_covariate=False)], 'random_sampler__n': 10})"
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"pipeline_random_samp = Pipeline([\n",
" (\"grid_pool\", grid_pool),\n",
@@ -274,4 +308,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
-}
\ No newline at end of file
+}
diff --git a/example/synthetic/inventory.ipynb b/docs/synthetic/inventory.ipynb
similarity index 72%
rename from example/synthetic/inventory.ipynb
rename to docs/synthetic/inventory.ipynb
index edd49aef2..54be9ee17 100644
--- a/example/synthetic/inventory.ipynb
+++ b/docs/synthetic/inventory.ipynb
@@ -3,15 +3,26 @@
{
"cell_type": "code",
"execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
"metadata": {
- "collapsed": true
- },
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
"outputs": [],
"source": [
- "from sklearn.linear_model import LinearRegression\n",
- "\n",
- "from autora.synthetic import retrieve, Inventory"
- ]
+ "from autora.synthetic import retrieve, Inventory\n",
+ "from sklearn.linear_model import LinearRegression"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
},
{
"cell_type": "code",
diff --git a/docs/theorist/bms/example.ipynb b/docs/theorist/bms/example.ipynb
new file mode 100644
index 000000000..b297a26bd
--- /dev/null
+++ b/docs/theorist/bms/example.ipynb
@@ -0,0 +1,210 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Bayesian Machine Scientist"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Example"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Let's generate a simple data set with two features $x_1, x_2 \\in [0, 1]$ and a target $y$. We will use the following generative model:\n",
+ "$y = 2 x_1 - e^{(5 x_2)}$"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "x_1 = np.linspace(0, 1, num=10)\n",
+ "x_2 = np.linspace(0, 1, num=10)\n",
+ "X = np.array(np.meshgrid(x_1, x_2)).T.reshape(-1,2)\n",
+ "\n",
+ "y = 2 * X[:,0] + np.exp(5 * X[:,1])"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Now let us choose a prior over the primitives. In this case, we will use priors determined by Guimerà et al (2020).\n"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "outputs": [],
+ "source": [
+ "prior = \"Guimera2020\""
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Set up the BMS Regressor\n",
+ "\n",
+ "We will use the BMS Regressor to predict the outcomes. There are a number of parameters that determine how the architecture search is performed. The most important ones are listed below:\n",
+ "\n",
+ "- **`epochs`**: The number of epochs to run BMS. This corresponds to the total number of equation mutations - one mcmc step for each parallel-tempered equation and one tree swap between a pair of parallel-tempered equations.\n",
+ "- **`prior_par`**: A dictionary of priors for each operation. The keys correspond to operations and the respective values correspond to prior probabilities of those operations. The model comes with a default.\n",
+ "- **`ts`**: A list of temperature values. The machine scientist creates an equation tree for each of these values. Higher temperature trees are harder to fit, and thus they help prevent overfitting of the model.\n",
+ "\n",
+ "\n",
+ "Let's use the same priors over primitives that we specified on the previous page as well as an illustrative set of temperatures to set up the BMS regressor with default parameters.\n"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "outputs": [],
+ "source": [
+ "from autora.skl.bms import BMSRegressor\n",
+ "\n",
+ "temperatures = [1.0] + [1.04**k for k in range(1, 20)]\n",
+ "\n",
+ "primitives = {\n",
+ " \"Psychology\": {\n",
+ " \"addition\": 5.8,\n",
+ " \"subtraction\": 4.3,\n",
+ " \"multiplication\": 5.0,\n",
+ " \"division\": 5.5,\n",
+ " }\n",
+ "}\n",
+ "\n",
+ "bms_estimator = BMSRegressor(\n",
+ " epochs=1500,\n",
+ " prior_par=primitives,\n",
+ " ts=temperatures,\n",
+ ")"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Now we have everything to fit and verify the model."
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:autora.skl.bms:BMS fitting started\n",
+ " 0%| | 0/1500 [00:00, ?it/s]\n"
+ ]
+ },
+ {
+ "ename": "KeyError",
+ "evalue": "'Nopi_*'",
+ "output_type": "error",
+ "traceback": [
+ "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
+ "\u001B[0;31mKeyError\u001B[0m Traceback (most recent call last)",
+ "Cell \u001B[0;32mIn[10], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43mbms_estimator\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfit\u001B[49m\u001B[43m(\u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\u001B[43my\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 2\u001B[0m bms_estimator\u001B[38;5;241m.\u001B[39mpredict(X)\n",
+ "File \u001B[0;32m~/Developer/autora/autora/skl/bms.py:133\u001B[0m, in \u001B[0;36mBMSRegressor.fit\u001B[0;34m(self, X, y, num_param, root, custom_ops, seed)\u001B[0m\n\u001B[1;32m 120\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39madd_primitive(root)\n\u001B[1;32m 121\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpms \u001B[38;5;241m=\u001B[39m Parallel(\n\u001B[1;32m 122\u001B[0m Ts\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mts,\n\u001B[1;32m 123\u001B[0m variables\u001B[38;5;241m=\u001B[39m\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mvariables,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 131\u001B[0m seed\u001B[38;5;241m=\u001B[39mseed,\n\u001B[1;32m 132\u001B[0m )\n\u001B[0;32m--> 133\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodel_, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mloss_, \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcache_ \u001B[38;5;241m=\u001B[39m \u001B[43mutils\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mrun\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpms\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mepochs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 134\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodels_ \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mlist\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpms\u001B[38;5;241m.\u001B[39mtrees\u001B[38;5;241m.\u001B[39mvalues())\n\u001B[1;32m 136\u001B[0m _logger\u001B[38;5;241m.\u001B[39minfo(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mBMS fitting finished\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
+ "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/utils.py:35\u001B[0m, in \u001B[0;36mrun\u001B[0;34m(pms, num_steps, thinning)\u001B[0m\n\u001B[1;32m 33\u001B[0m desc_len, model, model_len \u001B[38;5;241m=\u001B[39m [], pms\u001B[38;5;241m.\u001B[39mt1, np\u001B[38;5;241m.\u001B[39minf\n\u001B[1;32m 34\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m n \u001B[38;5;129;01min\u001B[39;00m tqdm(\u001B[38;5;28mrange\u001B[39m(num_steps)):\n\u001B[0;32m---> 35\u001B[0m \u001B[43mpms\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmcmc_step\u001B[49m\u001B[43m(\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 36\u001B[0m pms\u001B[38;5;241m.\u001B[39mtree_swap()\n\u001B[1;32m 37\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m num_steps \u001B[38;5;241m%\u001B[39m thinning \u001B[38;5;241m==\u001B[39m \u001B[38;5;241m0\u001B[39m: \u001B[38;5;66;03m# sample less often if we thin more\u001B[39;00m\n",
+ "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/parallel.py:102\u001B[0m, in \u001B[0;36mParallel.mcmc_step\u001B[0;34m(self, verbose, p_rr, p_long)\u001B[0m\n\u001B[1;32m 99\u001B[0m p_rr \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m0.0\u001B[39m\n\u001B[1;32m 100\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m T, tree \u001B[38;5;129;01min\u001B[39;00m \u001B[38;5;28mlist\u001B[39m(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtrees\u001B[38;5;241m.\u001B[39mitems()):\n\u001B[1;32m 101\u001B[0m \u001B[38;5;66;03m# MCMC step\u001B[39;00m\n\u001B[0;32m--> 102\u001B[0m \u001B[43mtree\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmcmc_step\u001B[49m\u001B[43m(\u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mp_rr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mp_rr\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mp_long\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mp_long\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 103\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mt1 \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mtrees[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m1.0\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n",
+ "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/mcmc.py:1160\u001B[0m, in \u001B[0;36mTree.mcmc_step\u001B[0;34m(self, verbose, p_rr, p_long)\u001B[0m\n\u001B[1;32m 1157\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1158\u001B[0m \u001B[38;5;66;03m# Try to replace the root\u001B[39;00m\n\u001B[1;32m 1159\u001B[0m newrr \u001B[38;5;241m=\u001B[39m choice(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mrr_space)\n\u001B[0;32m-> 1160\u001B[0m dE, dEB, dEP, par_valuesNew \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mdE_rr\u001B[49m\u001B[43m(\u001B[49m\u001B[43mrr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mnewrr\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mverbose\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1161\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnum_rr \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;241m-\u001B[39mdEB \u001B[38;5;241m/\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mBT \u001B[38;5;241m-\u001B[39m dEP \u001B[38;5;241m/\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mPT \u001B[38;5;241m>\u001B[39m \u001B[38;5;241m0\u001B[39m:\n\u001B[1;32m 1162\u001B[0m paccept \u001B[38;5;241m=\u001B[39m \u001B[38;5;241m1.0\u001B[39m\n",
+ "File \u001B[0;32m~/Developer/autora/autora/theorist/bms/mcmc.py:1093\u001B[0m, in \u001B[0;36mTree.dE_rr\u001B[0;34m(self, rr, verbose)\u001B[0m\n\u001B[1;32m 1090\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mpar_values \u001B[38;5;241m=\u001B[39m old_par_values\n\u001B[1;32m 1092\u001B[0m \u001B[38;5;66;03m# Prior: change due to the numbers of each operation\u001B[39;00m\n\u001B[0;32m-> 1093\u001B[0m dEP \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mprior_par\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mNopi_\u001B[39;49m\u001B[38;5;132;43;01m%s\u001B[39;49;00m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m \u001B[49m\u001B[38;5;241;43m%\u001B[39;49m\u001B[43m \u001B[49m\u001B[43mrr\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m0\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 1094\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 1095\u001B[0m dEP \u001B[38;5;241m+\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mprior_par[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mNopi2_\u001B[39m\u001B[38;5;132;01m%s\u001B[39;00m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;241m%\u001B[39m rr[\u001B[38;5;241m0\u001B[39m]] \u001B[38;5;241m*\u001B[39m (\n\u001B[1;32m 1096\u001B[0m (\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnops[rr[\u001B[38;5;241m0\u001B[39m]] \u001B[38;5;241m+\u001B[39m \u001B[38;5;241m1\u001B[39m) \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m \u001B[38;5;241m2\u001B[39m \u001B[38;5;241m-\u001B[39m (\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mnops[rr[\u001B[38;5;241m0\u001B[39m]]) \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39m \u001B[38;5;241m2\u001B[39m\n\u001B[1;32m 1097\u001B[0m )\n",
+ "\u001B[0;31mKeyError\u001B[0m: 'Nopi_*'"
+ ]
+ }
+ ],
+ "source": [
+ "bms_estimator.fit(X,y)\n",
+ "bms_estimator.predict(X)"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "## Troubleshooting\n",
+ "\n",
+ "We can troubleshoot the model by playing with a few parameters:\n",
+ "\n",
+ "- Increasing the number of epochs. The original paper recommends 1500-3000 epochs for reliable fitting. The default is set to 1500.\n",
+ "- Using custom priors that are more relevant to the data. The default priors are over equations nonspecific to any particular scientific domain.\n",
+ "- Increasing the range of temperature values to escape local minima.\n",
+ "- Reducing the differences between parallel temperatures to escape local minima.\n"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/docs/theorist/bms/example.md b/docs/theorist/bms/example.md
deleted file mode 100644
index c891f9c96..000000000
--- a/docs/theorist/bms/example.md
+++ /dev/null
@@ -1,61 +0,0 @@
-# Bayesian Machine Scientist
-
-## Example
-
-Let's generate a simple data set with two features $x_1, x_2 \in [0, 1]$ and a target $y$. We will use the following generative model:
-$y = 2 x_1 - e^{(5 x_2)}$
-
-```python
-import numpy as np
-
-x_1 = np.linspace(0, 1, num=10)
-x_2 = np.linspace(0, 1, num=10)
-X = np.array(np.meshgrid(x_1, x_2)).T.reshape(-1,2)
-
-y = 2 * X[:,0] + np.exp(5 * X[:,1])
-```
-
-Now let us choose a prior over the primitives. In this case, we will use priors determined by Guimerà et al (2020).
-
-```python
-prior = "Guimera2020"
-```
-
-## Set up the BMS Regressor
-
-We will use the BMS Regressor to predict the outcomes. There are a number of parameters that determine how the architecture search is performed. The most important ones are listed below:
-
-- **`epochs`**: The number of epochs to run BMS. This corresponds to the total number of equation mutations - one mcmc step for each parallel-tempered equation and one tree swap between a pair of parallel-tempered equations.
-- **`prior_par`**: A dictionary of priors for each operation. The keys correspond to operations and the respective values correspond to prior probabilities of those operations. The model comes with a default.
-- **`ts`**: A list of temperature values. The machine scientist creates an equation tree for each of these values. Higher temperature trees are harder to fit, and thus they help prevent overfitting of the model.
-
-
-Let's use the same priors over primitives that we specified on the previous page as well as an illustrative set of temperatures to set up the BMS regressor with default parameters.
-
-```python
-from autora.skl.bms import BMSRegressor
-
-temperatures = [1.0] + [1.04**k for k in range(1, 20)]
-
-bms_estimator = BMSRegressor(
- epochs=1500,
- prior_par=primitives,
- ts=temperatures,
-)
-```
-
-Now we have everything to fit and verify the model.
-
-```python
-bms_estimator.fit(X,y)
-bms_estimator.predict(X)
-```
-
-## Troubleshooting
-
-We can troubleshoot the model by playing with a few parameters:
-
-- Increasing the number of epochs. The original paper recommends 1500-3000 epochs for reliable fitting. The default is set to 1500.
-- Using custom priors that are more relevant to the data. The default priors are over equations nonspecific to any particular scientific domain.
-- Increasing the range of temperature values to escape local minima.
-- Reducing the differences between parallel temperatures to escape local minima.
diff --git a/docs/theorist/bms/search_space.ipynb b/docs/theorist/bms/search_space.ipynb
new file mode 100644
index 000000000..07171e1c5
--- /dev/null
+++ b/docs/theorist/bms/search_space.ipynb
@@ -0,0 +1,126 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Bayesian Machine Scientist\n",
+ "\n",
+ "## Search space\n",
+ "\n",
+ "BMS searches the space of operations according to certain parameters to find the best model. As such, the search space is defined by the set of operations that can be applied in each computation step of the model. These operations are also referred to as *primitives*. We can select from the following set of primitives:\n",
+ "\n",
+ "- **$\\textit{constant}$**: The output of the computation $x_j$ is a constant parameter value $a$ where $a$ is a fitted float value.\n",
+ "- **\\+**: The output of the computation $x_j$ is the sum over its two inputs $x_i, x_{ii}$: $x_j = x_i + x_{ii}$.\n",
+ "- **\\-**: The output of the computation $x_j$ is the respective difference between its inputs $x_i, x_{ii}$: $x_j = x_i - x_{ii}$.\n",
+ "- **\\***: The output of the computation $x_j$ is the product over its two inputs $x_i, x_{ii}$: $x_j = x_i * x_{ii}$.\n",
+ "- **\\/**: The output of the computation $x_j$ is the respective quotient between its inputs $x_i, x_{ii}$: $x_j = x_i / x_{ii}$.\n",
+ "- **abs**: The output of the computation $x_j$ is the absolute value of its input $x_i$: $x_j = |(x_i)|$.\n",
+ "- **relu**: The output of the computation $x_j$ is a rectified linear function applied to its input $x_i$: $x_j = \\max(0, x_i)$.\n",
+ "- **exp**: The output of the computation $x_j$ is the natural exponential function applied to its input $x_i$: $x_j = \\exp(x_i)$.\n",
+ "- **log**: The output of the computation $x_j$ is the natural logarithm function applied to its input $x_i$: $x_j = \\log(x_i)$.\n",
+ "- **sig**: The output of the computation $x_j$ is a logistic function applied to its input $x_i$: $x_j = \\frac{1}{1 + \\exp(-b * x_i)}$.\n",
+ "- **fac**: The output of the computation $x_j$ is the generalized factorial function applied to its input $x_i$: $x_j = \\Gamma(1 + x_i)$.\n",
+ "- **sqrt**: The output of the computation $x_j$ is the square root function applied to its input $x_i$: $x_j = \\sqrt(x_i)$.\n",
+ "- **pow2**: The output of the computation $x_j$ is the square function applied to its input $x_i$: $x_j$ = $x_i^2$.\n",
+ "- **pow3**: The output of the computation $x_j$ is the cube function applied to its input $x_i$: $x_j$ = $x_i^3$.\n",
+ "- **sin**: The output of the computation $x_j$ is the sine function applied to its input $x_i$: $x_j = \\sin(x_i)$.\n",
+ "- **sinh**: The output of the computation $x_j$ is the hyperbolic sine function applied to its input $x_i$: $x_j = \\sinh(x_i)$.\n",
+ "- **cos**: The output of the computation $x_j$ is the cosine function applied to its input $x_i$: $x_j = \\cos(x_i)$.\n",
+ "- **cosh**: The output of the computation $x_j$ is the hyperbolic cosine function applied to its input $x_i$: $x_j = \\cosh(x_i)$.\n",
+ "- **tan**: The output of the computation $x_j$ is the tangent function applied to its input $x_i$: $x_j = \\tan(x_i)$.\n",
+ "- **tanh**: The output of the computation $x_j$ is the hyperbolic tangent function applied to its input $x_i$: $x_j = \\tanh(x_i)$.\n",
+ "- **\\*\\***: The output of the computation $x_j$ is the first input raised to the power of the second input $x_i,x_{ii}$: $x_j$ = $x_i^{x_{ii}}$.\n",
+ "\n",
+ "## Example"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 0,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The following example sets up a search space over four illustrative operations found in Wikipedia pages that are tagged by psychology. These operations are our primitives:"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "outputs": [],
+ "source": [
+ "\n",
+ "primitives = {\n",
+ " \"Psychology\": {\n",
+ " \"addition\": 5.8,\n",
+ " \"subtraction\": 4.3,\n",
+ " \"multiplication\": 5.0,\n",
+ " \"division\": 5.5,\n",
+ " }\n",
+ "}"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "We can then pass these primitives directly to the BMS regressor as follows:"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "outputs": [],
+ "source": [
+ "from autora.skl.bms import BMSRegressor\n",
+ "\n",
+ "bms_estimator = BMSRegressor(\n",
+ " prior_par=primitives\n",
+ ")\n"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/docs/theorist/bms/search_space.md b/docs/theorist/bms/search_space.md
deleted file mode 100644
index 524b1b528..000000000
--- a/docs/theorist/bms/search_space.md
+++ /dev/null
@@ -1,51 +0,0 @@
-# Bayesian Machine Scientist
-
-## Search space
-
-BMS searches the space of operations according to certain parameters to find the best model. As such, the search space is defined by the set of operations that can be applied in each computation step of the model. These operations are also referred to as *primitives*. We can select from the following set of primitives:
-
-- **$\textit{constant}$**: The output of the computation $x_j$ is a constant parameter value $a$ where $a$ is a fitted float value.
-- **\+**: The output of the computation $x_j$ is the sum over its two inputs $x_i, x_{ii}$: $x_j = x_i + x_{ii}$.
-- **\-**: The output of the computation $x_j$ is the respective difference between its inputs $x_i, x_{ii}$: $x_j = x_i - x_{ii}$.
-- **\***: The output of the computation $x_j$ is the product over its two inputs $x_i, x_{ii}$: $x_j = x_i * x_{ii}$.
-- **\/**: The output of the computation $x_j$ is the respective quotient between its inputs $x_i, x_{ii}$: $x_j = x_i / x_{ii}$.
-- **abs**: The output of the computation $x_j$ is the absolute value of its input $x_i$: $x_j = |(x_i)|$.
-- **relu**: The output of the computation $x_j$ is a rectified linear function applied to its input $x_i$: $x_j = \max(0, x_i)$.
-- **exp**: The output of the computation $x_j$ is the natural exponential function applied to its input $x_i$: $x_j = \exp(x_i)$.
-- **log**: The output of the computation $x_j$ is the natural logarithm function applied to its input $x_i$: $x_j = \log(x_i)$.
-- **sig**: The output of the computation $x_j$ is a logistic function applied to its input $x_i$: $x_j = \frac{1}{1 + \exp(-b * x_i)}$.
-- **fac**: The output of the computation $x_j$ is the generalized factorial function applied to its input $x_i$: $x_j = \Gamma(1 + x_i)$.
-- **sqrt**: The output of the computation $x_j$ is the square root function applied to its input $x_i$: $x_j = \sqrt(x_i)$.
-- **pow2**: The output of the computation $x_j$ is the square function applied to its input $x_i$: $x_j$ = $x_i^2$.
-- **pow3**: The output of the computation $x_j$ is the cube function applied to its input $x_i$: $x_j$ = $x_i^3$.
-- **sin**: The output of the computation $x_j$ is the sine function applied to its input $x_i$: $x_j = \sin(x_i)$.
-- **sinh**: The output of the computation $x_j$ is the hyperbolic sine function applied to its input $x_i$: $x_j = \sinh(x_i)$.
-- **cos**: The output of the computation $x_j$ is the cosine function applied to its input $x_i$: $x_j = \cos(x_i)$.
-- **cosh**: The output of the computation $x_j$ is the hyperbolic cosine function applied to its input $x_i$: $x_j = \cosh(x_i)$.
-- **tan**: The output of the computation $x_j$ is the tangent function applied to its input $x_i$: $x_j = \tan(x_i)$.
-- **tanh**: The output of the computation $x_j$ is the hyperbolic tangent function applied to its input $x_i$: $x_j = \tanh(x_i)$.
-- **\*\***: The output of the computation $x_j$ is the first input raised to the power of the second input $x_i,x_{ii}$: $x_j$ = $x_i^{x_{ii}}$.
-
-## Example
-
-The following example sets up a search space over four illustrative operations found in Wikipedia pages that are tagged by psychology. These operations are our primitives:
-
-```python
-primitives = {
- "Psychology": {
- "addition": 5.8,
- "subtraction": 4.3,
- "multiplication": 5.0,
- "division": 5.5,
- }
-}
-```
-We can then pass these primitives directly to the BMS regressor as follows:
-
-```python
-from autora.skl.bms import BMSRegressor
-
-bms_estimator = BMSRegressor(
- prior_par=primitives
-)
-```
diff --git a/docs/theorist/bms/weber.ipynb b/docs/theorist/bms/weber.ipynb
new file mode 100644
index 000000000..ecd2759df
--- /dev/null
+++ b/docs/theorist/bms/weber.ipynb
@@ -0,0 +1,14324 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "3ba2ff78",
+ "metadata": {},
+ "source": [
+ "Example file which shows some simple curve fitting using BMSRegressor and some other estimators."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [
+ "# Uncomment the following line when running on Google Colab\n",
+ "# !pip install autora"
+ ],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "41b221c2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from functools import partial\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.model_selection import GridSearchCV\n",
+ "from sklearn.pipeline import make_pipeline\n",
+ "from sklearn.preprocessing import PolynomialFeatures\n",
+ "import matplotlib.pyplot as plt\n",
+ "from autora.skl.bms import BMSRegressor\n",
+ "from autora.synthetic import retrieve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "343e2f03",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def show_results_complete(\n",
+ " data_: pd.DataFrame,\n",
+ " estimator=None,\n",
+ " show_results=True,\n",
+ " projection=\"2d\",\n",
+ " label=None,\n",
+ "):\n",
+ " \"\"\"\n",
+ " Function to plot input data (x_, y_) and the predictions of an estimator for the same x_.\n",
+ " \"\"\"\n",
+ " if projection == \"2d\":\n",
+ " plt.figure()\n",
+ " data_.plot.scatter(\n",
+ " \"S1\", \"S2\", c=\"difference_detected\", cmap=\"viridis\", zorder=10\n",
+ " )\n",
+ " elif projection == \"3d\":\n",
+ " fig = plt.figure()\n",
+ " ax = fig.add_subplot(projection=\"3d\")\n",
+ " ax.scatter(data_[\"S1\"], data[\"S2\"], data[\"difference_detected\"])\n",
+ " if estimator is not None:\n",
+ " xs, ys = np.mgrid[0:5:0.2, 0:5:0.2] # type: ignore\n",
+ " zs = estimator.predict(np.column_stack((xs.ravel(), ys.ravel())))\n",
+ " ax.plot_surface(xs, ys, zs.reshape(xs.shape), alpha=0.5)\n",
+ "\n",
+ " if label is not None:\n",
+ " plt.title(label)\n",
+ "\n",
+ " if show_results:\n",
+ " plt.show()\n",
+ "\n",
+ " return"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "outputs": [],
+ "source": [],
+ "metadata": {
+ "collapsed": false
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "5bfd6747",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hj933fj77OQe/AANPrzvbetOTuklSXaIkqjkpiWbYluSiOZcfJ9S/X1859bOd5Epc40e+n+Bcztq4tyUpk/6Jm2bKtZoukKBaRy51tszu97fRB78Ap9w/sAYEZzAwwA+xgyfN6Hj3izgAH3wFwvu/vpwuqqqro6Ojo6OjsEHGvF6Cjo6Oj82CjC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiU7D+fznP48gCExPT+/1UurKxz/+cQYGBvZ6GTo6e44uJDqvO4aHh/md3/mdPRW23/3d3+Wv//qv9+z1dXTqiS4kOg3np3/6p0mn0/T39+/1UoCCkPyH//AfdCHR0akTxr1egM5rH4PBgMFg2Otl6OjoNAjdItFpOJViJAMDA7znPe/h2Wef5aGHHsJqtTI4OMhf/MVfVHzuM888w7/8l/8Sv9+P2+3mZ37mZwiHw2WPFQSB3/md39nw+gMDA3z84x8vXu/DH/4wAG95y1sQBAFBEHjqqae2/Bv++q//mhMnTmC1Wjlx4gRf//rXKz7uv/yX/8Lly5fx+/3YbDbOnz/PV77ylQ3rTCaTfOELXyi+vra+mZkZfumXfonDhw9js9nw+/18+MMffs3Fl3ReW+gWic6eMT4+zoc+9CF+7ud+jo997GP8+Z//OR//+Mc5f/48x48fL3vsL//yL+P1evmd3/kdRkZGePLJJ5mZmeGpp55CEISqX/ONb3wj//pf/2v+23/7b/zmb/4mR48eBSj+fyW+853v8MEPfpBjx47xe7/3ewSDQT7xiU/Q09Oz4bGf+cxneN/73sdHP/pRcrkcf/VXf8WHP/xhvvnNb/LEE08A8MUvfpGf//mf56GHHuKTn/wkAPv37wfgpZde4rnnnuMnfuIn6OnpYXp6mieffJI3v/nNDA8PY7fbq/5bdXTuG6qOToP53Oc+pwLq1NRU8Wf9/f0qoD7zzDPFn62srKgWi0X9tV/7tQ3PPX/+vJrL5Yo//8//+T+rgPqNb3yj+DNA/e3f/u0Nr9/f369+7GMfK/77y1/+sgqo3//+96ta/5kzZ9TOzk41EokUf/ad73xHBdT+/v6yx6ZSqbJ/53I59cSJE+pb3/rWsp87HI6yNW32fFVV1eeff14F1L/4i7+oar06Ovcb3bWls2ccO3aMxx57rPjv1tZWDh8+zOTk5IbHfvKTn8RkMhX//a/+1b/CaDTy93//9w1d4+LiIkNDQ3zsYx/D4/EUf/6Od7yDY8eObXi8zWYr/nc4HCYajfLYY4/xyiuvVPV6pc/P5/MEg0EOHDiA1+ut+ho6OvcbXUh09oy+vr4NP/P5fBtiHwAHDx4s+7fT6aSzs7PhsYOZmZmKrw9w+PDhDT/75je/ycWLF7FarbS0tNDa2sqTTz5JNBqt6vXS6TS/9Vu/RW9vLxaLhUAgQGtrK5FIpOpr6Ojcb/QYic6esVkml1rn6c+yLNf1epvxgx/8gPe973288Y1v5I//+I/p7OzEZDLxuc99ji996UtVXeNXfuVX+NznPse/+Tf/hkuXLuHxeBAEgZ/4iZ9AUZQG/wU6OjtDFxKdB4KxsTHe8pa3FP+dSCRYXFzk3e9+d/FnPp+PSCRS9rxcLsfi4mLZz2oJzmu1L2NjYxt+NzIyUvbvr371q1itVr797W9jsViKP//c5z634bmbreErX/kKH/vYx/iv//W/Fn+WyWQ2/F06Os2E7trSeSD40z/9U/L5fPHfTz75JJIk8a53vav4s/379/PMM89seN56i8ThcABUtTl3dnZy5swZvvCFL5S5lr773e8yPDxc9liDwYAgCGWvNz09XbHw0OFwVHx9g8GwwSL7oz/6o/tmVeno7ATdItF5IMjlcrztbW/jn//zf87IyAh//Md/zKOPPsr73ve+4mN+/ud/nl/8xV/kgx/8IO94xzu4du0a3/72twkEAmXXOnPmDAaDgT/4gz8gGo1isVh461vfSltbW8XX/r3f+z2eeOIJHn30UX72Z3+WUCjEH/3RH3H8+HESiUTxcU888QSf/vSn+bEf+zF+8id/kpWVFf77f//vHDhwgOvXr5dd8/z583zve9/j05/+NF1dXezbt4+HH36Y97znPXzxi1/E4/Fw7Ngxnn/+eb73ve/h9/vr+G7q6NSZvU4b03nts1n67xNPPLHhsW9605vUN73pTRue+/TTT6uf/OQnVZ/PpzqdTvWjH/2oGgwGy54ry7L667/+62ogEFDtdrv6+OOPq+Pj4xvSf1VVVT/72c+qg4ODqsFgqCoV+Ktf/ap69OhR1WKxqMeOHVO/9rWvqR/72Mc2pP/+2Z/9mXrw4EHVYrGoR44cUT/3uc+pv/3bv62uv9Xu3LmjvvGNb1RtNpsKFNcXDofVT3ziE2ogEFCdTqf6+OOPq3fu3Kn4N+joNAuCqtY5sqmjU0c+//nP84lPfIKXXnqJN7zhDXu9HB0dnQroMRIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foMRIdHR0dnV2hWyQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ApdSHR0dHR0doUuJDo6Ojo6u0IXEh0dHR2dXaELiY6Ojo7OrtCFREdHR0dnV+hCoqOjo6OzK3Qh0dHR0dHZFbqQ6Ojo6OjsCl1IdHR0dHR2hS4kOjo6Ojq7QhcSHR0dHZ1doQuJjo6Ojs6u0IVER0dHR2dX6EKio6Ojo7MrdCHR0dHR0dkVupDo6Ojo6OwKXUh0dHR0dHaFLiQ6Ojo6OrtCFxIdHR0dnV2hC4mOjo6Ozq7QhURHR0dHZ1foQqKjo6Ojsyt0IdHR0dHR2RW6kOjo6Ojo7ArjXi9A5/WFqqrIskw2m8VgMBT/J4r6mUZH50FFFxKd+4aqquTzeSRJIpvNFn8uiiJGoxGj0agLi47OA4igqqq614vQee0jyzL5fB5FURAEgVwuhyiKqKqKqqooioKqqgiCgCAIurDo6DxA6EKi01BUVUWSJCRJAkAQhKJlIghCxcdrogIQDAYxGAy0trYWhcVoNFZ8ro6Ozt6gu7Z0GoaiKEUrBChaG5pIaBZIKYIgYDAYiv8Oh8MYjUa8Xi+5XA5BEBBFsSgomrjowqKjs3foQqJTdzSrIp/Pl7mr1j+mms2/1NW1/trrhcVkMhVdYbqw6OjcP3Qh0akrmtvq5s2btLW1EQgEdr2pl3pf11ssmwnL+hiLLiw6Oo1DFxKduqFt6LIsE4/H8fl8u97At3t+qbBogqMoCrlcjmw2qwuLjs59QBcSnV2j1YZIkoSiKIiiWBYLqcf1q0ETB11YdHTuL7qQ6OwKzZUlyzJAUUS01N7dshtBqiQs2v+y2Sy5XK64Zl1YdHR2ji4kOjtGO+mXWiGlbCYAtWzS9bRsSoP+BoNhg7CUWiwmk6koLJX+Nh0dnVfRhUSnZjRXlpaVVWmj3U4AatmYG1XqtJWwZDKZ4mN0YdHR2RpdSHRqQlEUJEna4MpaT70sifu5YW8nLBMTE7S3t+P1estcYbqw6Lze0YVEpyqqqQ0pZS+C7fVmvbBEo1H8fj+KohQtFlEUN8RYdGHReb2hC4nOtlRqc1JNWu5eB9sbgVb8WGqxKIpCNpslk8nowqLzukQXEp0tKa0N0eIF1VCLAKTzMpNrKdJ5Gb/DTH+LDfEB2HjXC6omLLIsF1vll8ZYSvuE6cKi81pCFxKdimxWG1It1QrJXDjN31xfZiGaQVXBZBA52unkfSfbsZsNTWeRbIUmEJrYlgqLJEnF31fqE6YLi86DjC4kOhvYrDakFqoRgJyk8M0by8xHMwy02DAaRJJZiaG5KAGHibcfad3x39AMbCYskiQVux9rwlLaJ0xvma/zoKELiU4Z29WGVEs1QjITSjMfzdLnK4gIgMNixGM3cX0+zhsP+B8oi2Q7dGHRea2iC4kOUF1tSC1UIwBZSUFWVEyG8texGESykkJOVnb8+o2g3oK2nbCAPj1S58FAFxKduriy1lNJSBIZiZdnIwwvxECV6fJYsZpEImkJn91UfFwwledgqx2H2UDwNWSRbMdmwlLa2VifHqnTjOhC8jpHlmUWFhbweDyYzea6BX3XC0kiI/GFF2YZXoxjNYnIssKtxQQ2s4F0LksyK2E1GYik8zjNBi4Ptrzug9CVhEXLoltcXCSZTDIwMFAmLPr0SJ29QBeS1ymltSHXr1/noYcewmKx1O3664XklbkIt5fiDAbsmAwiiiKTysrMxzI81O8lksqTzMmc7HJxod/LgVZH2Vp1ylvm53I5UqkUwKYWiz49Uud+oQvJ65BKI3Ab4f/Xrg8wupzAbBAxG0W0l7KZDagqOC1GfuJ8F5KiYjKIG66jsxGtu0A1Q7706ZE6jUYXktcRpRtNaVZWvVq+l7J+szIZRJRNXsMoFk7S64PupetuFpplE65m3r0+PVLnfqELyeuErQLq98MiOd7l5upchHhGwmkpfO1CqTxWo1jmxqp0nWYSkmahmpn3+vRInfuFLiSvA0rbnFTKyBJFsWzTrweCICArKtF0HrvZwOkeNxOrLbwwFWY+kkFRFOxmkTcd9LO/1b7ldXR2jz49UqeR6ELyGqbaNif1PvXLisqVhTQvzsQxjo3gthl5dL+f95/u4HSPhzvzYZYWFxgM2DnVaURVFChxyVT6O3TKqcYi2YqthEWfHqlTK7qQvEappTZkvRtqt3x/ZJV/GIuDotDrFQkmcvzvK/OkczLnWsEZHuViTwBVlRkeHkaSJDweDz6fj5aWFpxOZzHlVd+0KrNbIVlPqbBUMz1SSzXWOxvrgC4kr0m0CvVq25zUM9iezEo8PbaG1SjiMYLXZsJrM7EUzfC3VyaQ2tNcOHMcv99ffM1UKkU4HCYcDjM7OwuA1+vF5/MVrSmdjTRyA9enR+rUgi4kryFKa0NqaXNST9fWWiJHNJ3HYzHAvRYn+bxENrZGJKWy761n6OjwF1uACIKAw+HA4XDQ09ODqqrE43HC4TDBYJBwOAzArVu38Pl8+Hw+bDZbXdb6IHO/3X3bCUskEiGdTtPb26vPYnkdogvJa4T1tSG13MD1DLY7LAbMRgOZtIoFlWQyyerqGpjtdLQ5CXicxcdulsLqdrtxu9309/czPz/P/Pw8NpuNxcVFRkZGsFgsRVHx+Xx1LaR8UKi3a6tW1gtLOp0mEonQ3d1dZrGsb5mvC8trE11IHnBqHYFbid1aJKqqspbIoagqrU4LJ7vcfOd6FCdZ0ukMTm8LaxmBU50uOty1bfqaz35wcBAASZKIRqNFN9jw8DAOh6MoKl6vF5PJtM1VXxs004asWcD69MjXJ7qQPMCsD6jvtDfVboLts6EUX7u6yPhqAkWF/hYbjwy46bZkmImpOD1eBNnA6R4nHzrXvWvRMhqN+P1+/H4/UGgPosVXJiYmSKVSuN3uorB4PJ6yIr3d0EzZY3ttkaxn/Xr06ZGvL3QheUDZrjakFnYabA8lc/zJM9PMhVO0u60IAgzNBLk2NstPHHdwWRXoHtyP125iMODAIO5M5LZam8lkoq2tjba2NgAymUxRWG7fvk0ulyvLCHO5XK+JbrmaBdAsaIkdm6FPj3xtowvJA8ZuR+BWYqcWyZXZCLPhFAdanYgChMNhnEqSmMnBguTkvDfDhQHfrtdWC1arlc7OTjo7O1FVlXQ6TTgcJhQKcffuXRRFKWaE+Xw+nE7nA7lRNbtFsh21DPla7wrTaT50IXmAaMTcEO06O7FIlqIZREFAUSRWVtcA6OrqQIjlWYpLqJ76uIJ26lISBAG73Y7dbqe7uxtVVUkkEkWLZWpqClEUywL3NputqTbozWhGIdnNJq9Pj3yw0YXkAUFRFObn57Hb7TgcjroXo+1ks/Y5zGQyWRYWwrichYC3IAhk8ln8DjOqmqvL2uqFIAi4XC5cLhd9fX0oikI8HicUCrG8vMzo6Chms7koKi0tLa/LjLCdoChK3T8rfXrkg4MuJE1O6QjcyclJent7cTqd2z+xBmpxbeUkhWg6j8Ms4sqsYMinSFuddLg9SIrKUiyD02rkbLcTNZGsy/oaFeQWRRGPx4PH42Hfvn3Iskw0Gi26wW7fvo3dbi8KSzNZAc20Fmh8zGYzYdE6G4MuLHuJLiRNjKIoSJJU5spqxKZazXUVReW7d1b47vAKwUSWfCrOqYDIL73zON+6E2YhkkZRIeA08/7TnRxw5pmKV75mLQHU+7lZGgwGWlpaaGlpAQoZYZFIpOgGy2Qy3Llzh9bW1mKqcb0ywmql2YREUZT7mna91fRIzWKJx+PY7XacTqc+PbLB6ELShGxWG9KILr1QnUXyD7eW+dKP7qLKeZRsEowWrkQtdITz/H/ffZjJtSSyAvsCdpwWI8vLy3UTvb1KuzWZTLS2ttLa2grAc889R1tbG7lcjpGREbLZbDHVuKWlBbfb/bo9Ae+1sFWaxTIxMUFXV1fx54KgT49sFLqQNBmlbU6g/PS+VxZJOifzneEV8tk0DiGLr9WH3WYjmMzx7HiQx4+1c6zTXfacerVdaaZ5JIIg0NLSgs9XyERLp9OEQiHC4TDz8/PIslzMCNOaTzZqo9rrjXs9zbYe7Xuj9QHTp0c2Fl1ImojS2pBSs12jkRbJVpv17GqU2aU1nCZob2vDaCx8bbw2EzOhFEuxDO3rKtbrKSTNis1mo7u7u5gRlkwmixlh09PTCIJQlhFmt9vr9vc028a9XR3JXlC6pkoWiz49sn7oQtIEVFsb0kgh0eIw61laWuL29ZvYrRYcTmdRRABSORmLyYDbuvFrtJ2Q1HKDNotFshWCIOB0OnE6nfT29hYzwsLhMKurq4yPj2M0GovWis/nw2q17vo1m4VmEzbYWtxKhUUf8rV7dCHZY2qpDWmUkKx3bamqyvBijO9dGSUSjfKW0/t5i0vgO7dXMBtFXBYj6bzMUizDuT4vA/6NEw5fixZJLX9PaUbYwMBAMSNMc4PduXMHq9VaZrGYzeaGrOV+0GyV9lC9lVTafBJ0YdkJupDsIdoXtZa5IY0OtiuKyp89O8E3rsySlVXsNge3X1zj0f1+Lu3zcX0hznIsh9UkcrrHw89e7q+47u2EpJaNsNk2zZ2wPiNMkqRiRtjMzAy3bt3C6XSWNZ8stf7W02wWQL3rSOrBTt1tWwmLPj2yMrqQ7AGltSG1zg1ptEXy3aFJvvqjaTwOC4cCHgRBJJrO8/TYGv/2bft53+kuVhNZvDYTh9qciJv0z3otBtvridFoJBAIEAgEAMjlcsX4ytjYGJlMBpfLVXSDud3uDanGzbRpNZuwQf3iNqXCUml6ZKmwvF6nR+pCcp/ZTZsTURQ3jWXsBk2ghoeH+d7QAkaLlZ5Wb/H3HpuJUDLHlZkIv/LW/exvdVR1zdeaa6uRmM1m2tvbaW9vByj2CAuHwywsLGwYR9xsFkCzB9vrSWkmpT49soAuJPeRWkfgrkcUxWKxVT3J5/MEg0HsdjttXd1MTMc2vrYgkM5Xbw3V05J4LVok22Gz2bDZbHR1daGq6oZxxNp3SZZlfD5f3dvm1EqzWSSKoty3uI0uLLqQ3BfW14bs9AvUiBjJ0tIS09PTWCwWLl68SOLOGs9Px8hJCmZj4SbMywqyonCsy1X1dXWLpH4IwsZxxC+99BJ2u51gMMjExEQxI2yvxhE3W7Bd++7txZq2EpbZ2Vni8TgHDhx4TU2P1IWkwawfgbub+Qr1FBJZlhkZGWFhYYHOri4i8RSCIHB5fws/GF/jxnwMq8mAAKTyMsc6XLzxgL/q6+sWSePQUlcDgQAdHR0oilLMCKs0jrilpaWmjLCd0IyuNtgbIVlP6T2vpflr9/JrZXqkLiQNorTgaa/nhqwnmUxy7do1VCDqPchfvrTISjTN1+Zu8sSpdn7t7Qf47u1VXpwKo6oqFwZ8PH68Dbet+l5K9aojeVBupL2ktBU+bD+O2OfzbZkRthOa0bUFzSEkpciyvKGZ5FbTIx8UYdGFpAE0cm7IboVkaWmJmzdv0t3dzctRB1/+0QKKJCECk8Ek//37U/zco/18+Hw3Hz7fvavX0i2SxrHVxr0X44ibLdiudYdoto1XE5JSNutsXCosH/nIR/jYxz7GRz7ykb1Y9rboQlJn6jkCdz276bVV6so6efIkRoePbz1/HZtZxGU3k0rlafHZWIxm+OuhRd52uBWbeeebS736gjXbRtAs66nFArgf44ib0SJpJmHTqCQk66kkLEtLS3W3IutJ867sAUM7QSwtLTExMcHDDz9c9xtrpxaJ5soSBIHLly9jt9t5ZTZCLCPR7bEg5fNoe77XbiKUyrEQzVSV5rsVr6cWKXvBTr9fjRhH3GzB9mYWklrjVYIgkEqlsNs3dpBoFnQhqQPrXVlaE7h6sxMhWVxc5NatW3R3d3P48OHizeW0GDEbBLKSglEAKGzWOUnBbBBxWnbn6tD+/s1Oqloh13Y3RzOdcpuJeomrINRnHHEzBtubUUgURanZjag1BHW5qs+avN/oQrJL1teGGI3GhlSfQ21Cst6VpRW6aRxodXCwzcn1+RitdhFVhUxeJpjM8dgBP+3u+jQUrCQkS0tL3LhxA0VRsFqtxeptn89XcTiSbpFspFGuJEHYOI44FosRDoc3jCPWPjeLxdKUrq29Gjq2FZrLu1aSySQOx+48BI1EF5IdUlobUtrmpFH9sKB6IankypIVlWt3o9xZSmA2Cjw84ONTb9rHH353nPHlGOmMQlrMcbLLw889MrDrtZYKiYaiKIyMjDA/P8+JEydwOp3FmelTU1PcvHmzbFCUx+N5zbZIqQf3Y+MWRRGv14vX690wjnhubo7h4WHsdjuKohAOhzGbzfd1UuJmNKtFUk2MpBKpVEq3SF5rVBqBW1qA1Ig2JtrrbCcklVxZ2bzMf/3eOD+cCJGXC8//y5fu8vFL/fzhB47z9PBdhu5M8NaLhznd48FkqF9/Ik0EMpkMQ0NDyLLM5cuXMZvN5PP5sn5T2Wy2OCjq1q1bSJKE2+0uuluaoXq7WdgrC6DSOOJwOMzNmzeZm5tjdHQUl8tV1nxyLyyD15KQ5HI58vk8TqezQavaPbqQ1MBmI3BLaaRFslUdiSzL3Llzh8XFxQ2urL+/tczTY2u02M04LIVpcSvxHJ97boYTXS4e6vdgCgm8od9X17VC4T0LBoNcu3aN1tZWjh07hsFgKFb5l2KxWMqCwMlkkpWVFSKRCFeuXEEUxaI7paWlZdfzPB5kmkXUTCZT8SBw/vx5VFUtxldKxxGXNp+8Hxt8swrJTlxuiUQCQBeS1wLrA+qb5ahraa+N+CJvJlLJZJKhoSFEUSy6skr5/sgaBkHEYTEW197mMjMXTvPCVJh3H3LVXfy092ZqaoqZmRmOHj1KT09PTc933hukNT09zWOPPUYsFiMUCrGwsMDIyAg2m63MV9/M6ZH1ppliEqVdG8xmMx0dHXR0dBR7TWlWppYRVppq3KhxxM0qJDuJkSQSiWJSRLPy+rnzdkEttSHal6RRQrL+JLpZVlYp8ayE0VC+Zu1vyOTlhsyC1yyOhYUFHn74Ydxu9zbP2BpBEIq++sHBQSRJKiuyS6fTxbbrLS0t9+3ku5c0i5Bo35316xEEYc/GETezkNRqkWipv83492joQrIF1Y7ALUX7kjRqboh23a1cWes52+Phb68voagq4r31p/MyBlHgYJuz7gHtaDTK1atXgYK7YzdBws2yv4xGI62trbS2tgKUnXy1jDCv11u0VvY6vlJvmskiqbZBomZlbjeOuDSLb6fuy9eSkDRDfHA7dCHZhJ22OSm1SOqNJiSJRIJr165t6spaz/tOd/LSTJjZUBqnxYCsqGQkhYf6fTw04EPKZeqyXlVVuXv3Lnfu3GFwcJCxsbFdu5uqvXmsVitdXV3FtuvJZJJQKFTWHbc0vmKxWHa1rr2mWWIkUO7aqoVaxhG3tLTg9XqrLubbaZptI9Fc3rUKSbOn/oIuJBWpdQRuKVrspBGZW9qN8cILL2zpygIIJnKk8jKdbgsDfjv/4b1H+frVRV6ZjWAxibz1cCs/froTs1FEzgvF/j47PfXIssytW7dYW1vj3Llz+P1+xsbG9qTfVunJV6uF0FJW5+fnuX37drGJobZBVSt4zXIqbDaLpB59rbYaRzw1NUUymax6HHEzWiSa4OoWyWucnY7AXY/BYKi7RSLLMqOjowAcO3aMrq6uio9bjmX5H89M8fJsBFlR6XBb+MmHenj7kTZ+7R0HKj5nuyr07dCC/QaDgcuXLxfdEVu5zO5n99/13XFLmxhqY221zKKd9praC5plY2lUVXs144hLm0+WjiNuRiEp9W7UQiqV0i2SB4WtakNqpd4pwNpGra1Hu7HWk83L/M43b3N7KY7basJmEpkNpfn09yawmwxc3l95nkhpc7haWV5e5saNG/T09HDo0KGym6RZZ5Ksb2JYqddU6SyPegWA60kzubbul3VUyzjiTCbTdOnhOxUSzSJpZl73QlJNbUit1FNISrOyDh48yPe+971Nr/3CVJjR5QTtLmtxuqHdbGQ+kuarVxc3FZJKVejboSgKo6Oj3L17lxMnTtDR0VHxurvd8O7HBrV+rG0ikSAUCrG2tsbExAQmkwmfz1e0VpuBZnNt7cXpf7NxxFpsDApiox0K9to9pAXaa12D5tJrZl7XQrJ+BG695hfUo7q9UlaWtilvtjnPhlIARRHRsJsNTK4lN918ak0QyGQyXLt2jXw+z6VLlzY9LW31Xtb6Pt+vE3hpr6n+/v6yliCyLHP9+nUcDkfRDbZXldvaWpuBZmjYKAjl44hv3ryJyWTCarU2zTjinfb/SqVSupA0K6W1IaW9/+vBbi2SzQoMt+vl1eIwowKyomIQX72xM3mFTrd105u9FoskFAoxNDREIBDg/PnzWwap6zElsfQxqqqSziuYDEJd2rhUQ2kAeHl5mSNHjiDLMqFQqFi5vdtZHjvh9ejaqgVVVbHZbPT19dHf398U44hfqw0b4XUoJDupDamV3QjJ4uIiN2/epLe3d0PMYbtrP7LfzxdfnGMpmqHVZcFoEIimC66YJ05tdD1paH//VmtWVZWpqSkmJiY4fPgwvb29275v9YyR3A2nGV3LsJbMYzII7A/YOd7pwmq6v9aANn1Qi6+UulPm5uYAyjanSi3X60Ezbd7NGNhev6bNxhGHQqH7No54pw0bE4lEUzdshNeZkGi1IXfu3EGWZY4ePdqQm3Enri3NlbW0tMSpU6c2LTAsFZJnxtb42tVFZkMpun1W3n+6k9/4sYN8+nsTLEQySIqK02Lgg2e7eO/JrYVkq00/n89z48YNYrEYDz30EB6Pp6q/qV4xklAW5ibCZBUBn91ETlJ4cTpCLCPzpoMtxSLLvWD9LA+tm/Hq6ipjY2OYzeaiRePz+ep66m0WIWkmUdPYTtz2YhzxToUkmUzS2dm5q9duNK8bIVlfG9Ko4VNQu0VS6sq6dOnSlgWG2rX/5voin/nHCXKygsVoYHUuxs35OL/4xgE++1NnGbobJZ2TOdjmpMu7ffbKZg0hY7EYQ0ND2O32YtfeaqmXRTKfEDDaJA60v9pmxXEv7nO0w0HHLmenVMt2f4sgCLjdbtxud7HATquDmJmZ4datWzidzqKo7Ca+0kybd7NNR4Ta4xHbjSPO5/NlIw524sLcTYykmftswetASCrVhjSy1TsUNvtqr7+dK2s9giCQykp84fnZe3Uir26iwWSO//Wju7zreDsPDdTWybdSv627d+9y+/ZtBgcHGRwcrHnjqoeQKCrE8jBgKf+q2swG8jGVaFqiY3dtvBqGwWAoO/VqdRChUIg7d+6Qz+c3xFeqeY836221VzRDsH09u3W3VRpHrLXgmZubQ1XVmscR78Yi0YPte8hmbU4aUTBYSjXXL3VlnT59ungS2g5RFJkKpggl87ht5QOE3FYj4VSe0ZVEzS3hSzd9WZa5ffs2y8vLnD17dtO6lVquuVMMooDFABmp/P2UFBVBAIuxuU7CW1FaB1G6OWl+eqAoKlp8pRLNFGiH5rKONOoZtykdR9zT07PjccS7CbbrQrJHrB+BW/qh3g+LZCshWZ+VVUsaoiiKmAwColjIzipFVgpNGS3G2k892ppTqVSx+LHWta1np0IiKSqL0QypnIzTYqTdphKXFCKpPB6bEUlRmY9kaHdZ6PI0V9FZtazfnLQGhqFQqDjS1mKxlMVXtMmDzWiRNKNrq1Fr2uk44t1MR9SF5D6zvjakUlbWXrq2FhYWuHXrVtWurErX7vGYONjq5MZCDItRxCAKyIpKOJVnf6uDY521Z3gIgkAoFGJycnLbPl61XLNWIYmm83x/NMhsOI2sqBhFkVRa4A0H7CwkZKaDaQyiQKfbwqV9vg01Mw8qpQ0M9+3bV5ZVpI0h1trka8kOzSIkr3WLZDsqjSPWYmOl44hFUcRisZDP56seR6w1INXTf+8jWm1IaTfSSl/wvbBIdurKqnRtVJVfe8cB/v03hlmMZoHCZt3utvDv3nmwrIakGrT2MOPj45w8ebJuGSK1ComqqvxwIsz4apK+FhsWo0g6L/P8JOQkhfedbCeSljAZBFqd5vtWS7IXrM8qymazZfEVgBs3buD3+xs6IKoamjXYvldrWh8by+fzRCIRJicnicVi/OAHP6hpHLGe/nufKG1zUk1tSC3B8J1gMBjKWmnsxpWloaoqwWSOjFzIrjrY5uRPP3qWp0ZXC24et4W3Hm6lxVFbemk2m+XatWvIssyxY8fqmmZYq5AEk3lmw2k6PZZi7MNmMuCxCEyFMjwiCPS33N9q5PXs1WZtsViKkwdzuRzPPvssfr+faDTK9PR00UevuVLuZ9X2azHYXk9MJhOtra2srq4WW7rUMo74fsZIfv/3f5/f+I3f4Fd/9Vf5v/6v/6vq5z3wQrKTuSGNDraXWiS7dWUBPD8Z4rPPTjO5lkLK57jQu8CvPxGgw2Plx89U7gJcDeFwmKGhoWJjwno3uatVSHKyci+dudzsN4kCOUkhJzXuM3uQ0L7fPT09xaptzUevVW1brdayAVHVulJ2wuvdtVUtWoyk9FCgJV1owlI6jnhkZITu7u771v33pZde4k/+5E84depUzc99oIWklhG4pTTatWUwGJAkiZs3b7K8vLwrV9YrsxH+/TeGSeVkHBYDeRWenU6w8tWb/OlHzxTnsNeCqqpMT08zPj7OoUOH6Ovr4/nnn2/I3PZahMRrM+GyFDLP2lyvDp5KSNBtNeCxPdBf17qx/j1d76PX5niUxldKayA8Hk9dN9lm27QVRWlad9t6F1Zp0sX6ccTf/va3+bu/+zsMBgP/9t/+W9797nfztre9jUOHDtVduBOJBB/96Ef57Gc/y3/8j/+x5uc31ztdJVpAPZfL1Swi0HghyefzBINB4vE4ly9f3rGIAPzVS3dJ5WQCTjN2sxG7ScBtNTC5muSp0bWarydJEkNDQ8zMzHDhwgX6+/u3rWzfKbVe0242cKbHTSqncDeSIZzKMxdOo6gCpzqdr+mYSC1sl7WlzfE4dOgQDz/8MI888gjd3d1kMhlu3brFM888w9DQELOzsyQSiV1/7s1mkWgHomYTkmqytrShbL29vfz5n/85V69eRRAEzp8/z1e/+lVOnz7N7/7u79Z9bZ/61Kd44oknePvb376j5z9wR7ydjsAtRXM9NeIGWFhYYHp6GovFwsMPP7zrL/PwUhyzsfxvNN77z7GVZE3XisfjXL16FZvNtqFKfbPK9t2wnZBkJYVbSzFuLybIyyr7AnZOdjl5x5EAw4sJYhmJLo8Vfyscan0w03wbSbXfXYvFUlZcp514NYtFFMWyMcS1ujh1IamOndSR5HI58vk8v/Vbv4XBYCCTyZBOp+u6rr/6q7/ilVde4aWXXtrxNR4oIdmqNqQWtFOBLMt1a8xWWsTX19dHNBqtyxc54DQTSuZe/UFxcy70naqW+fl5hoeHGRgY4MCBAxveu0qV7btlKyHJSRLfvDbPaDCHw2zAIAo8NxliJpji/ac7ONLhRJJVTAaBZ+PjTbVR7TW7qSMpHUPc29tb1hV3YWGBkZERbDZbWXxlu3ukGV1b0JxCstN57dpnbbVa6xrLnJub41d/9Vf57ne/u6vrPhBCUlobspsRuBql4zjrQSKR4Nq1a8WsLO3GrAfvOdnBp5cnSGQkHBYDqqoSzaq47RbefrR12+eXph2fOXOG1tbKz7mfrq10Os3f/+AKT0+mCNhEBJcDq8OBz2tjJpLh1mKcR/e3YDa++hk3WzX3XlJPC6C0IntwcBBJkorWysTEBOl0uli/0tLSsiGjqN7rqQeN6uq9W3YiJI2e137lyhVWVlY4d+5c8WeyLPPMM8/wf//f/zfZbLaqNTe9kNRzBK6GdiPUI05SKSsrHo/XTaR+/HQnU2spvnljibVEDllWcZlFfvNdh+j2bp3iWUuVer3HA0NlIQkGgwwNDZEzemnv8NDrNpBKpoiEwywtLZJQzLysJDnmo9hxtdk2hL2mkaJqNBppbW0tHjgymUyxx9SNGzdQFAWv11u0WBwOR9MFtpvNQtLYSdPGRhcjvu1tb+PGjRtlP/vEJz7BkSNH+PVf//Wq19u0QtKIEbgaWr+t3QhJqStrfVZWPetUjAaRf/fOg3zgbBc35qOEVpc5HjDy8OGtrZHV1VWuX79OZ2cnR44cqaoZZCMtktJMsSNHjuCWHdy5vojNZsNutxNoDSBLMqOLEYzkGR4eRpIkvF4vsiyTSqWqbmrYKJrJKrpf74PVaqWrq6tsDHE4HC6bOmgwGLDb7WSzWSwWy/YXbTDNKiQ7iZGsd23VG5fLxYkTJ8p+5nA48Pv9G36+FU0pJOsD6vUUEY3dbPbrXVnrT/o7rVNRVZWXZyI8PbZGVlI41+flrYcCWEwG9rc62N/qYGwsSSaT2fIa4+PjTE9Pc/z4cbq6qqszaWSwXZIkXrl2g1t3I3i69jOZtuGxiXisRpZiWTrcFgRBICmpWKw23nJygGOdTpLJZPE0fPv2bSYmJho22+NBYq9cSZV6TEWjUUZHR4nH4/zwhz8sDofSxhDXezhUNTSjkGgH42azSOpF0wmJoigsLy8jyzKBQKBhN8xOLZJqCgx34iZSVZX/8x8n+PKVeSRFRQW+MbTIN/q8/JcPncB5r15kq6B4Lpfj2rVrpNNpLl68WFNbhUYF27PZLN9/9nmeX4KUOYA4n0aZS+O0Gtjns7KazDOxlgIErCaRCwNeDnc4y4LCc3NzHD16FCiM+tVme5T67utdG9HMNItlpMVXnE4nDoeD7u7uYmHd2NgYmUymWLF9P8cQN6OQaHvNTmMk95Onnnqq5uc0jZCUjsBdXV0ln89vGhiuB7UKyVaurPXsxNq5Mhvhy1fmMYgCLqsRQShUc1+ZjfC/X57nZx/pL167kkiFw2GuXbuGx+Ph8uXLNZ8EG+HaymazrKyssCwGSJrN7A84ik0WF6JppkMpPnimk0RORlZU2t0WOu9ZJ+vXJghC8aSrXVtrwX7z5k0URXn1JOzzYbfZmm4zqRfNFtzW1rN+OFTpDA+tYru0jYvdbm/I39GMQqLdszuxSJq98y80iZCsd2UZjcYt3Tf1oBb303aurN1cW+OZsSCSohZFBCjUj+TgO7dXNhUSVVWZmZlhbGyMgwcPFgsMa6WewXZVVZmYmCASidDW1sZoxIPHmi/r1NvusjC6nCCakTjbu/Xo3kp/z/raiEQiweTCKk/dXmQuNIbNbOJIp4dTA220+lsa2iJkL2g2Iam0cdtsNrq7u4sV24lEojiGeHx8HJPJVDZ/pV6uymYUElmWd+Siv1/tUXbLngvJ+hG4giBgNBobWnkO1Vskmiurr6+PgwcPVvUF1dxEtZwcs9KrHYvLriUIZPKvrrN0w9fasITDYd7whjfg89U2zKqUelkk+Xye69evk0gkaG1txel0IodU1r9tgiCgoiIp1b3mVmsTBIGcaGEyYyfvNHHQLxKNJ7mxmmQpNEGvdRiPu+AG8/v9983F0iiaxbWlUU3TxtL4Sn9/P7IsF9vka63WnU5nWXxlp2OIdzpAqpHspAMHFA6xukWyBZVG4GpvcqNbmMD27qdaXFmVrq1do1oX0/k+L1+/ukBOUoond0VRkRWVR/f7y66tKAqJRIKrV69isVi4fPnyrrNl6hFs1yrntfnuIyMjABzpdPH9O6u0OtVii/tgMofDbKSnynny2zG+miSSytPfUphM53da6fB7iaTzHN7nQswVTsN3794FqptE2Kw0q2urFgwGQ/H9h1fHEJd2xPV4PGUdcat9jWa1SHY6Znc3B8T7xZ4IyXZtTrSmh41kK7FKJBIMDQ1hNBp31PZ9JwWPbz4U4Hy/lyszEZK5giVSmMlu4SMP9RQfJwgCmUyG559/nv7+fg4ePFiXTWW3wfalpSVu3LhRrJxPZGWCaYUWUeZCv5eptSRjq0lsRpGcomIQ4PI+Dx3u6gRwq7WpqspSLFvmFoRC767VRJaMauBASQrr+kmEWqdcv9+/baZRs2zgzbIOqM/GXWkMsVYYWTqGWDsAVBplW8/11JudCkk6naa3t7cBK6oveyIk2hdgM5/h/XJtVdrod+LKWo/2nK2ERFZUrs5FCCZzHGpzsi/g4L9+6CT/+8o83xleIZOXuTzYwkce6ikWHiqKwsLCAqlUinPnzu2qGeR6dmqRKIrC2NgYc3NznDp1CpcvwN9cX+L63SiLq3HcFgNPmGL8izd0M7wYZ3othd1s4HC7gwFfdT7xatwmFoNIKld++FBUFVQwlgz6EgQBt9uN2+1mYGCgrJJbyzTSTsJaplEzbdrw2rBItqJSR1xN/FdWVhgbG8NisZQF7kvjK80oJDtJ/YXCodZutzdgRfVlz1xbW52A74dra/1r7MaVtR5NIDfbmCdWk/z6124xFUwiK2A2Crz1cCu//cQRPn6pj49f6tvwnHQ6XagIz+VwOBx1FREofB6lw7iqQUs3zmQyXLx4EafTyf/z8l2enwwRcJrxWg0kcgrfuL6E0SDyyH4/j9xz02mxsWrYLH6TyskksxJ2s4HBVgc/nAiRzEo4LEYUVWUxmqXFYaZ9C6tnfSW3lmmknYRLs8WaJTbRLOvQaHRl+3rxLx1lq6WCO53OovhLktR0QrLTuI2etbUL7reQ7NaVtd31S8nLCv+vr9xgNpTGZhIxigJZSeE7wysEHGb+j3ce3PCctbU1rl27Rnt7O21tbcXYQz2pNdgejUa5evUqHo+HS5cuYTQaWYhkuLkQo9NjxWMzsZISsRpFckaR5yaCnO/z7njGeuna8rLCtbsx7iwnSOcUbGaRfQEHh9rszIQyrCZyCAK02M1c6PdgM1V/EizNNFIUhXg8TjAYZGFhAUmSuHHjBq2trbsOCO+GZrNI7veExPWjbHO5XFnhajabxWw2Mz093TRW5W5iJLqQ7JD7ESMRRRFJkuriytrs+pUskucmQ8yF0thNIsZ78zWsJgOyKvON60v80psHsZsLXzgtjXZqaoqjR4/S09NDKBRqyHTHWlxbWifh/fv3s2/fvuJNGk7lSGTloitOEAVURcFjMxHNSCSyEi1Gc/H1allbKdfmY7w4E8FnM9LuNpPMyQzNRTnX6+adR1uJpvMYDSLtLjPWGkRkPaIo4vF48Hg8DA4O8swzz9Dd3U06nS4GhLW+U/d7bvpeb4yl7LWwmc3msomDt2/fJpPJEIvFmJmZKbMq9yq5YqdCoqf/bsNWXzyj0diweSGlrx8MBllaWtq1K6sSmwnJcjSLCsXsJQ2TKJDNy0RSeexmA7lcjuvXr5NKpXj44Ydxu91bXrce693OIlEUhTt37rC4uMjZs2cJBAJlv3dbjdhMBhJZqViJr6qQyEo4zIaiQGrU8tlqa0vlZEaWE/hsxuJ8erNRRADG11Kc6HKzv7UxN54gCMUTrhYQ1txg09PTGAwGfD4ffr+/rnUR69nrjXs9zdS0Ueuj53a7OXDgQNGqLE2usFgsZa127keN0U5iJNrsmFo6VOwVTWuRQH3nhZSSSCS4e/cuqqrWzZW1ns1cW/sCdkRBIK+omA2vbgY5WcFnNxNwmotuI7fbzaVLl8q+6I0Sku0skkwmw9DQEIqicOnSpbIAYCYvIwA9PhuH2h0MzUXp8lpRFJVIRgIk3nQwsGProHTTTOVkMnmFgLN8k3ZYDCxGs6RyMi5r47/WpQHhnp6eYt+p9XURpS1c6uUGa7YYyf12bW2HoijFe6bUqiwdQxwOh4tjiLVWOz6fr66fUyl6jGQP0D5ISZLqLiSaK8vr9SIIQsPM3M02/PN9Xk50ubg+H0NRCnUVOUlBVeEjF7pZWrjLyMgIBw4cYGBgoGK7kPttkYTDYYaGhvD7/Rw/frz4+SxEMvzTnRVGVhKAwIkuF48dCGAURUaW46zEJawGeOeRVh494K947WrR1mY3G7CaRJJZCYvxVTFJZmVsFayeerLVBl4612P//v3FuohQKFTWyVizVnbTHkS3SLZmq6wtbQyxZk1ns9kNn1Np1l693JV6jKRBbPXhiKJY11bssDErK5/PMz8/X7frr2czIRFFgU9/6CT/6R9G+OFEiJyk4rAY+YnzXZxzRJiYCHP+/PlioVa1190tlQRKVVVmZ2cZHR3l0KFD9PX1FT+3tUSWzz8/w2woTcBpRlVVvj+yxlw4zS8+to94tpXbY5OY1RyPnuzY1doUFRZiOZKGFH6HicPtTl6cjgDgtBhJ5mRCyTzn+zz3xRqphvV1EVonY639uslk2lUn42YSkma0SKrdtC0WS1l8JZVKFQP309PTxQOC9jnt9OApy3LNLjTte6PHSHZBPTO3KmVlLS0tNTQzbCsh9DvNfPrDJ1mOZQin8vjMCmPDN8hlTVy6dGnLkZc7ab9SDeuztmRZ5tatWwSDwYrtV16eiTAbTnOo3Yl4bx0+u4nJ1RTX56Nc3u8n5bOQSNSWUryelXiWZ+5K5JajWGx53FYjxzqdXOj1MLqaZDmew2YSOd/v4VzP1j27NJJZiVhGwmQQaXGYiutvFKWdjPv6+srag+ykk3GzubaazULaaR2JIAg4HA4cDkdxDHEsFiMUCrG4uMjIyEixeFXL2qtWHHYSI0mlUqiqqsdIdkO9Mrc2y8qqt8WznmoaN7a7raipCNev3Kg6a0z7fb1v3lLXVjqd5urVq4iiuKmwzQRT2IyGsk3YaBARBJiPFBpu7rZ/V1ZS+MeRNVbTKge8Bvw+G5FUnh9NR3j8aCsfONNZrCNxWLb/Kiuqyq3FOCPLSZJZGaNBoNNt4XyfB4/t/jV1XN8eZKtOxpWquJtt436QXFu1IIoiXq8Xr9cLUIyvrB9DrH1WWx0AdjqvHdBdW1ux3Y2w2+r27QoMdzp8qlo0F9TzkyH+4oU5RpbjdHms/PM3dPPekwUzemRkhPn5eU6dOkV7e3vV14X6V+9qri2tZqWjo4OjR49u+hoem4mcvNEVJisqTouheM3dCMndcJrFaJY2u4DZICIKAi0OM6m8wvBSgqMdTuzm6nuMTa2leGU2ittqotdnJS8rzIYzyIrKmw/5MRn2ZjOs1MlY65KrVXGXusGaTUia0bXVCGGrFF/RDgC3bt1CkqSyNi6lkw13Oh3RYDA0xdTJ7Whqi2Q3Ewy3KzBsdNGjKIo8NRHlMy9MIssqggjBRI6bCzEml+NcdIWQZZlLly7V5AOtpv3KTtB6eF29erVYs7IVp3s8vDQTZimWoc1lQVVhMZrBazdxostdvOZuhCSTL/yNJkN5IoDNJBLPSCgqGKrcv1RVZWw1icVowGcvWB8Wo4Fuj4XFWJa1RI5Oz/YNJBtNpS652il4cnKSdDqN1WpFVVWi0eiedzJuhJt1t9yvFinrDwClEz2npqaK6eAtLS3k8/kdT0dsJmtvM5paSHbi2qq2wLDRQqIKIl+4GkKSVezmV5tSpnIyn39hljOPB3jswsmav1yNEBJJkpieniaXy3Hx4kU8no2xhryscGcpQSSdp8Vu4lCbgydOdPC9O6uMrxaytgJOM0+caKe3pZAavFshcduMGA0CWan8GrGMxOE254ZanC3/RkUlnVewmcq/DyaDiKKqZKTGWae7obSK++DBg2QyGaampoqWI+xtJ2Pt822mzW4vem2tj4Np6eDhcJj5+Xni8TgTExPEYrGi1bJdRuqD0kIeXkOurVJX1pkzZ7adrthoIVlOKgRTcqFYThBABVmRMagyeVUkZevYUTqg9r7VS0iSySRXr14tpkJXEpGVeJYvPD/L+GoSSVYwGkQOtTv4+MV+Tvd4mAomEQSBA62OsljDTk6pqZzMcjyLKAi0OQtTFZ9aUDGk8hisEqFUHpvJwImu2gKQRlHAZzMxF06XrTGdlzEZRJxVpg3v9cnbarXi8XjIZDKcOXOmWGy3tLRUcyfjeqAJyV6/L6U0wzyS0nTwwcFBnn/+edrb28nn88X4itvtLh4C3G73hjU/KBlb0OQWSbUb/U56ZWnB5UadXiwmAwKFym7UwqlfVVWMBiOyrGLZZeuOegjJysoK169fp6enh0AgwPDw8IbHqKrKl6/MM7wYZ8Bvw2oykM7L3JqP85VX5vnkYwP4nZXnJdRa83JzIc6zEyHCqRyCINDusvDQgJdTrUaCskAqL9Prs3Kmx0Nfy/afcSIrMRtKk8zJOMwGujwWlmJZFqIZPDYjOUklnM5zuM2B39mYKvRGoTUG3etOxrpFUh2KohQzvaBQ4Ku5wW7cuIGiKGXtdmw2G6lUqmHjiAGefPJJnnzySaanpwE4fvw4v/Vbv8W73vWumq+1p0KyleujkRMMtetD4750XW4z+7wmJiJ5kGVEsTD5MZ1X8NhNXBqsXCdSDbudHaKqKuPj40xPT3PixAk6Ozs37eG1EM0wspygy2spVqbbTAba3RZuL8VZiec27a5bTft37e+YC6f57p1VVBX6Wuyoqsp8JMPTY0FOeAxcbnPT1tGFw2KoKl13NZ7l6bEgK4mCKCmqSpvTzOF2B6uJHJG0hMkgcK7HzdFOV8NTgOvJZjGJrToZz8zMlNVEtLS0bJlmXi3ad6aZLJJmFJL1WVtWq5Wukhk5iUSCcDhMMBjk2rVr/Oqv/ipHjhxBVVUWFxfp7Oys+5p6enr4/d//fQ4ePIiqqnzhC1/g/e9/P1evXuX48eM1XaupLZKtYiS1urIqXV+7TiPMf1EU+chhA59+OUtSEhEUAUFVsJhEfvuJI7uqwN6NRaKNwk0mk1y8eLGYo76ZOKVzMjlJwWosP7FbTSLRTJ50fnOxr8UiGVlOkMrJHCj2yRLob7ExtppkQVIY7BKrLjZUVJUrc1HWknkG/IWWNIqqMhtKYzdnefxYgExewWQQseywG/FeUu0hYqtOxnfu3MHhcJTVROzE1dqMrq1mFJKt6khKEyz6+vo4cuQIn/nMZ/hf/+t/cePGDXp6ejh69CjveMc7+Pf//t9v6HG3U9773veW/fs//af/xJNPPskLL7zw2hESo9FINput+Lt6tH3XXAONiJPIsszq6ipeknzxp0/xg9ksk2tJ2t0W3nuqkwH/7gbV7FRItFG4DodjQw+vzTb9DrcVr91EMFme1RRM5mixm2lzbZ6auNXmks1mmZiYwGaz4ff7iaSlDZu6IAgYBIGMXFsRXiSVL6QNuyxFS0O85ypbiWeJpiX8jgfLlbWeWjfu9Z2M8/l80Q12584dcrncjjoZN5uQNNJdvVO0NVUr1Farlfe85z2Mj49jsVj47Gc/yz/90z/xj//4jw0bciXLMl/+8pdJJpNcunSp5uc/cK4trYX5btu+C4LQkKLEZDLJ0NBQMaf8YG8HB+s8KXMnQrK4uMjNmzfZt28f+/fv33Djb2aROK1G3nIowNeGFpkJpnBajcQzEirwlsOBLS2rzcRJa0rpcDiIx+OMjY0RTppZjJvxmTzY7fbCZ6OoKIDLXJsrT3vk+r1NEArtVqq5lKKq96wWYc/qSzajHum2JpOJtrY22trayjoZB4PBmjoZazUkzSQkwI6sq0ZROlK8FrRge0tLCx/60If40Ic+VPe13bhxg0uXLpHJZHA6nXz961/n2LFjNV+naS2S9a4tWZYZHh5mZWVlR66szV6jnmm0y8vL3Lhxg+7ubhwOBysrK3W7dim1CImiKIyOjnL37t0t2+Vrop7MSjw/FeLGfAwRONXj4dEDfhwWIz8YWyOYytPfYudNhwI8PFA5yF56zfVoMa3egUEyZi/JdB5vQOBCLsXyjUWuTi7hMipYrFbSWDjQ7qbXVdum4LWZ8DtMLMVyZUH51USOVqcZr33rKvbZUJqRlQTRtITFIDLYaudQW/Nkz9S7RcpuOhk3Y1U7NFfwXxOSndSRNDr99/DhwwwNDRGNRvnKV77Cxz72MZ5++umaxaRphaQ0/bcREwyhfinAiqLw/NBt/vLKArNZG767KR7plTlub8xwrmqFJJvNcu3aNXK53LaFj4IgkMkr/I9nphi6G8UoioDKy7MRbszH+JePDXB5sIWcrBSqzKuo4Si1OFVVZXR0lLm5OQYOn+Dp2SzjKwvISuF03e218q7zB5gKppheTZDJpOkTs7Rn5kgpsCLnsNlsm+bfz0cyTAdTZCSFNqeZIx1O4tkok2tJrCYD2byM22rifJ+nbIb7eubCaX44GUJVwWU1kpUUfjQTIZWTm6bHVaMLADfrZBwMBjd0Mm62qutmFRLNA1ILiUSibvGQzTCbzRw4cACA8+fP89JLL/GZz3yGP/mTP6npOnvu2toMbZOvlytrq9fYDZlMhu89f5X/9EKSRF5EJQuhLFdm4EybyKWH1ao23VqoptBPcx95vV7OnTu3bUKBKIqMRmEoE6XXZytmaKVzMi/PRHhDf4TL+/1YxepPVdo68/k8165dI51Oc+nSJb41EmF0OUG/z4bJKCArMBVMcs0o8tMPdZPKyYiCgMtaOExcu3atOC0ynU7j8XiKLhen08mNhTg/nAiRyisYRQFJVulvsXF5n4+1ZI5IKo/HZmIwYN8wx6QURVUZWU6gqtB1Lx7ksoDFKDK5lsK5u/6TdeN+V5Jv1ck4HA4XpxJqFsv9GBS1Gc2aRbbT6Yj3uyBRUZRNY9Nb0bQWiSAIJJNJ7ty5UzdX1np2KyShUIihoSH+fsZMIi9gMrzqK87LCleXZZ6bDO16Fsd6trNI7t69y+3btzedaVIJQRC4mwTRSNkAKpvZAKjcWUpweX9tf4eWzPD888/jcDi4ePEiKQlGVxK0uc2YjSIqKkZRoMdr424kzVIsS6/vVYtT6zXkcDgYGBjY4MvPKCJXIjbsdjv72gouF0lRmVpL0emx8Mj+6tOss5JCJC1tyA5zWYwEk3mMjatffWBYX8EdDoe5efMmJpNpR52M640WaG8mIdlpgWSjx+z+xm/8Bu9617vo6+sjHo/zpS99iaeeeopvf/vbNV+rKYUkkUhw584dZFnmTW96U13y3Sux02C7qqpMTU0xMTFR8DG+PA2Un4IMAigCPD22dt+ERFEUbt++zdLSEufOncPvr/51RVFEpHIgWlVhJ3tBNBollUoxODjIwYMHEQSBfDZ7r21M+QnNZBCRZJW8vHEBpRbY+pTWKxNLpIOLWFMRRkeWsdpsOJ1ObIKZ8dUkF/f5qm6loqUDZ/IKpcloWUnBJIKxSfamZuttZTAYiu6RWjsZ15tmy9iCnQ+1anSLlJWVFX7mZ36GxcVFPB4Pp06d4tvf/jbveMc7ar5W0wmJ5srq6OhgeXm5YSICO7NI8vk8N27cIBaL8dBDDxVOXML05q/RgJumkpBoDRd3Oj5YEAT6XbCWhnjm1VN5LJ3HaBA50VXdrA8obHSTk5NMTk5iNps5dOhQ8Xdem4l2t4W5cJo+r7W4Ka4lcvjsJtpc1afliqJ4r81Ehn0BG4okk0gkSCSTLIRDGAW45YjQGgjQ0tKyrT/fKArsD9h5cTqCxSjishjIySqL0Qy9PitiquqlNZRmEpL1wfZaOxnX2w32WhKSRru2/uzP/qxu12qaGMn6rCy73c7CwkJDX7/WrK1YLMbQ0BB2u53Lly8XUyLfeayNL7+ygKKqxboFWSmc5N9yuP7BsvVCornYWltbOXbs2I6+tKIost+lYu7w8eJ0lMVoYaaI2SjyxoN+zvZWJySSJHHz5k0ikQhHjx5lcnISRVGZj2bIywodbiuPHvDztVcWGF9L4jSLpPIqIvDmQ604K8wV2Som1OG24LYZWUvkaHNZ8Pq8OD0eUqYkp9stOB2FSZi3b9/G6XQWYyuayyWYzDEdTBFNS3jtJnq8Vk52u5lcSxFK5TCJAn0tNs73eRharvltbRjNIiRbtZDfrJNxMBgsdjJ2uVzFz6QenYxfS0Ki99qqkdKsrEceeQSr1Uomk2l4cVEtFokWd6hUh/EvH9vHcxMh5iNpFFUt1i883A4PbZMiuxO0+gxVVZmZmWFsbIzDhw/T29tb0wYzsZrk+ckQy7EMXV4rSg5+6s1dPLTPz8hyHAGBIx0uTna7q3IPpVIprl69islk4vLlyySTSYJphc8+O810MIWkqLTYTbz5cCs/caGHl6aDzIfT9PosnO5xc6yj8ulr/d+kqCrhVB4B8NpNPNzv5dnJMBOrKQyigKSo7PM7uHioFbfVyODgILlcboPLJW/xMJYwI4lmHDYLmeUkPruJNx1s4WCrnXhWwmwQCTjNTdVCpdkskmrXUtrJGF7tN6WlGcPuOxk3o5DsZE1aUsODMB0RmkBINsvK0rKMGtnJsxohKW3Fcvbs2YrpeO1uC3/18xf48ivzvDgVxmkx8LaDPozLww254UVRRJIkbty4seko3O340XSYzz47TSSVx2wQeWEqjJoSObqc4Ny+Vs71eWu6XjAYZGhoiM7OTo4cOYIoiqxF4jw9ryC44nR7rZgMIquJLH89tMhHH+rhg2c6q77JNIvkbiTN85MRFu5ZTN1eK5cHfbzvZDszoRTpvEK7y8JgwF4WhzGbzWWzuSOxOF+7MstKOIqLDCmzBafTwUrYzJUZkXefaN9yaqKqqgSTeZI5GYtRpNVprqmt/W5oljRk2F0dyfp+U1oLl9JOxpq1Um0n42bo/Lue3Vgkehv5KlhcXNw0K6u0F1aj0gm3C7anUimGhoYQBGHbuIPXbuIXHh3gFx4dAAqnraeWGzP0R1EU7t69i8Ph4PLlyzXn8mfyMv/Py3dJZQu9rTTX0SvjEb46tMSZ/kDVKcuqqjI7O8vo6ChHjhyht/fVMv6JYJrVtMrFfXaM96rDu702JlaTXJmJcKStuhOn9v6Fkjn+/uYKoVS+GEsZW0kSSeX50NlOLlfZCFMQBGSDFcHm4czhAGaxYBUnEgly0TV+tLKMN7PIQGcAv99fFiAWBIGspHBlNsJ0ME1WKqQcd3ksXBjw4a6yH9huaRaLpF7TEUs7Ge/bt2/HnYyb0SLZTYxEd21VQUdHBy6Xq2JAXRCEus1t3wyDwUAul6v4O63FeldXV/GEXQulA6jq2a5hdXWVlZUVnE4nFy5c2NFNM7mWZCmWpcNjKdsgvWaB2XCa+WimLAV3MxRFKca1KllF8awCKkUR0XBYDCzHa8tVV1WV0ZUkq4kcB1pfba3tCBgYX00xtprkQr+3pmsKFNqpiAYDbo8Ht8eDNyCxFkvj9Qqsra0V+x35/f7CKGFZZmwxzp3lBO0uK3azgZykMBPOIAgR3nzI33A32IPq2qqFnXYyfq0IiaIoukVSLaIobpmV1ejhU5WC7YqiMD4+zszMTLHF+k6vDTs/jaynNBNKmwe96xtmvYfk3gCuashkMgwNDaEoCpcvX674OfrsJhAKNTWl/aoSGZkDgepPWtpGtZbIvToorOR3JoNAKFldtWBOUsjLCl6bkTaXhflImr4WW7HV/EoiR3/AyfGDrYj36mC0k7GiKLzw0hVuJ+3Y7Q5Eh4iqWjEbRTrchZG9oWR+y6LHetBsQnI/Nu5qOxk303ujsZPDZDKZBNBjJNWw3Qd+P4Sk9PpaS5FsNsulS5cqngZyksI3ri3y7eFl8rLKWw4F+NC5bpzrXBr1HImrxUNisRgPP/wwS0tL5PM7L7PeH3AUNr5olv57m6iqqkRzcK7HSvc2s8sjkQhXr17F7/dz/PjxTW+Sg60O2qwqk6spOjyWQowknsVmMnChxiQEVVXxOUzk143dVdVC7YnbuvWNmsnLDN2NMbqSJCcrtDrMdHstJHMSk2tpjAYBSVZoc1k41+spWhUGg4FAIEAgEGBxcZEDh44yeWsVKZdmfGy8YM24XDhcTjJ5I3m58SN7m6m/Vb1cW7WwVSfjlZUVJEni6tWrNXcybhQ7cc9rQqK7turA/XBtaUISDocZGhrC5/Nt2lIkJyn8qy8N8fxUGFBBhZdnInx9aJH/+bNvKKuI1jqi7lZIEokEV69exWq1cunSJcxmMysrK7u6rsVk4CMXevnss9OMrybvbaIqHgv8+Mmt4yNacsTBgwfp7+/f8ga1mQ080qGS8nsYW0kiKxJtLitvPRLgaKd7WzGUFZW5cJo7a3nMRoFjBwot7WdCaTrcFlBhMZahxWHmYNvmLgBFVXl6LMjNxQQ+mwmr0cBsOM1yPMcjg15AIJ4t1M70+WwV557kZYW0BE67jYHOVkKpPB1uM8lEkngiwdTdZTLZHBPGNTJthcykRkwk1GiWU3cziFppJ2Or1UokEsHv9xMKhYqdjDVR2aqTcaOQZbnmerhUKoXJZGq6Xmab0dRCUuvc9lrRhGp6epqxsTEOHTpEX1/fpjfp399c4vnJEKIoIAr3LA5VZXw1yRdemOWX3zxY9vjdtqnXugn39vZy6NChsnhGLUKSyEj8YCLIrfkYFqPI+X4vDw34+M0fO8TzkyFW4lm6vFbElSQHA5VjI4qiMDIywsLCwqbZa3fDaX44EWR0OYHdYuRkuw2bQeXDl/pZjWcLloDTgrmKYVKpnMzf31rh9lKCYLhQCTidXeV0t4vx1UKMR0Ao1KXsb9nSnbQUyzK+mqLbYy1mcrmtRqaCKWZCGd59onJHZABJUbl9LyZyYwnCd0K0ex0oqspCNIfLakV0mvFbPBxvs9JtzRMMBpmbm0MQhOLm5ff767aBNVPW1l5YJFuhqipms5ne3l56e3tr6mTcKHbi3k4kEjgcjqZ6b7fide3a0ipvp6enuXDhQnGe8mb808gaCEJZMFUUBPKKwneGVzYIyU7b1KuqytjYGDMzM5w8eZKOjo6y39fSRj6WzvOH3x3j5nwMURRQFHh6LMjbj7byC48O8BMXeoqPffrp8YrXzeVyRZffxYsXK5rbc+E0f/bDaZaiWTw2I6FUjtHFGAEZ3q2otG4xAKsSL06HGbobpdtrw6GYyEsyi9EsBlHgJ9/QRSRdsFTbXOZt54VE0xL5Cm1ZPFYjK4nshhhOKdfuRnlxOorTImIRVWIZidhqkgMBOyoQSUu4LUbO9rg50OrAIAp0dXWhKAqxWIxQKMTs3By3b98u9qDy+/243e4dn+SbKQ7QTGuBjfGISp2MtaC91sm4NGjfiBnpO4mRaELyoNDUFkkjXVvxeJzR0dFiS5FqTotbnQQr/W4nA6hyuRzXr18nlUptGqepZWb79+6scmM+Rq/PVrQEYuk83x9Z5dJgC6d7Xq1Yr3TdeDzOK6+8gsvl4uLFi5vm8j87HmQpmuVgu6MotOFEltEZgcm1JAe2cD2tJycp3JiP47GZcJgNZAQBgyjQ67NyN5JhMZYtGcm7PRajiFAh6J/OK/gdpk3byiezEreXEnhtBlocZlaN0O4yE81BKJXnvSfbEQQBoyhsqCERRZG4amE67yZismFrA5cxTzod48aNG4WYT8ngqFpcH820eTeDa6uU7bK21tcTlXYynpiYwGQylbnB6lF6sJPaFq09SrN8ztux50KyVfuLRrm2ND9/e3s7oVCoapfDmw4F+Mc7a2WtUNR7//32oxvdI7W6tmKxGFevXsXlcm0Yhbv+utUK1MszYSxGscyd5LaZWE3kuDkfKxOS9Z/F8vIy169fZ2BggAMHDmz6pVZVlZHlOF67qcxac1uN5BWYC6cqCslm18vLCjlZwbLOSjAZBGRVJSvVJs49XisdbgtzkTQ9Hhsmg0AkLZGVZI53tmy6jnhWIpmT6faWb/Jum5FwMk8qJ9OyycjeqWCK5ybD5GUFp8XIalJmRRV4aKCfR48fL2YdLS4uMjIygt1uL1orXq93242nWTaYZnNtKYpSVeEibOxkLMty0Q1Wz07GO3FtJZPJho3VbQR7LiRbUW/XVml33DNnzmA2m1lbW6v6+e892cFfDy3yylwURVWLItLXYuNnLm6cp1uLa0ubHDg4OMjg4OCWN+dOZ7aXokKhkKLCdbXZH1NTUxVda5WwmQzEM+XWo3Ivl9hUY8W33Wygw21lfDVZNs0wkpZwWYy0bZNem5UURpYTTK6lUIF9fjuPDvp4YbpQEZ+XVVxWIw8P+DiySVsWAIvRcK8bsFzWAyyTVzAbxbJ2+6VIisrwYgJVVYv1OD67ibVEjuHFBAN+e1nxnZZ1FAwGuX37Nvl8vsxaWb+hNFOM5EGzSLaiNCgP9etkvNMYyYNSQwKvIyHRqtQBLl26hN1uJ5FI1HR9i8nA/++nz/LlK/P8w60V8rLCWw+38pMP9VRsp1HNhl8axK527kotQnJhwMfwYpyspGC5Z5VE03msRgMnutxljxUEAUmSGBoaIhaLcfHixary2AVB4A39Pr78yjyJrITTYkRRVebDWVwmONxe2Q1VuiHmJIWpexMOW51mLu7zshDNMLGaQs3KpHISdiHPo/t9W8Zb8rLCt4dXuLWYwGgQEIDbSwmOdTj5seNthJI58rKKz24q1Llsgc9uor/Fzq3FOF2ewoaRyMpEcjJv6PNsOq8+mZWIpPMbRvp67SYWoxliaQlbiQitn5+uuVu0jrlWq7Vorfh8vqZybTWjRVIvYatXJ+Od1pHoMZIa2Mq1ZTAYyGQyu36N1dVVrl+/TkdHB0ePHi1+0TTXUy03ptVk4Kcv9vHTF/u2fex2G342m2VoaIh8Pl8Ut2qoRUjefqSNq7NRbizECpXcKhgNAm8/2srJdUKizXd3Op3FVOOtyORlUjkZj83EI/tbmA2lGLobZTGSRUGlxWbiSJuCd4ueVVAYk/uN60vMhTPISiEofrrbzftPtXN9Ps7wTJIWq8g7T7VxpmfrLsTjqymGFxN0ey1FiyErKdxeSnCw1cHxrq2FcTWeZTacISPJBBxmTne7kBWF2VCa5TQ4czKnur2c6XFveg2jWIib5CSlTDByUiFGYzRs/l1b726RJKnYMXd0dJRsNlt0+fr9/j3P7HktWSRbUamTsVa7onUydrvdZS1ctHXs1LWlC0md2G2MRFVVxsfHmZ6e5vjx43R1dZX9XvtwG3XC28qi0or6WlpaOH/+fNV+Xagt/ddlNfLrjx/khxMhbi68mv57od9XVi+ytrZGIpEormermzGVk/n2rWVenA6Tycu0uSy87UgrP/1wL5cGW1iIZrAYRQ622nnlubktXTE5SeEb15eYDqbpbykkBETTeZ6bCuOzG/nwuU7GPWmymTTHq2gkOR9Jo1I+5dFiFBEFmIuktxSS20sJfjAeJJaRCnVAFNxi7zji53S3G1d0kovH/PS2blxHIisxF86QvucG63BbGFspzIu3GEXyssJKPMs+v52WbSyhUoxGY7EgEgqW9c2bN0mn07z88svF4LBmrdzvMbevFyFZT2mhKmzdyViSpJrX9CC1R4EmF5LduLa0lNV0Or2pi6a0jUkjvnybWQ5zc3PcuXOnqqK+Wq6blxW+e3uFf7qzRiSd51iHk3ef7OBIh4t3Hmvjncc2JgSUtqK32+10dnZu+V6oqspfvjTHs+MhvDYjNpOB2VCav3hhDlEQuDDg40hH4b3W1riVkEwFU8yGM0URAfDYTKRyMq/cjfHI/haMBpFqO3Nt1udKZeshY/GMxHOTYWSVYkZYXlYYW0vSsWjh0j4frTYqisBSLMvTY0FW4tl7IwQEWh1m2lxmVuJZFKVwUOn2Wjnf5yn7vNN5mbvhDMmcjM0k0uO14qgwk0XDbrdjtVrx+Xx0dXURjUYJBoNMTU1x69Yt3G532XyPRlsrzeba2qvuv1t1MgYYGhoicG/AWjWdjHWLpEa2+hLuNP03EokwNDSEx+Ph8uXLm35opaZnI05y6zd8rSX9yspKzaNwt7ouFDbrzz47zT/cXMEgFgZSfW9kjVfmovx/fuzQhniItp5bt24RDAa5cOECExMT21o608EUV2ejdLotuO+5rDw2E1PBFP94Z5Vzfd5iKqz22W4lJOm8gqKoG4oUrSYD6ZxCXq7NWhzw27kyGyWWlnDbCp97PCMhCgL9/s1dhwvRDOFUnsGSgkyTQcRrNTK2kuShew0h169FVlRenAoTTOTYF7AX+nMpKtPBFIfbHDx+tJVkTsZqEml3WcrSj0PJHM9OhFmKZQABFZU2p2XbOJC2jvXB4UwmQzAYLGtsqFkrjarobqZ4DTRH08bSTsa9vb0888wzDA4OEo1Gq+5knEqlaGvbvFC22dhzIdmKWl1bpS3Nqznti2KhAeBmr5HISnzvzirBRI4TXS4eGvDVdNOUWlTpdLoY7N+syWG1VKr3mFxL8f2RNTw2YzHI2+pUmQqm+MorCxzvLP+yaqN5oZB8YLVat4xXaSzHs6TyG1NifTYTy/EsyaxUFBiNra4ZcJqxmQ3E0vmy54VTeQ622rGZxC2vsRDN8MpslKlQCpfZyIkuF2d7PVybj7ESzwEqJqPIuV43+wObC4miFnpWrv90xXvNHDdjLZFjOZ6l02N5tT+XKNDqsrAQy3Jx0Ehnhd5lqqoydDfGUixDX4sNg1h4nblQhiuzUd55rHVz62qTzdtqtZY1NozFYsUq++Hh4eI0Qq19Sz023Nera6tatPu/ra2tmP24VSdjn8+HzWYjkUgwODi41aV3zO/93u/xta99jTt37mCz2bh8+TJ/8Ad/wOHDh3d8zaYWklpcW9qI13A4XNOgp81SdH80HeaX/vIaiYyEKBQ2mrO9Hv7ko2c2bJSboVkOwWCQa9eu0dbWxrFjx3b9Ra9kkYyuJEjl5LKZ54Ig4LObGF2Ok8rJRZeJ1lcsEAhw/Pjx4nqqib04LcZiINlSEodI5WVcVmNZbELrN7aZCASDQUzZLMfa7bw8GyeVV7AaRUKpPFaTyMV9vuI1KnE3kuYrryyxlszhsRmJpTNMBtNc3OfhQ2c7mY9kAJUuj5W+FlvFjVlSCmnc7S4zTouBUCqP/15tiKwUJjE+NODddGiVoqrIKhv6kxlEAVkBRan8t8cyEgvRLK2uVwdiiYJAu9vMcnzrLsLVpP+KoojX68Xr9RYrujVr5fr166iqWta+Zac9nZrNtdWMQiIIQtma1ncy1jogLCws8OSTT/KNb3yDjo4OfD4fqVSq7vUkTz/9NJ/61Ke4cOECkiTxm7/5m7zzne9keHh4x+60PReSeri2tMaGFoul5kFPlcQqkZX4V18aIpUr/FzbC67Nx/jdb43y+//seFXXFgSBcDjMzMzMhqFPu6GSkFjvVW8rKpQmBUmyitVkKLpUtJHBlfqKVVMxf6jNyYDfzvhKkr4WGxajSCSdJ5GVePxY2wYXVSUhkWSFl27cYXFhgYDTjC+Z5rDNzmzajGyysD/g5PKgj2Odr8a1Kq3rpekIwWSOgyXzSSLpPNfuxjnb4+Hy4OaHiWg6zytzMUZWEqDCgVY7B1sd3FyME8ukMIkCaUmhx2flVPfmGVotDjM+W6FGpNTyWEvk6PFai+619ShqQYTWx20KFhBbWkE7cSeZzeayVNbSNuxaQWTpNMJqN2PdItma7TK2SgV/cHCQgYEBDh48yJ/8yZ/wta99jb/4i7/gscce48Mf/jCf/OQn67Kmb33rW2X//vznP09bWxtXrlzhjW98446uuedCshXVuLYWFxe5efMm/f39HDhwoOYvUSUh+d7tFZLZws9K71dFUfnmjSV+64kjm9YQaEiSRDAYJJPJVNXHqxYqCcnZXi8Bp5mFaIZurxVREMjkZeIZibcdacMowvDwMIuLi5vGZzazHsKpHDPBNGajwIFWJz9zsY//+eIcU8EUeUnBaTXylkMB3n5kYw3M+mveXojwF9+/yUIsi7/Fz36rk7ee8HJcSrC8usZqcBWHGkKMplg1FjKRKm2aeVlhJpTGZzeV/d57r2q/4G6q7D5M5WT+7uYK42tJfLbC85+fjNDrs/KWQ35W4jlSOZlOt4VD7c6KUw/DqTw5ScFrN3Guz8MPxkNMrSWxmY0ksxIem4kzPe5N3VNuqxG/o+AO7DW/GpdZS+a2rXHZbVxi/TTCfD5f1n9KluWiq0WbELkZukWyNbXWkAQCAX7mZ36Gz3/+83zmM5/hwoULfOc73yEejzdsjdFoFKAYa9sJTS0k2iZf6cZRFIU7d+6wsLDA6dOndxyYqiQka4ncvQaHGzdVSVaJZ/JbCkkqleKVV15BlmVaW1vrKiLw6uZc+r547SY++egATz4zxUwwjSAUTrenez38s1OtvPzyy9vWq6wXKFVV+Yeby/zD8AqRZA6DQaDHa+OnHu7l195xgPGVJMmcRIfbSrfXWnFDKRWS8cUQ/+c3h0jJIod6OlGBGwtxwmmJf/loX9HU1+omJiYmSKfTxfiN1jZCuNc402wUN1TTy4qKgLBlI8fx1SRTayn2+18dAdxiNzGxluJ4l4u3Hd7Y2VgjnpF4emqFqWAKSVHxWI2c7fXw+NEAU8EU4VSeI+1ODrTaaasQME/nZdL33Iyne9z3BCiNzSySzsnYzYWfr19/PCMVM7u097VemEwm2tvbaW9vLxZEBoNBVlZWigWRWmzF6/WWbYx6sH1rdjuv/dChQxw6dKgBKyugKAr/5t/8Gx555BFOnDix4+vsuZBs59pav2HCq4FrreHibnyIlfphHe9yVxQRFWh1mgk4N3edra6ucu3aNbq7uzGbzQ05SYiiSEqCv7m2yGw4jcdm4rEDfi7v97O/1cGL02HiGYl9fjsHfQaGh17G7XZvOmdFY7318KPpMF+5uoDZKDIQcCApCjOhFH/2wxl+812HONpZXdW7qqqEQiH+9/dfIa1aOH+wo+BGUxRsJpHJtTQ3FuI8ur+lmGnU0tLCwYMHSafTTExMEA6HeemllzCbzcVN7XiHg++OhPDkZOxmA8q9+SVtLhP7tsjQWknkEEShbASwQRSwGEXmIxku9Fd+nqzC98cjzEQKs0gsRgPhVJ5/Gg3yrmOtPHZg8yy8vKzwylyUO0sJMpKCw2zgRKeLtx4KMBNOE0rm8dqMDPjthVkrZc+LMbaSJJ2TsJoMyOE8gbbGDNAqLYjs7+8vm50+MjJCLpfD6/UWrZVm27ibbT07SUfWxPx+TEf81Kc+xc2bN3n22Wd3dZ09F5Kt0DY9SZKKqYtra2tcu3aN9vZ2jh49uutZApUskocHfJzu8XBjIVYUFJVCRs+/etO+ioHX0v5UWvHj9PR0XSYkrmcxluOLYyKJiSm0xX3j2iK/8pb9vPlQgPedKowHXlpaYujKK1X174KNwfZnx4NIskpfS8FFZBANDPgdTK4lGZqL8pbD27dzEQSB5eVlpqenEZ0B2szGshvLIAqIYsEKrITNZsPn8yHLMidOnCAcDrOydq/KO53Dr9qZWkxhMJsxGIy0Os382LG2LS1Gm1FErnBQyMuFDX4zgmmV2VyGvhZHMamgw21hNlwQwkNtm1eZvzgd4eXZKF6bEZ/dRDwj8cxEiDceaCmmFlfi2t0YV2YjtNjNdHptJLMS18MyrcsZ+no2fVrdKJ2drqoq6XS6GLSfnJxEVVUWFhaKmUe1FNbWG1VVm1JIdrJHad1/G8kv//Iv881vfpNnnnmGnp7dfZmaWkhK6zxKN+qjR4/u+g/XqJS1JYoCf/pTZ/jdfxjl724uIckqAaeZX3rTPn7ywsbXzefz3Lhxg3g8zsMPP4zb7d702vXgf740z3Ja4ECnBbOxYLUtRrP86Q+mOdvrwW01FufO1+L2Wx9sX03kNmzImohG09uP+lVVFVmWmZmZ4dy5c0SmM8yNrpY/RlGQFbVir7JSZEXh6nycl2eSxDJG2ly9nN5v458JKW7NrnA3uILDZOZ4qx+fmEGWrZvewIMBOy/NRFiMZmh3WxAoCJnFKHKgbfOslYwMsqBuaNboshiJpPJIioqpQvuTaDrP6HISv91UTM22mQysxLPcWoxztMNV7INWSionM7aSxGt79XkemwmvVWA2kiWazm/7vtUTQRCw2+3Y7XZ6e3uRZZkXX3wRg8FQdENq9RF+v/++t0HXvruNHlRVC7txbTWqIFFVVX7lV36Fr3/96zz11FPs27dv19dsaiHRiq4ymQy3bt0ilUqVbdT1YLMUY4/NxB984Di/9cRhYhmJVqe5zBWikUgkeOWVV7Db7Rv6U9WjS+96ouk8V+eiOIxqcY6GIAi0uy0sRNK8MhPCnbxLMpnk4sWLNZ1q1lsk+/x2ngkHaS9xLeYk5V6a6tZ1MPl8nmvXrqEoCqdOncLv93NOSXJlNsJsKEWnx4okycyFM7S5LJzo3HydgiAwtCwxNruEURRwmA2MriSZDqb5Z2c6eOKx8p5Ud+7cKeug6/f7sVqtxLMyZoNAp8fKWw8H+MF4iMm1wvRFl9XEmw60MNCyeWDZaigIaWkDTCi0m+/yWDada5LIyiTzMr2O8vfMZS0IUDIrYTFuTPXN5GUykrIh8G4RVTJyoZjTs/lyG47BYEAURbq7u/H7/cX6iGAwyMzMzH0fcat9d5vJItlJw0ZZlkmn0w2zSD71qU/xpS99iW984xu4XK5i9b3H49kysWIr9lxItjuxiKLI1atX8Xq9W87o2Cnb1ao4LMZNW1YsLS1x48YN+vv7OXjw4Ia/pRETHiVZRVU3xjMEAWRV5ebwbS71OXf0XomiWDZH/U2HAgzdjTIdTBFwWsjLCquJLIfbXWVzTNaTSqW4cuUKNpuNtGriblzB4Myyv9XBh8518a1bK8yF0oBKt8fCe091bFnJHcvK3FyTCAQMxQB2wGlmJpTmhxMhjnU4MZX0pDp06FCxg+7KygrPXBtjMmkmKVhx2W2cGwjw6IEW+lts3I1kQIVOj6XibBFVLdSSKCp4LdDnsjATTtHpsmI2ioRTeVQVTna5N/0u20wiVqNIMieXZYClsoWKd9sm7jS72YDdbCCRlcusoHQePC5xSzfc/aI0frm+PkKb7TE7O8vw8HCxqaE2IbIRkwihuYRkJzGSRCIB0LAYyZNPPgnAm9/85rKff+5zn+PjH//4jq6550KyGaqqMjc3Rz6fp6enh+PHj9/3xopbrW10dJS5uTlOnTpFe3t7xcc1wiJpcZg42Obk2XAMVVWAwmayEk0h5DOc39fJ+TPHdvReaRaJtjkc6XDxC48O8M0bS8xHMhhEgccO+Png2e5NYxDBYJChoSH8bR3cSrn4h4ko5sV5vM4QZ3s9fOBsF8c63dwNp1EVmTa7iM2yteCFUjKJvMrhdRu931FI9Y2mpbLivdKAseIIMLc2T0xIYRNyrK6t8eX5VW6M2/kX5zrZ3xrYtMvAcizLD8aDzIYzKKpKYlngiQEbboeN6WCKfFrBYzNxeb9vQ6t8RVVZjmXJSAotdhP7A3auzccAcJgLs1vCaYlHBn1lHYJVVWU1UUg/dlqMHG538MJUBACnxUAqJxPLq5zzW3GViNJKPMvoSpK1RA6vzcT+VntxFkoj2ayOZP2IW222RzAY5O7duwBl7Vt2WhBZinavNVMW2U5cW6lUwUpulEXSiHk2TSkkkiQxPDzM2toaNpuNtra2hn05ap1iqDWDzGQy27qOGiEkgiDwUw/3cn1ykblIFptZJpXOokh5/vn5Ti6fra5Ycj15WeGHsymem45iuHmdA20OHj/Wxrk+L6d7PKwlspgM4qYTAeHVZpRHjhzhh8sC/zSyglGELrcZSRD5/uhacf0HWu3k83ny+Xyx6FQUxeL/SjEbBIxCwa1WenrPSgpmg1gxvqBxZS5KIqtwvO9eRpWqEk1mmFmNMTSxiGt8DIfDUdzUtCl48YzEN28uMx/J0OG2IgowkYYfTEb4yYf7uTjgJSereG3GDTGTUDLH90cLApSTFFxWA4fbnJzodDETShNK5XGYDDw04OFs76tu2lRO5gfjQSbXUqTzCnazgcGAnbO9bqaDacKpPBajyGGfwMnOV7PS5sJp/mkkSDSTx2E2cjeSYWw1yRsPtHC4vbEB22rrSNbP9tDat8zPz3P79m2cTueGz2Ana9HaHjULO20hb7FY9jRxoVb2fKXrP/REIsHQ0BAmk4nLly8zNDTUsLntUFtjyGg0ytWrV/F4PFy6dGnbD7oRri2Ak91ufuqwwLyhhRtzQbpcMh+4eJjHT+2scl5VVb744hx/MxwFRSZgknlhKsTwYpxfecsgp3s8W8ZESodznT9/HixOXn5xlBaHmaxUmL/hsplRgVdmI7zzaCs+W+HmMpvNyLKMoijF/8GrfdAEQaDTbabdLnA3mmGgxYbJIJLOy6wmcjy6v6XsZL6eu+EMntLqckHA47RhTyl0DLRztttRPCnfvHmz2DpkSbIzG8xxqN1VbH/SYS9Maby9GOctm9SaSIrKd++sMbmWosdnLVT+p/LF/llv6PfeszYMGwLlP5wMcWMhTpfHQpfXSDwjcWM+zoUBD+8/1U7yXprztStzxToTRVW5ejdGMiexP/CqVbQUy3BlLkp/i23TSY71YCeV7YIg4PF48Hg8DA4OFgsig8Egt27dKhZEatZKtX77ZsvYgoKQ1GptJRKJPZ8zUyt7LiSlaDGH3t5eDh06hCiKDZvbrlHtZq/Ned+/fz/79u2r6kOul0UiyQrjq0kA9rc6MBlEupwifcYQbzxt5uzZh3flGpgLp/nBWBC31YBNgBaXhYDTzNRair+9vsSp7s392VpQPZPJFIsdp9aSpPISHS4rWV41pZ0WA3fDOUKJDD6bA4PBUEyogMJGIMsy2bzE1dkoIysJZAXazDnOtYnMClZmwunCcC5R5GSXm7duUTwIhUr32XC67GeyooJQiF2sL8bTWodM3V5meTmDLRfG4XDcy6BRC9lWm6QqA9wNp5kLp4vtY6DQRiWTV7gxH+Nkl6ti1Xo4lWdyLU2721KMybmsRiRFZXQlybleT7EHWGlcIp6RWI3nCKyzFAMOM/PRDKFUni5PY4Vktxve+s8gkUgQDAZZXl5mdHQUm81WNs9+sxN+MwrJTtakCcmDRFMIiaqq3Llzh/n5+Q0xh0ad6qu9vlZBv7i4yNmzZ4uDbKqhHkLyo+kw/+OZKRYiGVSg22vlI2f8yNksbrebs2fP7vrmmQqmSGYl2m0GstmCdSYIAj6HmZlQikRWrnjqTyaTxYy1ixcvFi20FocZh9lYGBBV7KerEk3nsZtFfHbTpn51WYW/vbXMC1PhYl1AOBrlsN/CJ9/WxkIsRyqn0OI0s89vx2zcepM83eNiKphiLZHD7zCRlwtFi51uC/tby2/W0tYhZw0+7spLeO0qqVSK+fl5AJaDYQ54RXK5XMUspHReQVLUDe42u9lAMieTlxUM4sY1p/MyWUnG7yh/n20mkbVEnkxeobQOVtu8RUFAFNhQFyMrhT5em7VoqRf1bpFSOolwYGCgWBBZmo3n9XrL5tlrr79Xs0i2YqcxEt0iqRFFUfjRj36EJElcunRpgxLvpZBkMhmuXbtWXFutFfS1xl/WM7mW5Pe+NUo0nafFYUYAJpbj/P63gvzsMTPn+/rqcuPYTIbCHA3KN6P8vQ6/lWojtKB6d3c3hw8fLvvSe2wmLu7zFeba51RseYVEPEMomeedR1sJuDZ3k91eSvDidIQOtwWzoLK0tIjdbWFZtjEezHKhz13sdoAik8+/6hcXRZFbC3Feno2yHM/S4bZwrtfDmw628PJMlPHVFEaxMGDq3ce3Llo82Oqg02sjmMzRFWjDH4CXb4/jdRmx50I8++xccYiU1pZdEAQ8NiMWo4FkVirL9otmJPp81g1NLYvvmdWI8574+kusi2hGwmk14rRUbkvishrpa7FxazGO/V5nZkVVWYxl6fZaN3QQDqfyxDISFqNIm8u8a6FpdNPG9QWRqVSq6AabmJgodjpoaWlpugaS8PoYswtNICSiKDIwMEAgEKj4hhuNxobGSEo3+8JMbaHYtXdoaKjQiuP48R0VFW3W4qVavjO8QiSVv9fHClLJFC4xT0w1cz2s8vY6BfKPd7ro9FqZXonSYipcM5WTiWYk3n8osMHHPjs7y8jIyIbC0JxUyPiymAy852QHggB/+6MIK4kcPpeRdx1v5YkTHVuuZXItiayoiEqeheUV3B43Pp+PqbUUY2tpHj3YWhZP0dxhAC/PRvm74TUkpVAkOLwYZ2wlyftPt/Nzl3tZiecwGQT67sVZSlFUldlQmsVYFqMosM9v54kTbXx/NMhiLIOqgNMk8MGHBjjTHyjLQpqbm0NSwevz09nmZ7DFwvBykha7GYupkCIsCgKnujdv4uiwGDne5eSHE2EkWcVhMRDPyGQkmYf6vGWfgawoLESzLGYSOMwGznS7iaUlZkMpigOyXBYu7vMWa1vyssKL0xHuLCVIZGUsRpG+FhuP7vftuKhxN9/tnSAIQtHNqBVEru/LJooiMzMztLS03PeCyErsREgSicQDNWYXmkBIADo7Ozd1Ad0Pi+TlxRz/8b8/z9hKErvZwOMHXTzqDnPy6MZW67WgnY52UpQEBX+7KAigqsTjCVRVxeN1k4nnWU3ld+02y0lKocDPYuRnL/fz3757m/lwjvhqEqMo8oY+L+8/3Vl8fKmb7/z588VuocFEjm/dWubKbARFVTnR5ebxY238+OlOOqQVJudX6ArAQIsTOZdBNdo3fU9FQSCVSrGcTBJoDeC6d0OpqEUnWWlml/YeJDI5np2KIAADvoLF43cYmY8WxuCe7HJzZJOMs7ys8O3hVV6Zi5KVFFS10ATznUcD/OSFblbiWWRF5fYrcxy+V/muZSE5fK3MT4a4NhsiuZbCNT5JlzlLm8HOWsSK0WKl3evgfJ93QwbVWiLH5FqKZK5ghRztcGE2iNxcjJPIKrisRh7pKm+nH89IvLCkIMdDGIwJjAaBAb+dR/b7iKZdxLMSdpOBXl/5yN4b8zFemokScJpocxViNqMrhXqFdx3ffIjWVmixr72yAgwGQ9EihELW4NzcHNFolOnp6WJBpGax3O959rCze19zbT1INIWQbIXBYCCbrXZid+08MxXnj4ZyCBQCqKmczF/fijDV7eKvHt+5iEB5i5edCEm314YkrxGJRjGZTLgcDlQK/u9W+87jL7cWYvztjSVGlhLYzQbefCjAe0528H+8qYt/uj5N72Af3V4rJ7pe7UKbz+cZGhoim82WufkSWYk/fnqSO8sJvDYTogDfH1ljbCXBv37zABfOnODE4UJ/prW1NcbHx7FYLAQCAVpbW/H5fOWCm1wlm07h7G7F5SzcTKmcjKpStqFqaM+NZFRiGYV2txXRIBZPy36bkZV4loVQgt4We8X04uvzcV6YjtDmMuO2GgstZ2JZvnN7jW6Pla577ejH1+2XWUnhb68vMbKSpMVhwW6zFiYmWgTe2mcml4yyElzCmRUhHGBFLGxoRqOR0ZUk3729SjiVxyCAgkBfi5UnjrdxostFOl9oaLnecnpuKszdBJxuN+NzOcjkZUZXEliMIu8+XrkVTl5WGF5K4LYa8N6zPmxmA91eKzOhFCvxLB3bdCqohCYke33q1zAajVitVk6dOlUsiNSq7Evn2Ze6IhvNTuI2umurATTSIlFVlf/x3GLhv0t/DgzNJ3hhKsylwZ336C/NRtoJZ1sFvqJkiasm2p1WsrJCMJnDbTXycNfOCouGF2P84XfHCKfyeK0mQskc//PFOaaDKT560sXpVgOXT5a7n5LJJFeuXMHhcJQF1QGuzEQYXU4wGLBjMoioKvhsRsZXU7wwFebHz3QV3RF9fX3IskwoFGJ1dZVbt24hSRJGhxfF4iIZDeE25Hni/D5emksQXkkiUOh9dq7Py5ktqunNxkLr+LwCVvHV8bwyKmajAYup4GbU3KRaTEUQBG4txjEZhGLVeSHl2MLYaoqJtdSmVfcTq0km1lL3gv6F1/TaCiKxojh4x9n+srb4k5OT3Lp1C6vTzbMrJvKCmQNtruKc94m1FD+aifBjx9oqtsGPpvNMraXwmCkWMVpNBjpdVqaDKYLJXFl8RSMrKWTu1aWUYjMZyEkK6fzOvp/NVgBYevovLYgEyGazxWaTc3NzCIJQ1r6lHgWRldBdW/eRrb6IjUz/jaYl7kYrWzsGUeDKbGRXQqLVQdQqJFrlfGJhjl97+37+6nqYpWgGgC6PjU8+NoA9urPOwn9zfYlwKs+g/1X3UiIr8dJMmIe7TBjWidPa2hpDQ0PFlOz1n9VsKAUCRRFR1UIWj9UkMnGvj1UpBoOhGDzNSTJfuzLLU3eWCcbmMAoq/V4T/+xUhn2nWlhIFiYJHmh1cKyr4PbZjHaXhQG/nRsLMQZNBVHLyypL8Syne9z0+F3FJpJaNpj2vUpmchgoD2ILggAq5OVX34/1wh261zqlNIAuCAIuq5G791KOK7XFvzqxyFJkGbcQYiqxisPpxOFw4Ls3EyV1r15kPVlJIScrmNbdLhaTSCilkJMqfx9sJgMem5FgMl+WfRfLSNjNhoqDu6phr11b69kq1dZisdDV1UVXVxeKohTTvEsLIjUX2E4LIiuhB9ubhEZaJFajgEEozJlYj6IWhhbtllozt7S6jHQ6Xaycf/sphZHlBCoqR9pdmI0iV6/O1iwkkqwwupzAYy2fKui0GFmNZ5mL5OhTX73mzMwMo6OjHDt2jO7u7orXdFqNKMXZ5FofMMhX0dH36bEg37kTRE6n2RdwYLY7mV1L8DfDEd7WvkiLIOD3+wkYBQTFDuuERFIU7t6rHu/2WnniRDupnMR0KF1cx4FWB08cby+KeqkbTROWwYCdqWCQNsl0L51WIJUvxI9KZ4Osx2oSUdkYcM7klfIiyBJsNhtt7e0EAgr9PguZTIZkMsnq6gqRlITRYmHurkBvRys2m21DNpzHZuSuBJSISTiVx20zFjsEr8cgFgL937uzxnykUKCZzitE0/my+hSNVE4mks5jNoj4HaZND3rNaJFUIwCiKJYVROZyueKEyJs3b6IoStk8+81a6FS7pp3ESDo7O7d/YBPR9ELSqKwtSZK4M3yT863w8oqKQvnNYBAE3r1NhlE11NJKXuskrLmQtOCg2Shyct3c8J3UqBhEAbvZsGH2h6yoqBRqHdRM4bR++/ZtlpeXecMb3lB0D1TiVLeb7wyvsBApFNOJAqwl8pgMIuf7vJs+LycrfO/mPNlEjMEOb7Gj8/4OI6uJHN1Hj9NulVldXWV6eppbt27h8XiKjRmDWZG/vr7MbCiFrKq02M287XCAn7vcx9hqqthi/VCbY0PWmaQoTKymCCVzuKxGzvT7mQhmmAymcVsM5BWVdE7mTI+LHo8JWZbLNsusVPi2HAg48DsKzSN7fDYMwr3pmgIc69gYz1FUFVlR6XBb8NqMrCYlOt0OnA4HqtrKnaUY/U6VdCzMj2anMJvNBAKBYiGexWjgXI+H67dV5qM5WpwGElkJSVV5eMBf1rMrLyvMhtJEM4Xge1+LlbcfCXBtPkY0LWE1iTy6v4XTJd8rRVUZmosyNB8nlpEwG0T6W6w8ur+l4qFAE9AHTUjWYzab6ejooKOjo6wgcmlpqVgQWTrPvlph0A4rO7FIdNfWDthuSmK9LZJkMsnVq1cxm8387ofP81N//jJLaYo5+IIg8IcfPI7fufu219Vu+CsrK1y7dh3F3YHB08lKUqLbu/mJfidCIggCbz4U4IsvzhHPSLisRmRFZT6SptVl4XS3i5lRuWwsb6X2FKqqkpUUTKLAQIuND53t4K+vLTEVLLhz3FYj7z3Zzpmeyu3+VVXl9sgEC6sROltbcLtfvWlsJpGcpBDPyhzu8OL1ejl48CCZTIa1tTVWV1e5OTrJt+4aSKgm+v0unA4rwYTE168t4bGZONVd+XWhEGf48isLjC4nkJTCZ93ns/H2o23cDacZWU5gNgic7HJxqsuJUaTYwiWSpSBeUQlRKEzSfHR/Cy9NR5gJplDUwt/+lkP+siaOmbzMldkoNxZiZPIK/S02DrQ5uDkfZ3w1icUoks4rdPsc/NjJNjrc1mIs6eWJZb56bZhIWqbb5+AN+1o4G1DAbSYtq7S7LZzscnGk49X3MJaR+M7tVSbXUiiqCip0eSy881gbHzjTSSpXSP9dXzR5eynBM+MhbGYDXR4LWUnh1mKCvKzy3pPtGwa6vRbH7FYqiNSsldLxBKXz7Dd7D7R9ayfBdl1I6ky9hWRlZYXr16/T09PDoUOHUFWV//cpGbX7JLeWUvjsJt53qoMOz87N2VK22/BVVWVycpIrtyf5btDN1K0oeTmMzWTgLYcD/Opb91fslbST2AvAEyc6mAmm+NF0mNV7lkmby8wvPDqATcyQy+XweDwVx/KqqsrzkyG+M7zCUiyL22rgzYf8vOVQgJPdHu4sJZAVlYNtDjo3ef9kWWZ4eJhwKMxgTyvhTLlfMZkrtFZvcZSLqNVqpaenh56eHtITa+SWp+mxKKRiYeJhGavVSjRn5Lnx1Q3WWynfvb3KjfkY/S12bOZCsHkqmOIHY0F+4dF+Hj+2MfMpm83y7EvXeCliJZ9K4neYkFSVfxpZ5WCbgw+e6SCUlpEVlU63pczFJCsqf3drhatzMVwWAyaDyCtzMVocJh470EIknSealuj0WDjS7iw2xTQYDEwnjVyLWcHVQZtXZSGS4BvXVzjuUhmU52nxt9LW6qfF5yhL3/3RdJiR5QT9LXYs96ZBTgdTfH9kjQ+f76oYE1FUlZsLcYwGsdiq32QQ6fUJTIfSLEQzG7oJ17uqfbc0okWK0Wikra2Ntra2YkHk+gzE0nn2pfeMdn/qFkkTUEtTxa1QVZXx8XGmp6c5ceJE0QepqioGEd50qIX3nK4cB9gNWwmhJEncvHmTUDjMd0M+7qym8NnNWIwmklmJv7uxjMdq4hfftHGCWS0WiaqqKGrBtWUzG/i3bzvA7aU4U8EUNpOBc30epGSUoaGbCILA2bNnK24QT42u8bnnZ5EVFZfFwGI0wxdfvEs0I/HPz3XzyP6tExNyuRxDQ0MAXLr4MMa5BF96eZ75SAaf3UQ6L7OWyPFQv5eBLWauJ3IKFrOZtlYnKipSXiKZSiKkklwbneY503LRBeb1eoubSzSd59ZinDaXpdhF2GwU6fUV2sLPhdMbXjeVSnH16lVmUyZkq48j7Q6Ee++pzy4zsZJiYjXB2R53xdTi2XCa4cUE3V5rcX6I32FifDXFUizLe05WHkGQzEr8aCaK1Wig/V6cpsvnZCaUZnRlljef6SeVTDBy5w6SJBWbHFpdXsZWUrQ6LUWLwyAK9HitLESzLMUy9Hg3Wpl5WSWelTbMOLGaDMiySjK78TvcbJXkiqI0tGNuaUGkloGozbMfGxsjk8mUzbMvzQysBV1Idkg1WVu7MaPz+TzXr18vTg0sHRijfdiNCuhvtuGn02leeeUVjEYjzv6TTA7dwe8wF60Pt82EpKj8w/AyP32xd8NwrWqEJJGR+Ma1RZ4aXSOdlznZ7eafneniULuT411ujncV2o3MzMwwNjbG4OAgU1NTFd/nnKTwdzeXQYW+ewV/LXYTq8kc3x8J8tZDrRvacZStJZHg6tWrqBYX/fsPIBhMXN7fQl5WeGo0SDCZw2oUeeuhAO891bFlgVyL3QxCIQ5gMhQaL3rcHlazRt7Q52b/fhtra2vcuHEDRVEKAftAANXqJi8r2M3rJg4aRfKKQnZd1pPW7bmzsxODaMORT2Eo2Titoogo5gil5eKY4vXpxcuxzIZZ8Forlangxqw2jbVknkhaom/dxMaAw8RCDkSbmyO9PaiqSjKZLDY5XLg1ysyqmYDHjgV30fVSSI1WkSpllgAmg4DXZmIhmimzqNJ5GZNBwGl9df3RdJ7hxTh3FsKsLKn4FuIcbndUTFm+n8iy3PApjKUYDIbigQUoa98yNTVV7GyxsrKCz+eruiBSz9pqAKW1GDsp6ovH41y9ehWHw7Hp1MBGzVaHyht+KBQqblBHjhzhe3fWyMkbG/1ZTQbSOZlwKl9RSLYSv7ys8F++O8aPpsPYzAZMoshTo2vcWozz208cYX+rA0VRGB4eZmVlhQsXLmA0GpmcnKx4veVYhrV4ttD+/V5GFIJAi73Q2HE+kt5USILBIM++fJ1baTeLWQP58QlanRZ+7Hgbbz4U4NJgC8FkDod588yjUo51uhj0OxhfTdLutmASBVYSOZxWI5f3B2hvdxY7ycZiMdbW1pibmyMciZGLWpmOmjnY4cVsNiMIAsFkDo/NVDz5Q8EFevPmTQ4cOEBfXx+3hhY2CI0gCKgCuKxmLBZLMaW4NL3YJKjIioIkyRgMr55Os/cGXm2GySBgMgjkJQVjiQjlJQWDQPG7og3xMlntOAOdDB6SWXhplqmVGPnUAoqq4LA7yIoWnHZ72WeUysmMrSZZiWWxmQ10uC0sRDIsRgsWYkZSWI1nOdrhovNewWI0nedvbywzG85gVPMsp+Hvbq6wGHXztiOBhjeJ3Iq97v6rzbPv6elBURTu3r3L1NQUU1NTxYJIzVrZrCBSOxg0ajpio3hghGQn+diLi4vcvHmTgYEBDhw4sKlF08gU49Jra1MfR0ZGOHLkCL29hfkh3V5rMeBaWj+Qysl4baaKG/R2FskrsxFemYvS4bYW3TgtDhNTwRR/e32RX3qsj6tXrxYbUtpsNpLJZMVrqqqK1VjY2DKyiuOeiEBhQzQZxE0bIM7NzTF8Z5SXk36mYwptLhGnxcByPMsXX5zDaipkd3VXcLesJycpxcyzn3q4h2/eWGJ0JUlCUen12Xj7kQCHStqQlM690Kb0GYbv8tWhJa6ML+A0gWq0YDRZeN/Z7mLV9+zsLOPj4xw/frzYifp4p5urczFW4llanWYUFRaiGXw2U/E117duUVWVwVYnrc4os+E0PV4rBlEglpHI5GVOdpVvFqqqshTLks4r+GxGerxWJtaSDLTYMRpEspLCciJLp71gsUIhBvPSTKQwwCsjYTMbaHc76cBMOi9jFxWC0QTpTBxffo3ha0H8fj9mh4enZtJMhwpteBQFnFYD+/x24hmJtUQOi1HkXK+Hi/t8xUD7rcU4s+EM+wN2spk0JAy0uc3cWIhzpMN5X6YybsZeC0kpoijicDiwWCw8/PDDZDKZst5sWkGklg1WakmlUqmaG8RWyzPPPMMf/uEfcuXKFRYXF/n617/Oj//4j+/6uk0hJFu5rDQfoyRJVZutiqIwOjrK3bt3OX36NG1tlVtHaDRSSLQNv/T0vz6l9linizO9Hl6cCiHJRiyme2mdssL7T3dUDLZvJyQTqylkRS2bKCgIAk6LkaszYZ43zuN2uzl//nzRr6y5Z0rRai28NiOne9w8PRrEbjIUA9ULkQxHO50MBhwbnjcyMsLS0hL2niPMv7xSNmTJYTEyuZbk+yNrW6YJQ6GR4z/eWWNiLYnZIPLQgJe3HArwiUt9BJN58rJCwGmu6FrRmjGm8zKdbivvOLufrvY2npsMMrMaw6Tk6LOmYf4mV9LzxZkkZ8+eRTY5GF6MYzcb2B+w886jrTwzFmRsNYVAIdbx+LG2DYkFyazEzL1alr4WG+873cXf31xiJpxBVQuZaRf63Bxrt5HL5RBFkUhG5ju315hYS92bqmjkYKudLre1cC1AFApdid3GV928P5oO8+3ba9jNhaLDZE7m1mKCox1OPFYji7EsfX4XxztdDLaYi5vZP1yf52YIBgM2PK5CQeRqQmI+kuFfnO8CCvGj9YH5ybU0LosBgyigKgoIhTqkxWiWpVhWF5ISSr0oVqu1rCAyFosVq+yHh4dxuVyMjo4SCARIpVINs0iSySSnT5/mZ3/2Z/nABz5Qt+s2hZBshTb4qNqNXgvo5nK5im3pK9FoIcnlcvzoRz9CURQuX768ocBJEAT+/bsO8Uffn+S5yRCxdB6n1cj739DDRy70bHrdrYTEbhZR2Ziimc7mMGYzdHX1b7DStP/WnqO5aLQb9Cfe0F2cEFhInYX9rXY+camvLDVUkiRu3LhBOp3moYce4rnZJIrCBkF0Wws+eVlRN6SWakwHU/zpszOsJXK02M3E8xJfH1ribjjDzz/at2VcZimW4cuvLDK5liQvKbhtJh7d38Ljx9o43uUiLxeKDgVBIJFIcPPmTZLJJJKs8uf/eJ2ZtIW8YMJptzIYcPCBM50c73Qxd6+Z5oDfvmFOy7W7Ub41vFLMiGuxm3nHkQA//0g/U8EUeVml1WGiw20uvrc5SeYb1xYZWUnR7bFgdZmIpiSuzEV5/Ggrl/e3kMxJeKwmer1mnnt2FEEQSOdlrszGcFgMxcJJh8WIQRRYiGZ59/G2DfUfHR0d+FvbeCY4y357Bhs5IuEIS0tLmM0WFmULk4sWLhzoqHjAsxgFpHuzT9R73xnt8FFp3MD9pNmEZLM+W6Io4vUWUttLCyL/8i//ki9/+cvIssyv/dqv8YEPfIDHH3+86LmoB+9617t417veVbfraTS9kED1G70WHPV6vRXTVzejkcF2SZKYnp6mvb19y3b0PruZ33riCMuxLOFUjm6vbcsRstul/z400ML/vrLAQjRDp8eKAKxFEyRSaT70cDcHDx7c8JxSt0xWUvn+yAovTUdQgLO9Ht58yM+/e8d+hhcTrMSzeG0mTna7sJQMl0qn0wwNDWE2m7lw4UIhEG7NFqrd7wXHNRJZicGAnU00BIBnxoKsJXIcbH110I/HJnNtPsbIUpLjXZVPbjlJ4UsvzTO2kqDbY8VqMhBM5vj7W8u4rUYePeAvriWXy3H79m1EUeSxxx7jh1NRxl+axUweuxQjHYry/JqJcCTCr7ztEKc36fk1H0nzjWtL5GSFfX47ArAUy/LNm8sEnBZOdFVOS767kmAmnKX/3mhegBa7kXRe4vrdGL/waF9xgFdpBmMsLRHLSgSc5WLhsRqZC2cIp/KbdhdQEbBZrAScbgL+AJIskUgkWFmKMzo6RnZpvOh68fv9xdjioXYnk2vpe400CweOlXgOt81Ylg2WysncXkoUJ3seaHVwrNNZVjRZb5pRSKpxx2sFkZ/+9Kf5jd/4DY4ePcq5c+f4/Oc/zy/+4i/yx3/8x3zyk5/8/7P33tFxpOeZ76+qOid0N7qRIwHmHIfkBI00kmZGmtFoFKxkWR7bsrTX0u5d2d61fX0c9mrXu/Zd2Svter22rGBb1sqSrKxRmjycTAAkCBAgcgY651RdVfePQje7ATQYhpwB13rO0Tkih90oVHd97/e97xNegyu+ftwyheRKFOD5+XkuXrxIb28vXV1d18TwulnD9sXFRcLhMB6Ph/3791ddUzJXZCaSwW010lbRDmh0mauGvrVwpRNJi9vCR+/o5PNnZpgJZygU8giqwlv2NvOB23du+JrS9WXyMp99cppXZmJIqzv28wsJXpmJ8dtv6a0p+IvH4wwMDNDQ0MDOnTvLD/W+VhcdXitToQxtHismSSCclgG4q7d+089qLJheZ+liM0kUFY3FeK5mIRkLpJkKZcpaCoAGpy6ye24ywukeb9myvr+/H4fDwb59+9AEgZdn47gdVlrdXkCjUCgQS6S5tJzgn3/2HDsbHWW2Tl1dXfnaLi4liedkdjRcntO0ui1cCqQZXEzQ7du4750uKKiagN1q1nf3mqYPyU0SiZxMJlcAk1T1mQuCgN0sYTWKZPJK1QKdKahYDOI6Km8JRkmk12/jhakoHpsRSRQwSAYKopXuViv3H2tBKuqOzbOzs/RfuEjR6MDrrmN7WwP7W50MLyVJpHIkUyq99XBnj7d8OszJCj8cCnBxOYXVKJY/j+lwhgf2N64jldwo3KqFpBL5fJ5CocAf/uEf8ulPf5poNHqTru7GYksUkist+psZN5bsPJaXlzly5Eg5m+BacKNbW6UZzcLCAn6/vyoOVFU1vvT8LN/oXySVK2KQdGfb335LL43XYOV9NfTfN+70s8Nn4ZvPnCMnS7z52H4OddYjbnYEAJ6fCHF2Vk8ptJr0r0ihqDK0lOTp8TBv37de+7C8vMzw8DC9vb20t7dXfaZWo8Sv3d7JV16aZyqUQVZV6qxG3rmnidNX0J64zAYi6WpLF1XTLV0sxtqLRjwno2rrmXB2k0Q8V6RQVMlnUmX2XMmQMp0vks4VsZlKj4aAyWSmwWcmrpnYua+JTluxbGYJlItKNF1E2uC7bJL0AXstuG1GTAbxcqqiICAhki4WaHFZcFhNsGqLn83q7gHFYhGr0cieJgfPTkSRVt2L03mF5USOox3uKtfinKwwFkgTSstYjSLd9VYWYjkmQhksBpGComIxirxhez31DjNgpq6ujqixnouJEIFgisJ8BNuFJQ77BQ67PcQsAgWHkTcfbq76WWOBNKMrKbq81rKhZb6oMrKSYlejo2bxf7X4P6GQpNNprFZr+XWb2RNtJWyJQgLVvda1qLXQ53I5BgYGyrOHjew8rgY3spBU5nacPHmS+fn5qtPUP51d4AvPzWCQdJdYWVE5MxEmnpH5nx88iOEqufgbDcZXEjnmYznq7SY6vVZSqRTjF/q4q6uO/fv3b/qlLr2X1Wrl+y9fJJ0xgE1AVQVEUcJkEDGIAgNz8apComkaU1NTTE9Ps3//fvx+PwCBZJ6ZcAazUWJXo87m+e239DIdzpCTVVo9ljJLajOc6PYwHkwTy8rUWQyoGsxFs/gdJvZukE9SQr3dhEES1jnpxnNFenx24pEQQ0ND9PT00NnZWf7vVpOEz6H7Z3kq6LmpfBGzJNLkttNcbyuHsSUSCYLBIFNTU6wspAlETNSJeVxOByaTCVXVyBc1WutqnzLbPVZ2NTron4vjc5qwGkUiGRk0ONntxbxKMkkmkwycHyRv9TOwmMZtkTje7iSblxkNZAgmC9hMEofb63jzLt/l3zkr8+1zy4wHM6jolileu4k39HrZ1+JkIZbDbpLobbDTXSHIHAtm+OnFECaDyJ52H0VVYy6SZQaVXoeIORKgIBaYGxsis9oCs9vtzMdyiIJQ5YpsNuikmflY9l9MIbkeyUIqlbrl8tphCxWSzbBRaysajdLf34/f72fPnj3XpTGpfP8bUUhKmhWHw1HO7ZAkiUJB31HLiso3+hYQBQGPTV8cTAYRgyQwspLildkYJ7uvzra+8kSSkxX+1zPTPDUWIltQMBlEdtabOOWIsG/7+qH6WpSG6pqmcfr0ac4XxrmQCJBJZ4ivhmpZzBaKila1OJSYaNFolOPHj+N0OlFUjX8eWOKxkSCJXHFVVW3lkVPt7Gh00OPfnPygahoTwTTxbJEGp5lT3W4WY1lemCpZuugxsr9wpKVsJ7IRev12djU6OTcfx+cwYTHoi7MkCOxwygwNDVXRe8v3VRC4vcfLbHSB2UgWr91ITlYIp2WOdtZVCQRFUcRVVwdmOy2d3fTszhF7apzxYBJLMIokSuRFM531DvY2X253aZqePTK2kiKvqHR4rLx1jx+7WWJ4KUkkLeOxGTm9zcvBVb+yWCzGUy/1M5RxkdBMKIEgBlGg12flHfsbONHlJpGVVwfvFkRRKC+sz0/FGF1J0+2zYVoN/ZqL5nhuKsqvne7geKd7w3t4YTGBrKjl31kSBbb5bEyEMmiuRrrr7KysrNDY2FgW4RmNRlaydjIZCUW1VAk4VVXbcKMUz8rIiobbZixHA18PrldrdrPwLyXUCm6RQlLZ2tI0jdnZWS5dusTOnTvXtVGuBzdi2L6yssL58+fXaVYqF/xEtkg0I2MxVX+5zAaJuKpTL6/lmkvv+3cvzPGDwWWcFiONTjOxVIYzE0mKXR7eeRVFpGRKWKJa39bbwDNTSQwWAx6TSC6fJ5bOkU4VsKZyjIwUcbvdzM7OomkaJ06cKAcDPTMe5jvnlnVNgs+GrGjMRHTm1R+8fQcuS+1TSDCZ50svzHEpkCIvq9jNBo601/GB4y2c2uZlLprFbBDZ1eTY8H0yBYWZSAZR0DPXP3hc14acX0wQyxbxO0xst+expBY5fOQIbrcb0IvXTDhLIifjc5g51OZCUTWeHo8QTuUxGSTetNPHW3dXR9KOLKd4fDTIfCyHQRTY1+ri/ad76ZuNM7qSIpfL4TMW2WaJMfjyc3g8Hvx+P4MRgWemEmQKCoKgn8b3tTh5/7FW7t5RT05WcVuN5aIdDAY5d36QScVHRJHoqreu6o4UhpczuO1xHj7YRNMGWSv5osrQQhy3zVDOcxEEgRa3HoY1E8myu2ljO45oRl6nDyq1RdN5BZ9Zw2Aw0NraSmtraznEKze5zLnFCOdHwvicVux2O0XRgkkSqk480YzM02NhJkIZiqpGg9PEqW7Pukjiq8VWO5EoinLNgVmlQnKzTiSpVIrx8fHyn6emphgYGMDr9dLR0XHd77tlCsnVtLYURWFoaIhwOHxFe/Nrwas5kWiaxsTEBFNTU+zfv5+mpmrr+coF32kx4LQYiWYKVG6mC0UVQWDT7Iu1KL1vMlfksZEgdrMBj81AMplCVAq0eJ2MR4uMBdJVIr1KlOinlUUE4FBbHffs8vHYaIhQSr82g2ThrQebeHifk3BghQsXLgD6fCAUCuHz+TCbzTw9FkYSwe/QfxezQaCz3sZMOMPAXIK7tm88w1I1jS+/MMf5hQRtbitWo0giV+Tp8TBOi8T7j7Vt6r/14lSU7w0uE0wVEIBml4V3HW7mA8dbuT/bQDonszw9Rjad5PCJE+VdXzhd4H+/ssDYSopsUcVhNnCozcV7jrRwsL2OeFbGapRwrHEWmAim+YeX5khki/idJmRF48nREKFknl+7vRNZ1bPfHWZDWa0cCoUYnFri60NJrCYDzR67LjyTjJyfT9Lri/GGHT4qR2WLi4tcvHgRf+cOohfTtLqN5bmP1SjR6DJxcTnFPbuUcquwMmsFRaOoaogiFJWibvuOgIA+Z1LV2imbrXUW5qLVmxtZ0S303TYjqnzZtHExnmM2kkVDYPu2Lh50NvDSVJhQMsv8ShLkELvqDeRDRUL4sDnr+N7giu5O4DTjkAQWYjm+N7iC2SBu+lnXwlYsJFst1OqVV17hjW98Y/nPn/rUpwD4yEc+wpe+9KXrft8tU0g2gyRJZLNZXnjhBSRJ4tSpU68qbGaj9y+1n64FJb1EIpFY5+FV+d6lImUyiLzzYBN/c2ZmtQ1hoKDoAUO9fgfHO6++MJbov+F0gaysYDeJxGJxANxuD4IgMBfNEkzl1xWSUp55pc115Q5IEgUeOdXB0Q43FxYTKKrGnmYnh9vrSMSihMNhOjs7aWxsJBQKlVPmnE4nMwENo2SknCwF5XbFZgPnqVCGS4E0rXWW8i64zmqkUFR5cTrGA/ub1i3mJYwF0nz1lQU94KrOggYsxnRDyX97zzbqrSJj40Pl01NJ2KpqGl97ZZFz8wna3PrPjeeKPDMewW6WeNehlnJBXIvnpyLEsnIVLdlplhgNpBhZSVUx20o2Jg6Hg5mCA+fSIm1OkUwmw8pKQLfl10w8N6pyqsuFyWQqe6BNTU1x+PBhYqoZWUliMaw/zabyBXKyAquFpLSYSpKEyWSit9HB2ZmYbsmigYpKMFXAYRLxOwzlBTiVL3J+IclkKIPZIOCxGXFaDEyGMvgdJoqqRiCZp8dnp8dnY2UxgiAIPD0e5sxElFReL1RWo8Txzjo+cKKdpdUE0maXCbuWJRKJcOnSJSYiBV6Jmun2ObAZTJhMRuxmA+PBNOcXEtdcSEonsa1USK53RnIzDRvvvvvu64rovhJuiUJSKBQIBAK0tbWxa9euV/VlKSo6/TOUKrCn2cmuJud1nUgymQx9fX2YTCZOnTpVU3W/ll31wRPtxLIyPxhcIZwuYBAF9re4+P237ayaP1wJpWG73v+HQDSBz27E4dA9fJK5Ilaj3i+vRGXcLKyeBIHhxaRu/+E0sbvJiSQKHG6v43D7Zc3E3Nwcly5dYvfu3bS06Opnl8vFtm3byOfzhEIh/BOzDK7EIZvAarNiMVvQRAOSsHnaYDJXJF9Uq5T4oA+/47kiqXyxZiF5eSZKIle9qHfVWxkLpHlxIog/O1um91Y+2LORLJcCq868q+/tXi1er8zEuXd3wzqPsxJmwllca2jJZqOEomoEUxvHN4MeHSyKIg77aqCVX6d85gIJovE4Tz31FC6XS2eQpdMcOXKEuro6DDkZl9VIOC1X0cPD6QJeu0k3slyDoqoiCQK399SzEMszGc5jN0vkZAURuHu7G7dFnz8mc0W+cS7AeDCD2SiiqoAAvT4bjQ4jy8kCoiBwvNPNHT1eLEadMr+cVnlhLoLNLNHi1hfAWEbm+akonV4rJ7srN0d2fD4f27dvpzCyzPnzSxRyGWaiYQwGA3a7HYNmuqYWbwlbLfYXrm9GcjPtUW4mtnQhKTGCVlZWqKurY8+ePa/q/UaWk3z8H8+V888R4A3bfXzqpPuaCkk4HGZgYICWlpYqvcRGWDt/MRlE/u97evnA8TYmQ7qOZGej44qU3I3eV1VV0rEwvaYkIcFIXrBgUlSyBf2Uc+f2erZVaBc2moeE0wU+98QkQ0tJ8kUNkySwq8nBv3nTtvJuvJQhv7S0xJEjRzZsKZrNZlpbW/ngG5x87olJEtk8akEhkIiSyGvs9JnxkiCXs2x4mmx0mXGYJeJZuUxEAH0Q67WbqhhUaxFMFbAYpHUqfVVRGLg4zgeOtWyYN5/K68Vr7RzAbpKIZWVSeaVmIfHaTYRTqaq/U1QNELCbaj9WnfV62y6WlXFbjQiAZDAimqy8dX8Xt3c5OX/+PMlkEkEQeOlsP05PPR1Nfm7rcPHT0TAzEQWH2UAipwds3dHjrdqEDC8leWEqylIiR53FwPFOD+8/1srgYoK5SBaX1ci+Fie7Gh3l78T5pRiXAmm66y0YJREBgWReYTqc5SMn2/DaTRhEoUokq2ka80mFXFGlvYKE4LYZCacLXFpJbzjvEAQBX51+Qmv22UDTyGYzpNNpFgNhSAY5dy5eFkPOJVUGFxNE0jItdWYOtrnWWeGXNmtbrZD8S8gigS1USNY+5KW2UTwep7Ozs8yfv17kZYVf+/t+Ihm51HFBQx8OO0SZ9/Vc+bhXabm+e/du2to2ti+pRC2xY6PLck26kbUo+Y+dP3+ef/WWvfROy/x4eIVIWsZsFHnrngZ+/c7LwsyNigjA58/M8MpsnCaXGbvJQKagcG4+wV8/M8Pv3bcdRVGq7E422i1pmoaiaRhEkQOtLj52ZxffH1xmIZ7Da3NwZ6OFO5pFwoEVJscu4XA48Pv9+P3+sgtqc52FE10efjYSpFDU9DZTVkZWVe7Z5atSz69Fa52Fc3PxKjuYVDpNLJFgx+Emdu7cWIDZ4NSLVywjVzHAYqsxvW5b7cfjeKeb0ZUUwWSeeoeJoqIzoZpcZvY0Vy8EympLSBDQd+nbPDwzFiGUkjGIkC9q7Gh0cKTNycWLF9E0jaMnTvHMVJwXxoPE59NYBiNsd8jscziYzZmRZTPb6u2c6PZUtdHOLyT4+tlFskUFt8XIQizHTGSRt+7289bd6z3nSnb3Y6E8LosRi8mIpuqtT4dZZCleZDqUotNTv26R1j93YUNnAkkUyCvrv/fRjEy+qNLmttBcZ2EqnKHVbcFitZFUDLS2OLl/Zx1uMUsgEOCHr4wxGDciGcy4HVamwgaGl1K861BTFQPw54Xk9cWWKSSVKGVXWCwWTp8+TSAQIJlMvqr3fOJSiFCqUGbJAAjoffKfjCV4oG1zDUop2S8UCnH8+PEy4+dKuJ5I3CtBURTGxsbKPf+6ujp+pRXedbiF5UQOj81U1f6oNVRfjOc4N5/AZzeVd9E2k4TfYebCYpLx5Tih6YtVdieVKBRVfjQc4MlLYZL5Ir1+G2/b28ixTjeH2+uIpAuYDGKVTUehUCAUChEKhZidnaWoCfj8flob/bznUCMui4FnJyKk8voQ+007/dy9Y3OR6cluDy9Nx5gIZWh0mkmmUsyGkvQ0ubnvaG/N1zU4zRztcPPEpRAFRcVuMhDPyhQUlTdsr9+0eB3pqCOcLvDMeJiJYAZRgFa3lYcPNVcxyi6tpPjB0Arz0RwC0Om1cf++Brq8Ni4uJ8nJKj1+O3sarIwNn8dgMHD06FG+1r/MC5NR3FYjTT4PkYzMJUXlrV4Lu4QkgfAiDs2MOZUjHNbjX1Xg6bEQsqLSu2qi6cNEMJnn+ckoxzrdVae9ShhEAQ0BURBButwqEkQBaYOsFVmFTKFIo8PAdE7/LpRORbKiUlD0SOESYhmZn42GuLSSRlZ1C/1djQ4sRpH5mO635rEZeeMOH4fa9daer6mVJyIzuEnjFGUy6SgGVWUmZuYHao6PvqEH6+rptnTq30r6i58XktcRKysrDA4O0t7eXm5H3Aidx1I8hyjop5BKCOjpcIkNEuBKyOVy9Pf3A1zzoF8UdfZRLCNfVdbGlZDP53nyhbOMR4vkswInjdUthcqfcaWheiKrK7zXUmktRpFwOsfzZwc4tq1hw7mUpml8/swMj4+GMBskzAaRl6ZjjC6n+Tdv6uZgW12V2rkEk8mkO6BaPTwTcdA/G6EwEafNGuKIt0hPs5d9h71YXB4aPY4yZXUtiqpKKq9gM0q0eaw8crqd751f5uJciHwux6ntTbzvtq6qk4aialxYTDC0lKSoaPQ22Ll/rx+HWeLF6SjJfBGv3cRd2+u5s7daz7MQy/HyTJSleA6fw8TRDjf37mngWKeb+WgWk0Fkm89WVXwW4zn+7sV5opkCjS4zmgbDy0kimQK/8YbusmdXKeTM6XSyb98+ZqM5zs8naa6zlN1366xGJkMZxlIG3vKGI2iqWo58HRoaolgsItndTC1r+OqqWT/1DhMTIT2RsVYh2dvs5FIgRU5WsBj1NmEoVcBlMbKzuW5VXKkSSuV5ZjzMxaUU4WiMdreRJpeN6XAam1lv1aXzRbb77exZpRXLisq3zi1zcTlFo9OM06C7FZyZjPKuQ03cs9OHrKg0OM1VbcblRJ54rkhXg2e10Gnk83lMsRRTgTg/ffp5mtx26uvry+4RW6mQXM+wPZ1O4/VenZZsK2FLFZKxsbGyQrqSRnsjCsmORgfqZSJRGTpFU8Jh2PjUEIvF6O/vx+fzXbPwcTyQ4s9/OsXZGQXL4AscaKnj/7q7m11N16fsjcfj/I8fnuWpJYGCZiCXFznz9/189I4u7ttbLayrdO4FNnzIWtxmnBZ9F95QsegHExm0fIZD27vYvaN7w4dzIpTh+akoXrupfOLw2o1MhzN89/wKB1pdNR/qYCrPXzw+WRb8SUYj42kZOWNih9VOLBwgPjnGvN1eboGVBtCqpvHMWJifjYaIpAs4zAbu6vVyz8563tqYYZdY5MD+Q3Q2uKt+vqpp/NPZBZ64FKawSmF9cizMoTYXv3Z7J2/a6S877K4lPYyupPjS83MEk3nMRj0X5IWpGB841sqxTjf1NYSRfbMxnTXXcJkEYDdLjAfSDMzHefMuP8lkkr6+PhobG9m5c2d5Ac/KCm3u6kLssRlZSRbIFvTZTWWWeCqVYnYxQD67yHQ8RsppWg1asqNJBoyigGWDE1ahqCKKcLijjolwmgsLSd2CRtNPp2/cUV/2gsvKKt8YCHApkMKk5Mjn80wmzbRIRU531TEfy4MAt3fXcaitrjxfmgpnmQimq2IEbCbde61vLs4vn9zY3VYSBSRBQFE13aUZAYvZgsMpYbI5uf1kC8VMgnA4zMLCAqqq8crAII3+ehr9vtc0LXEjXK8g8ecnkleByclJlpaWOHXq1LobeSNy2091e9nZ6GA8mEbRtNXcbUCADx5tRNRW1r2mZAS5fft2Ojs7r2m3sxzP8W+/PshyIoek/xhemI4w9vUUf/2hQ7R7r42ZsbKywj8/c57Hl0wYDAaabEZisSyJrMx/f3KSrnpbuUBVzkNKPfCN4LLoeRr/+5UFluI57GaJaDJDKpvnXYebObBzW83rmQ5nyBYUGisKkCAIuG16MckUag+qz0xEmI1m2ea3le3j3TYj06EMC0oT9x/vQZblcgusr68PURTx+XyMpMx8fzSJJOreUrGszFdfXmBwdII3dRi5767bNlxARpZTPDUWps56OYUxJyv0z8V5YSrKm3b6NgznUjVtlWGXZ/tqQdA0jdlolu8NLrOvxblhXgzop2CLofoUKAoCkigQSOaJRCKcO3eOrq6uKqNRu1nCIAmrqZkVEQAFBZd1faETBAGn08nenU7uydl4YiSIxaIhF3LMLSwRyEKv34apEEeWjRiN+mf09Fh4leorcrSjjgf3NXGwta58wurx2emqv3ziHVpKMhlK45VyZHNpdne3YDSYuBRIYTYa+LXbG8saFuBy1kqmgKJp62MErAaCqcI6V+gSWlfnKPOxLN1eG6IoICsqK8k8xzvrqHdawWmlsbGRF8cW+clL4ygRGS5O02Ya5XCbnSa/j/r6+vJG5LVC6Rm8nhPJrZaOCFuokHR2dtLS0rJhFO5mpo1XC1EU+NtfOszvfXuYZ8bDaOjU0kdOdfCRY35eeXmp/G9VVWV0dJTFxcXrNoL87vllAskC9XYjuYxuxmc1SYRTMt8aWOJfv6nnqt5H0zQmJyeZnJxkUfShkKbZaQFNQxSgwWliMZ7n8ZEgu5qcNYfqtfDeIy1YjRKPDq2wHElgpMgjt3fzCyc6N32dzSiBoLeLDBU5FAVFw26SMG5CZZ4IpjEZxKoMEoOoL7DTYd123Gg00tzcXPa0isViLK4E+cG5BeLZIq1uC5Jiod5iJBVPMhQx8Mhb9tfchY6upMjJKu3ey98vi1HCKAkMzMd5007fhq9bSeSZjWZpdFouz9YEgWaXhYV4jplItqYSu95hIl/UqkgAmqahqBqinGFgQHdnaG1tRVE15iJ6XklLnYUOr5XJYIZOjwWTQSSWLZIqKLx5t79q0Z2NZDk7GyOQzNPgNLOz0U40LTO6kkIWJASnnX2NIne2CMzOTHNxeIicwckTSyJZzYDfaSWZL/LdVXLEh29rq+nuvBTPkUgkMBllWltbMBn1e201SSwk5HL7q/I7qKoq1tWZS64gYzbq2ypBEEjli3R4rOuKSE5WSOUVnBYD9+7x853zy4yH0uV72OO3cVfv5WdyaCnJdy9ECOYEdja6ycoKM9kCroKRumyWc+fObZpIeDNQ6gRcayH5Of33VWKjAlLCjfLC8jnM/PUvHmYlkSeSLtDhtWI3G0in0+X3XxuMdb0f6shyEkEAUdADptD03ago6PTMq4GiKFy4cIFoNMptt93Gj34yc9mLqLwG6w9lMFW45iICevvg/t1e/NlZUm1GTh09htN+ZfPLA20umlwW5mM52j1WJFEgUyiSyhW5b4+/5mwD9H5/cQNGj6JqG1qfiKKI1+slK9ow2HN0ewQEpUAmk6FQKGAVReKqwMRShAZXy8ZZ2DWuRRd21mbslSxR1v4LDf1Uuxlr+0i7m5emYsxGsjTVWdA03freKsgY42H2Hd1HQ0MD0+EM3+xfYiaip1rW2/UZjKDBTDRLUdFwmA28YUc9d1YsoBcWE/zjywtEMwXMBomB+Tgvz5h439EW7ujxEl5t/W1vsJdPA7lcji89O04wEaXeKJMpxrHZbPjMFgYXEowHMuzawDJFVVXCywvk8wXautqqsn4KRY066+WUTbi8gKqqyvZGka76OJPBDM0uEyaDQDRTRFE1jrRfLlqyovLcZJSXZmKk8zrF+URXHR863spUOEMmr+C2GdneYC/b5quaxvOTUQqKQrNd1OeEGLGaJGZSCm852MuePXtIJBLlmNuSeLZEL66Vn/5qcL2FJJVK/fxEcrNQKiRr0/6uF2szP0oU3UQiQX9/Py6X65qCsTZCvd20miCn/3m1i4aqsWmqXwmlAb8gCJw6dQqz2Uyv38HZ2Uqaq7C6A4RtPtsVi0g0U+BHQ0Femo4iiQKntnm5s8vOpaHzOJ1Obju+76q/+A6zgY/e3sH/emaG2UgG0HMubut2844DTZu+9ninm2cnIqwkdAEk6Dt/h9nAsRoGgqC3fMwGEVkDm8GALMu4XC4KqkA6mWN28hKF5TF8Ph9+vx+v11veoPT67ZgMIslcsayFyBdV8rJaM6gKwO800e2zcWEhgcNsR1xtbS3G87TUmelc06IsKCrhVAGrUaKr3sb7j7XygwsrLMV11paDPLsdKe45pXt9JXIyX35hjoVYTj9liQLBZJ7HLwV55GQHdrNEpqDQ4DTT5DKXP1dZUfnhhRVSq4PtUsttOpLlx8MB/u09PRta41gsFsKyiY5mPw0OI7lcjkwmQyYRZSlR5Ex/Gvu+Fnw+X9lNW1EUzp8/T4OpQHdrA0tJmZY6CUGAYFLPdl8b2rUUzzGynCJX1Nuf7zjQzM9GgkyFM+TTCnVWA3f2VMcNP34pws9GQjgtBlwWA8lcke8PBigqWs0TYzqvEEgVqLNIFNOXv/N1FgPBZJ5QqkCTS7fEr6urK4tnw+FwOW9FFMVyUan8zrwaVBJcrgU/N228iSgt6IqivKrFvRZKi+eLL75Id3c3PT09r7pg3bu3gR8NB4hlZSQNNE0lkVMwSgL3b5DnUYlS0qPX661KVXzbvkYeGw0yH8vitprIKZCM52lxW3njdi+aptUsIrGszH/4wSVGVlKYJF3NPrgQ4wcvFvjUG1rYu2u9YG8tUvkis5Hs6iJp5WBbHX/yzt30z8VJ5RXaPRb2tbhqxuaWcKDVxXsON/O98ytMhTKAbsfxrkPN7Gio/RC5rUaOdtTxg3MLWNUszX4PgtHMSjTH4Z4m3nvPNpKrtu4TExMMDg7i8Xjw+Xx01/u4fZuXZybCBJIFRAGKisa+Vientq0XWMazMllZod5u4qEDTYRTBcYDaSRJQFE06h0m3nmwuTyv0DSN56ei/PRikGCqgEkSONjm4qEDzfzWW3qYjWSZmpzEkMtw4tjx8hxwcCHJQizHNt/leVGbx8pEMM3LszE+evvGLcbFeI6leJ5Gp7mq5dboNLOUyLMYz60rciW4LAai2SyCaMZqs2G12XArKilDAp/HwsrKCqOjo9hsNrxeL+FIBEmSuPeO47QspXl0OMBkKIOGhttq5P59DVXtvb7ZGN8+t0w0I+unNlFgZ6ODDxxrISPrxdvvNGEziuXNTyIr8/J0FKdZwu/QHQPsJjOBVIGXZmKc6HJv6GxgNoirzs4Kxorvb0HRnYatFZk1RVVjLJBmJpJFFIx0N27j9j17SK6eVqanpxkeHsblcpULi8PhuK61oDRov5bXljzZfn4ieRXY7IaXFtKbUUhK6nngqkWGV4NjnR4+flcXn392hngO8mkZq8nAL59s5/S22vS+5eVlBgcH6enpobu7mjHVWW/jD9++iy88N8NYIIWqCRxpc/Cxu7bR6DJvuvt5bCTIyEqKljozRkkkl8sRLeRZyJtZFrzsu4JD8PcGV/jOuWViWRmDKLC9wc6v39FFh9fK3Ts23i1WIpUv6nYeNhNOi4EH9jdxvNPDyEoKUYBdTY6avlaV13HQmWHQnCMsuFhMaxilPHuaHXzktnakiizstq5tPDcW4IX5EPL8Eg3iGN0eK45OF4s5I5LJxJ5mF8c73VWkgFhW5tvnluifjVNQdEfae3c38Mm7uxmYT7CSyOOxGTjc4aal7jINvG8uzldenEcF6u1G8kWVJ0bDRNIy/+rODjJLEzjUNIdvO1GVmxPL6kmRa4uvzSSxkqhttSIKAoJwWe9ReY9EqHIpXoujHW7GQxliGZk6q57xMhvL0ey28YaD23BbjciyzPjsEt95eYKJuIogiLwc7OdNu5v42Ok2FhIymgYdXus6MecPLgTIF9UyW60UivbsRIQH9q83NQVIJWUyskaTS38vTdXQ0HCaRAKpApFUYcNCYjKIHGpz8e2+GLbVW5EvqsxGsmzzWcsW+LKi8p3zK7wyE0dWVH1GahQ5vc3L/Xv9eDweent7yeVy5dPKzMwMkiRVnVaudv25Xkv7n89IbiJKlb1YLF6zLfNmKCnDS2LHG83f/tCJdt68y8/ffPdpduzo4o4dTbS4N9agVLoIHzx4kIaG9SpkgP2tLj7znn0Eknmee+4MPS0GGi3qFXc+Z2fjGEQBoySSTqfJ5fP43HUsJmUGFxK8eZe/5mufHgvzdy/MIYkCDQ4zBUXl/EKC//rYOP/pod2bWoIUiirf7F/kiUth0gUFm0nkDdt9vPdI8xVjhQuKypnxCC9OR0nni3hJsMNe4I/ee5zljN4CctuM7Gi0Y6goorGszF8+NcXQUgpV00Az4rT4uL/BwS5HHl9oBVVVqc/7SERkTD4fRqORoqryhedm6Z+NU2834bJILMbyfPnFOX7tdAdv2b3xPdI0jScvhZBVrRynazfr7rzDS0m+90wfnU6BY8eOrRvyelcZZEVFrcrqSOUV9rXU1is115lp91gZD6bZ5pMQV6nRS4k8vX57VZEDfZaQziuYDSLHu9wsJ3K8NKMP6UVBoMFp4uFDzWUH4Xgmz9+emWYpY6C1wYtSlHl5Oct0ZIY3NFyiyevC5/NhUHxo2mXPsclgmnA6T3f9ZcqzySDisRo5N5/g3j0NGzK0nBYTVpNEXgGLSQJNv69ZuYjZIGKW9MhjQRBIFVTOLySZieawmSS2+20caDQzuJBnLJBCEgW6fVbecaCx/LOGlpK8NBOj0WkqF6R4VubMRIRev618orJYLOts8cPhMJOTkwwNDVFXV4fP56vSrmyE62Fswc9ZWzcdN4K5VYl0Ok1/fz9ms5lTp07x1FNP3ZTc9kaXhdsaBU7t8eFwbLwwlGxIYrFYTRfhtai3GTh5cA/Ly8v09fUhSVLVbGDtl9hsEFE1jUQigaIouOvcSJIIyBs+2JV4dDiAqkHrqqWLySBiNojMhLOcnYnXtIYH+Ke+Rb41sITDLOG2Gkjni3xrYIlCUeVXTtfOP1BUjS8+N8uTl8KARi6TJq/AQls9xzUj2xvMbK/RBvvxcIDzC0k6vXpuh7a6wP50KsPtb99ZHr4Gg0Gmp6cZGhrC7XYTE5wMzqdo9VjLxdFhNjAVzvD4pRDHOt0bLhyyorEUz+OyVj9OJhEisTgJn5WjR49uuLAcaHXRVW9lMpShyWXGIIkEknkcZmndyVXTNIKpgq76d5h5YH8TX3lpnrFAGknU9RZNLgsP7G+qOuGcm4/zxKUQS/E8ZoPIiS5dTHm8y8NiLIfJILK9wV5eYDOZDN988iyBvIGD2xowGSTASrPXyUQwjbXdT6tbJRQKMT09Xf7u+Xw+CrKEpq0nIUii/pmuNZ5VNY2srOCxGdnb4uS5SX1+5zBLpPIK4UyR23s8NNTZ9IF/Ks9XXllkKpTFaBBQNHhpOsphn8iDvRb8Ha1YjRLd9dVssJHldPnzLKHOqutyJkKZDZl3JZKH1+tl+/btZLPZ8mllcnISo9FYLioej6fq870eDUmhUECW5Z8XkleDK+2ob2QcbjAY5Ny5c7S1tbFjxw5EUbzhue2V2Oy9c7lcWSdRGqpXYiWRJ5op0OaxYjdJVUJDv99PQ0MDqqoSjUYJBoOMjIwgyzL19fX4/X58Pl2YdazNwdMjSxhNIo1efUGMZ2VMkr6w1IKqaSwn8us0FqWHVE8t3BjRTIEnLoVwWQxlgoHNJCGKBZ4dD/OOA001iQcjyymenYjgtooU0gnqHAacdW6mwxl+ejHIh05s3IJUNY0Xp6K4LIZyboew6jw8GcowtJjkjTt95eFrqZ0RDAY5d2GJcDSFtZiiYLVgtVoxm8zUWQwsxfPki+qGmhGjpM949Jhj/e9kWWZxeQWjwcih3dtr7k7tZgMfOdnBd84tMRZIo2hFWuos3LunoYo9FcvKfLNvkcHFJPmigsti5K7t9Xz8rk4uLCYJpwvU200cbHNVtQjPLyT4uxfnyckKXpuJrKzw3fMrBJIFfvlUO+2eaoZeKpXi7NmzZCUndU7DahHRYRAFTJLIfELmLXs7qnbtwWCQ8fFxlmJZ8ikzM2qe1nonRqMJVdMIp2Vu7/FUzZRenonx7ESEcKqAy6qHmB3tqGN0OcVyIo/dJHGi2839exvLLaWX58JMR/Js89kwSAKaBqF0nhfmUryzx8S+JvuG2qmiqm7IsBPYOJNFXaVpG8TLQl6r1UpbWxttbW0oilI+rYyNjZHL5fB4POU2WLFYvC4NCfBzQeLNxI0QJWqaxvT0NOPj4+zdu7dshV56/5tVSGr5bcXjcfr6+qivr2ffvn1VX/5IusBnn5jghakoclHDaZF4+GAT7z/WotOIKwZ5layTnTt3kkqlCAaDzM3NMTw8jN1ux5jOcqTJwkhcYnY1rMhsELlvr39TppQoCLTUWbi4nKxScMur9F3/Jgy0YLJAOq/Q4Kz+N67VhTmQzNcsJKOBFNm8jDGfwWq1lgVlDrOB/rn4poWkqGpIaxaN0h+VDbIYLBYL7e3tHNKcPBOYxGYFRS4QDodBg7hioNVjB7UIrF8cBEHgjh4v//DSvH6aMGgsBUKkVBN7O3zsq9BlaJrGQizHWCCNKArsbnLQ6rbwr+7qYiWZR1Y0Gl3mKvq0qml85aV5XpmJ0eg047EZiWZkvj2wjNkg1mxLaprGk2MhcgWFbWWDQyN2U5HzCwmmwxm2+S6f6kokj/b2diJJG5cuBte9Z1GtdksWRRGPx6NTs71t9EoKuQtzPH4pymI4jsUgoRnMdNQ7uKPihPXcZJRv9C+CtipMTBb47vkV7t/bwMfv6iaR040zK1t0mqZxYSmJ22bEbDKW/85lhIlElgR1Vc+wKIrl//X67QzMJ8gX1fIGI1NQEAWhyhMsX1R5fjLCK3MJsgWFTq+V27d51kVEV85OQD/FlU4rExMTSJJuMxMOh3G73VdVVFKrbtI/n5G8SlxNSuL1ojJdsWR0eCPffzNsVEiWlpa4cOECvb29Vapm0HdI/+EHo5ydja6mKkqk8kW++PwcRkngfcdqEwJKKmen08m2bduYn59nZGQEh83GWxqz7HKZCKo2nA4HJ3sbONKxcbumEvfuaeBSIMVSPIfXbkRWNAIpPeBosyLksRmxGEQyBaX88IL+AJuN0qbeY5lUklQ6TXODo4o5o6japq24kgPxz0ZC1DtM5aFzNCtjN0n0bpIZv7fZSVe9jclQhjZ3HXV1bgLxLGoqyzZrlmefeabcI/f5fKxkBWLZIj6Hidt7vMRzRX5yYZGhxRguu52jXfV84Hhr2X9L1TS+c26Zx0aDpHIKCDpN9aGDzbxxR/267JgSpkIZhpeStLot5dZMk8vMQizL0+Nh7tpev6FuJyurLMZy6+6zwyyxlMixnMiXC0kkEmFgYIDe3l46OjpQAynOTET0jJrVYh9K61Tf/RVU32Aqzzf7lrgUSCErup7kru1+Ptndyvn5OMvRJB4pT5MY4dJAkJDXi8vt5WcX9VlGyQ7eY4PAqrnk6R4vrTVmiTr9+vKf8/k8KytBHHYbjQ0NmEymMhNsJZFjPJhB0TSanBZ2Nti4uJLGYpBQ0VZ1LHXlk5+qaXz73DLPT0Wxm3Sqef9cnMlQhg+faF1XTCqh29HYaG9vR1EUxsfHCYVCjI6OUigUqk4rlWSLSpSov1vJwfhqsaUKyWZ4NTOSyvbR6dOnNxzY34jc9mimQCQt65bsFb3YyvfWNI3x8XGmp6drDtXPLyQYXIjjtZlWWykaJslEKF3gO+dXePhwy6aCv9LPmZ6eZmpqigMHDtDQ0ICiKITDYYLBIMHgEsmpJYaS+lylvr6+JiPlrl4vyVyRb59bIpQqYJAEDrfV8dE7Oje0FSnB7zRzosvNz0aCiILen04XFIKpAm/YXr9uIFzC3NwcUnweX52dLCZKB/2srGdfbETXrcR9exoYWU4xHkxjM0nIioaAwL17/VW7T9ADtcaDaUQBtjc4+NXbO/m7F+aYjmQoFDVcFgPvOd7Jw4eaKa46F0/Or/AXj0+ykJVQBQMum5kjXfXc321C9Uap29dNe3Mj3fW2qlnFwFycR4cC2EwSPX4zGnrr8p/7F+n0WmsuVNGMTE5W17GWnBYDiWyRdL6IaQMzRpNBwGYyEM/IVX8vqxqSIGBf/eyCwSB95wYp1LXz+AKIi3PsanLwll0+nhwLMxbUWy5Os4F79zSUM95lReUfXpzn4nKS5jorFoNIOF3gu+eW+eCJNj5y6jJ1ueQHFgqFuDizyNhMWj9ZaTasVhsWsxmvzchsNEsgkS8P/UFf4KMZnS14oNXFo0MBfA6VYiHP8vIymrWOJpuNngY7kiQhiiLPTUb5weAy0Uxh1TdM5Eibi4f2+ZkIZZEkgd1NTg611ZU3JnPRHAPzCZpc5rJZZr3dyHgww5nJKNt8tYfrlZAkqXyK3rdvX/m0EgwGGRsbw2q1louK2+2+zFxLpW5qXjvA//gf/4M/+7M/Y3l5mYMHD/K5z32OEydOvOr3vWUKyfWeGKLRKP39/TQ0NLBnz56a1b5WbsjVIJkr8pnHxnliJEhB0XCYJd57pJVfub1TN55bfe+SsGuzaF6AhVgWWdFWd/FaObXWZtKzM2KZapPFtVBVlSdeHuTZiSiO+hZSyyp3OfUgpUqjv3g8XqW58Hq9ZZPESodjQRB4YH8jb9xZz1wkh8Uo0um1XtUX/sO3tVNQVM7Oxomks1hNErf3eHnk1PpBe6nILiwscN/pw9hnc3zr3DLjwYweACUKHO1wc88G4rScrJAu6EK3No+V33xzD0+PhxldTuG0GLity8Nt3Z6qa37yUohv9i8RTuvxAo1OMx841sq/v7eXiaDuJdbqtpRdjA2rjJ5vjRdYQaPJKyAqBaKpFD/qT7Iwo/Krpzvo6mrb0ILj7FwcWVXxOfRiJqCfLMaDac4txGsWErfNiNkoks4XqzYoyZw+pK7FmjOIIie73HxzYKlM9ZUVjZlIhg6vlZ2NDpaWljh3YZihYiMjo2kQMqBpPDsR4dQ2D7/xhi5mInortNtno7lCFHlpJc14MEOn11aeHTXXWZiJZDgzEeFkt6d8Iqw8KbsbW3k6MkaxkKcoF1hJrPrcGS2oghGjcPnIMbKc4sfDAeaiWUQRuutttLktXFqKEY/HsTuc1Jut3LPLXz7RzcdyfPf8Mhqwo1F/xqIZmRdnE/zisRY+fMJzufOhFikW9fbXciJHbo1ZpiAIeO1GZiL6M2la9T7LyQrDyykCyTw2k4E9TY6qNm2JtSUIAna7HbvdTkdHB8VikWg0SigUYnh4GEVR8Hg8nD17FofDcVPbWl/72tf41Kc+xV/91V9x22238Rd/8Rfce++9jI6O1mSJXi22VCG5UmvrWmckc3NzjIyMsHPnTtrb26+oVbmeQqVpGn/wvYucGQ9jMoqYjSLJfJHPn5lBEODX7uhCFHXdxosvvljOnN/M68fnMCGJAgVFxSSJZXV8TlbKqt9aKBQK/P3PzvKN0TyyaEIIRvjxaJTvnl/mD9++szxcFQShrLnYvn07mUyGYDDIysoKL5wfZTZvwWh1sL/Dz+07mzAZJOwmw4b2GZVQVI3ZSBYNjQ6vFafFwL954zbmojmCqTz1dtOGRUhRFJ7vG2QykODQvr3Uud086IbdzU7OzSfIFVW2+Wwc7airsmrPyQrfOb/M02NhsgUVn9PI/XsauXtHPe872lrzOoeXkvz9i/Momka7ZzXnPZ7nb5+b5fdcO2r6Zy3Gc1xYTNLksqy6HmuIYhxZzbBYsDKzEmV2dhaXy1Vm0ZVac8lsEeOajYwg6K622ULtTcw2n43dTU76ZmM0uszYjNLqKUXhru1NVSaOk6E0z05EmI1k8TtMHOtwc1evl7OzcQKpPAZRKCvug8uLjI2NodZvY2Q4QWudpRx1nMoXeWEqysFWF7f3bEyLj2dlFHU9AcFpNhBJ6wFW1jX/TdM0PDYTB9rqeGY8gtfjwOeXiKezTAaStFkzjJ17kZC7jrypjm+P5UgWNBocJhRVo282TqNNYJc5jm13E00+L7ubnfRUJIFeXE6SyBWrXJe9dhPRjMzQSprbenzljV3JG6xYLCJp+v+XFQ2jdJkAlJdV3DZT+XQZy8j8/UsLXAqk9agGwGc38gtHW9jbrBeuWvRfg8FQ3qyVBIjLy8t88Ytf5Pz589jtdn7nd36Ht73tbZw+ffqGqOxL+MxnPsNHP/pRHnnkEQD+6q/+ih/84Ad84Qtf4Hd+53de1XtvqUKyGa6ltaWqKiMjIywtLXH06NGr0odcbyEZXUnx0lQUq0kqP4Rmg0g8K/P1vkU+eOJyz7SpqWnTUxGsiu5anWzzWRldSeO16W6vqXyRgqLxtr0NNd1m0+k0Z17u43sTGprRTLtLNxosqhrT4QxffG6WP3j7xmmBNpuNzs5OJnN2vjkwTSSdQynG+faFCL3PXeLjtzXQ0dKI1+utef3nFxL83QtzzESygEab28qHb2vjSIebDu9lcdha5PIFPvv9l3lxqQhGK48uz9LrD/Prd3ayvcHB9oaNF3VN0/ji87M8NhrCYTJgNYnMR3N8/swMKhr37KytjXluMkK6UKw6BXR4LIwHM7w0Ha15rYlckbys6sQDTSMajZIv5GlrrCeSVenZvZ1Wp6HsXDw9PV2miTZaJAZkBUXVyouSrKggsO7nZQoKoysp8kWV7nobHz7RhtkgMrSYJJaRcVmMPHSwqSr068Jigs+fmSWaKWAzGZgIpumfS/DeI8186h4fS/EcNpPuvbUwN8P49DRHjhzh6xfiCALl7y/obcilRJ6RlRRHOtwb3gu3zYhBFMjKSlXBSOSKdNZbq+ZiQ4tJnhkPMxPVC9zBVhcHW52MrqQpKCoGUeRYTyMfONaKw6BTi//3KwtMLWZocwgUJTtWq5UmG1ycD3P69k7ednRj49N8UY8JWLtZMRlE0vnL1iWl73FeLpLJyWzz22l0mZkNZ2j3WjCIAqm8QjKvcM+uy44NPxsNcXE5SXe9DdMqrX42kuVb55bprrdhM0lXJUgUBAGHw0Fvby9PP/00X/7yl/nc5z5HIBDgfe97H9lslqGhoRsiki4UCpw9e5bf/d3fLf+dKIq8+c1v5vnnn3/V73/LFJKrXegLhQL9/f0Ui0VOnz5dc7B1ve+/FlPhDHlFxbEuHEoimStyfnyWZDKJ3+9n7969m56KytbTAvz+fdv5s59NMrqSIp4rYjVKvGN/I794YuPshpIleVT0kSVV5VZrEAXqrEYG5hNEM4Wa4UaBZJ6/OTNDRlbo9um76IysMB3L8vh0ltviFzekFgPMR7N85rEJIulCmX46Gcrw549P8h8e2FUW6q1FNpvlrx99hafmNTwuBx6biYKiZ3T/t8cn+fQ7dtUsnLPRLC9Mxai3m8o9dZfFyHw0y6MXAtzVW19zMB9MFTa0Y5dEgWhW3vA1oKcq2s0SsUwBMZ9CURQa/A0E00VcFgN+hxmz2VAlaotEIoRCIdz5ZYz5IuemUvicFgwmE8m8yp5mJ0faL5M/Liwm+PsX51lK5FBVndV0z04fv3q6nVBKJpkv0uA0VRlcKqrG9wdXiOdkev2Xd+KL8RyPDgc43uWmzeOpah8ePXoUl8sFxGv+vhshJyvkiyo9fhs7Gh1cWEzS6DLrViVp/d7d0VNfbmu9MhPj71+cIyMruMwGLq2kGQukeHB/E/fsaiCS1um/vX57+fNqb29HvZijo9mO16x/T8KhEIqqIkq6j1Y2m93w+W6tsyCKQjmkq3R/MgWlimxRVFWeuhTmzEREDzWzmdjeoH/vZ6N5NE1vL5/ocHKszYEsy+QVjfMLCbx2U/n7IwoCbW4LM1E9d2V/q+u6XDhUVaWtrY0vfvGLqKrKuXPnaG2tfaq+FoRCIRRFobGx2p6psbGRkZGRV/3+W6qQXKn1VCjU1iwAJBIJ+vr6cLvdHD169Jo+yOsdtvsdJoyiUNU/BZCLKiIKKzMTNHndeDyeKxaRyjjcjno7/+0X9jGynCKWlemqt9UcTs/PzzM6OsquXbsgZUY7N7aOMy8KArKqIiu1nW5fnokRy8i0eS4XIZtRwm4xMhw38KkHbiedTldRi+vq6vD7/TwxrxBKFeiqaFu1eyxMR7I8cSlEt2/9TKREN70QN2O3G2lw6r+fURJpc4tMhTMMzCc42b3xcH0hliNdKNLorC5SdVYjoVSB6CazpE6vlYE1Oe+KqqGqWs37DLoZ56muOr7x8jQWSaDZ72Elpfty3bunuWwICZAuFDk7E2cxnsdmcnP4cAe79mT5Xv885xbi5NJJ9vpNvLXNgZLPoJmcRDMyX3hulnBaLrsqR9IFvje4QqPTzB299TSy/ncKpQrMRbM0OMxV37MGp5nZSIbpcJb9LQZGRkYIBoMcP368bA64p9nJS9MxsgWlqrUliQK7Klp8qXyRRy8EeGkmSr6o0u6xcrLbg91k0NtJWT0F9I07GsvapKKq8pOLAQrFy/G/oKcfPnkpzOkeb01hab3dxHQ4g9VtR1FVkqkUXo+HeLRAIZ3gzJkz2Gw2/H4/bo+XmGpCVvTv3d5mB+cXkjjNBkRRb0d11ds4UfFd+uGFAD+8sILVKJWZbPOxLA/sa6S5zkJWVmh0mmitM63qTVQKchG5qGAQhXLej65bEVA1ncgA1x+zW/pMRFHk8OHD1/T61xNbqpBsBoPBQDabrfnfS3Tabdu2sW3btmtmPlzvieRwu5sev53RFX2oa5QEcgWFTF7mZCPcc+dJJicnN33vWvbvoiCwp7m2ylXTNMbGxlhcXOTw4cO6F1Aij9NiIJqRy7oPTdOIZ2X2tTg31X3kZL3NsvbOGVd3dypUUYtzuRyhUIhgMMjZkSi5rEA6rWI2mzEaddsMoyQwF13/uQWDQQYHB2nr7EaejWFf88yZDCKaputpasFlMWCSxHVCwVxRwWIUsZtrP8h39tbz3ESUyVAGv0N3ag4mC7S5rRsWrnhWplBUsYoKHcV53tRlYSpnI1NQcVkNPHSgkXv3Xh5YhtMFPvfkFJdWUqirdh8/HDLyS7e183+/7SCKqiHLBSKrcbmvvPIKBoOByYKDhYjMjibXqvOAHn+Qymc4Mxnhjgob+UoYpMtpgpVQVE0P0xI0Lly4QCKR4Pjx40QLAv3jYQySyI4GG0c76+ibjaFpeqStJAic3OZh/6oGRlE1vvT8LC9Nx6izGjEbRC4uJ5mNZPnYnZ08eKCx7FJcyeQLpQosJ9brhfwOE1ORLPPRbBVDqxLHO92cX0gwuRxFzCfx+nyEstDZYOXhN/RQZxaIRCIMTi3z2WfmCWRANBjxOS28cXcjD+5v4Nx8AlnVON7p5s7e+vIzEc0UODMRoc5iKJMp6qxGFmI5XpyO8e/v7V0331FVFY/BwDafjYH5JG6rofysBtMyLrNEW53+Xlstr93n8yFJEisr1QF+KysrVWm014tbppDUWuhLi+ns7OymHlVX8/6yXLulUfN1osB/eucefu/bw0wE0yQUFUFTOOA38On3n8DhsG3KCCudQq4lQwR0n7ALFy6QTqerdpeNLjPvOtTMP768wEIsi3F1oXVbDXz4ts0JBzsa7JgkkXRBKVNNNU0jkVO4a7u7ys8KdCFfSel7LDvN+CsLKKpCPK63SoxGI9m8QOMaQeLc3BxjY2Ps3buXhoYGms5fZDyUwVNxsMjJCqLIpuy0XU0Oun02RpdTtLotmA0iqbxCIlvkHQebNvUAa/dY+Y27u/jn/iWmwjor7Finm/ceaakSXgaTeb7et0j/fIJCoYi5mOD+XV4++cABckWVZE5vaa1tv31vcJnhpSRdXttqUdSYj+X46ssL7Gl24rYakcxmWlpa9Az7VXeC4ZdnyWazLC+lMVvMWCwWrBYrFuPlttFG8NqM7Gxy8NJUFIdZwiDpvfuFWJbWOguZpUmKhRxHjh7lBxcjPDYSIpkrIgj6ov7uw80caqtjZDlZ3sAcbHOVW02jKynOLehalhJzrM5qYDKU4fHREJ+8e+NIZotBwiiJFNbkzxQUFaMoVBEnSn+/GMthEAX2tTi5s9XIDweDCFYXahZa3Bbedai5XJgc7nqeC8fIGD1saxEpFvKsxNN89dlLPLDdxi/saMDn861LSFxJFEjminR4qk+fHpuRcFomki7Q6q5um5XmKm/d28RCQmYyksduEsnJ+kzmrbu8uC0isixTLBaveTObSqVuWiExmUwcPXqUxx57jHe+852AvvY89thjfOITn3jV739LFxJZljl//jzpdJqTJ0++qg9BkiRyudx1vbbDa+PLv3yUZy/O8/KFS+xpq+e+UwfLw7yNBImappVPIqAfiZdjWRxmwxXzSnK5HAMDAxgMBk6cOLGO2fHB4620e6z8dCRIMJVnu9/BA/sbazKRStjboluqPzUWIZkrYpREUgUFn8PEuw41b/rau3c28NilCPFckYY6B8VikeVEFqNWxBadoK8vit/vJ5VKsbKywpEjeh4HwH17G/jLp6dZjOfw2IwUiiqhdIG9zU4OtG2c1gc6vfXjd3bxP5+eZiqUoahqWI0id/TW8+7D1ddbKOpGk6WfcaS9jt1NTn7vPoduKy+Cz26qevizssJnn5ji4koSl0kgl04SF0z8YEZjZ2+KPc3OdbtWgHxR4ZXpOJ6KWFxh1SFgJpJheDHJ6TVMqJI7wZFdIs8tT+F2GFCLBbKZDLFojGBBorPTRTwer1oUC0WVVF7PWHnnwWaCyQLTkUxZtOd3GDloT6ApumnkK3NJfjC4gt1soMdvQ9X0FuH/fmWR37tve8024lIih6yoVfRjQdBnbzPhLEVVw7jWTgB9IL+32cmzExHsJt22pqjqRbXXb6fbd3mx7puN8d3zKywncoiCQL1JYY8lxh89tJ+4asYgCvT4bVXF58JiUo9trrfqppd2Kz6Pm/Fgitm8SCqVKrv4VnrR2c0SJoNIVlZxVszRsrKC2ShsugnZ5rPz63d08sJUlKlQBrfNyJF2nTygqSrpdJp0Oo3BYChnrVxugdUm2mQymZuaRfKpT32Kj3zkIxw7dowTJ07wF3/xF6TT6TKL69VgSxWSzSq4wWCoov+mUin6+/ux2WycOnXqVdPkXq2yfWV5icLiCO+5bX2++9r5S6mAlIrJdwZX+OrLi0QzBaRV7v8n3ti9oa16IpFgYGCA+vp6du/eveEXUxAE7tpev6mZ4kYQBYF/88Zt9PodPD4aJJlXuK3bw0MHmjYMSapEV72Nf313N198YY6VeB4N6PK7+MUT7RxqMhMIBJiYmECWZex2O+FwGFEUcTqdvGF7PVlZ4XvnV4hkChglUdeanGxfJ7zUNI1YVtbpy1Yj7R4rf/zAToaXdMpnc52FnjXCsVCqwGefmGRkJVX2VWr1WPnk3d30rjJ1NkL/bJyxYJpGm0g6GafR48Jm05XvPxsJ1mw7FlUNRdPWWcOLAmgVffSNcLDNxa4mfYDttZsxOi3EtTwNVpUDPqEsrK3z1nMhZuTscoFMQcVjN/LmXX7+7T3bGJhPEErlsRkFpMgM9XYjBw8exGAw8MJUFFXTypsVSdBnCuPBNAPzcZprzIfsJgMC612Kc7JCk8tyOblzzWclCALvONBEOK3nuairdNl2t5X3H2stn3LHg2m+9MIc6YIehJVMpjg/nyLb4uVeVx2d9o03V4lcEQGqrgl00kVGkDhwYJf+nVn1AxsbGyObzeJ2u2k0GxiL5On2ObCadPeIUKrAG3f4NnVdAP1Eu9anDPRiMDg4SEuLHg5WesZLG8lSMdmoqKTT6XXD8BuJ973vfQSDQf7gD/6A5eVlDh06xI9+9KMb8jO3VCHZDJULfcl0sb29nR07rhzIdDWo5Yd1JWiaxqVLl5ibm+Pw4cP4fOvFcpVEgbVD9R8NB/nvT06jabp1haxoPH4pxEoyz+fet7+KdRQIBMpzoLXF6kbBYpR49+HmdTv6q8HxLg8H2lyMB/TQo16/HvEqyzKhUAir1crx48cJR+O8OLbEysAMLQ6J3R0NHG/0c+fDuwmkCthM0oZ2IWOBFF97ZZHRQAoB2Nfi4n3HWuj02jZNOfzHl+cZXEzQ5rbo16OozEWz/M2zM3z6HbtqMruWEjly+TxpOYfb7cZq0RcOh0Vv6dSCzSixs9HOC1NRPLbLFuvhtIzTYlhn05LO6+p6QRDY0WDn43d28d3BZfpm4xSKKvvb6nhgXyN7W5xlk8QvPzfN4+MhDIKC02oikTbwxUiGoqJy395G8vk8fX19WF1W9u/fX+7Xx7Kl3PTLKGlZStTYjbC/xbl6osrS4bViEHV7mHxR5Y5eb1Umff9cnCfHwvrw32nmDb31fPLuLi4upwmm8rgsRva3OKtON89NRohni/T6bSSTSYrZFPs7fMwlZPrm4jX9xOrtxnLmSSULL5ErcnhVR1LKa/d6vezcuZNMJkMoFOKkHGAlGOfiTBLBYMJpM3O0w8sDB65vYc1kMpw9e5bGxsaqdWltjn0tP7DXIh3xE5/4xA1pZa3FLVVIZFlmcnKSiYkJ9u3bR3PztS92m73/tZ5ISnkmqVRq09ZaqUitHaprwD+dXUTVtPLpw2LUB82jKylenolxepu3yu5k3759VXOg6XCGbw0scW4hgcti4M27/Ny/d+PMh42gaRoZWffCWjsDuRLmotlyXG4pjc9skNjbcnmnns1m6evrw263s3//fiZCWT53JsxcVEFWbFgkOJxOcXolAKpCfX09Fr+fgsVXJdpciGX5s59OsJzI47UbQYNnJ8LMRrP88QM7q+YalYhmCvTP6fkipTmGURJpqTMzE8lyaSVddb2V9yWbiJDP5XG3eLBWKP1zssK2GnRm0BfmB/c3MRXKrtq0GCgoCpIg8MCBxiofqafGwnyjb5FQalVd7zLzoeNt/PLJDt57uFj2r6o06FSMdkYTEu2NXurMIrl8jlwux1Iiw1efTdOkholHguWEzcqd7/YGO2OBNJpLq2qPiQI1s3JAdyn+5VPt/N2L88xHcyiq7uDw5l3+qpPv85NRvvziHDlZxWmRuBRIMRZI8Z5sC2/bJBl0IZbDahJJJhIkUykaGhv0LkNSD0Srhb0tTnr9dkaWkzQ4zZgkgVC6gNUkcWfPxidym81GR0cHHR0dnD4q0z+xxHwggpqJ45XjTI7Ey35qlQ4PmyGbzXL27FkaGhrWbW4rc+xLm9W1YkiAxcXF68ow2QrYUoXkSjvsQqHA7Owst9122yr//cbhWgtJaYE0Go2cPHlyU6V6qbW1lpmVzhdZTuTX9dnNBpG4BrORLCe7VC5evEg4HObYsWNVv/dYIM3vfeciwVQBi0FkLppleCnJxeUk/+4tvVe8n2cmInyjf5GZcBabSeLePX7ec6Rlw75/JZK5In/59DQvT0fJyioWo8ixDje/cXdXlbYhHo8zMDBAY2OjvhOUFf788UnmolmaXBZMkkAsK/PSSpE927bz5m0OgsEgs7OzVdRiv9/PE6MRlhM5uuptZX2C02JgNprlmfEw7zy48aYiU1ApqhoWY3WRNEoiRUUlK29M4BgdHcVdCNHZ6GY5rdBqUDFIAuFUAQG4aw17qqiqjCyniGZ0r7Vev53feksPT14KcWlF95U6tU23aSnh4nKSLz8/h6yotLotaJp+CvqbZ2dodJk3bJ2Arg1J5nVnWkkUcBh1Y0uLQ2YlmmJ0dgmfBcLhMMPDw1Veanf1+jg7G2c8mKbebqKoasQyMnubnRyu0LLkZIWnxsK8MBUlKyvsb3Hxpp0+/p/7tjO6kiIrq7S5LbS6LVUF6QdDKxQVrVxo/cByIsdPLga5vce76gawHk1OMwNTQQQpXy4iqqqBBt4auifQNy6PnG7n2wPLDC8nSRc0muus3LfHX2acbQazycjJ3R2wu6PsBxYMBllcXNTNTh2OclGpq6vb8JnKZrO88sor+P3+K3ZIKuemcJls88wzz9Df38+b3vSmK17zVsSWKiS1UFJ4apq2YWbHjcC1FJKSf1djY2PNOUUJpRz1ZDLJ8vJymYYHYDGKuCwGQukCleOQ4irDxWOV6Ovro1gscuLEiXW7o6++PE8wlaelzlJeXFP5Ik+MhnlgX9OGO+0SnhkP82c/nSAnKzjMErGszN+9OM9cNMvv3rt904fhb56d5onREB6bAbfNTLqgLzqiKPDv39oLXKb39vT00NHRgSAIvDITZz6WpaXOUj4xeWwmcrLKTy+GeOfBZlwuFz09PeWMkFLOxXMzRrSihFIsIq7OwyRRQARmwrXbTA1OEw1OM/PRbJXpYTQj47IY6KyvXqxVVeXChQskk0nuueM2uqIyX3x+jsVYDkXTqLMYeNfhZu7ovTwsX07k+B9PTTMe0FXaFqPEoTYXH7uzkw/ftrGAFODZiQjJQpGe+ssznQ6PlYlQhhemIrR7NhajOVezVrKyUvU7pXMFioUc2zvbOLRnezm869zIOPPRQRo8LvZ1NvCrJ5p4YiLBpUAakyTytn0NvG1vY3kDUVRVPn9mlucmI5gkEYMk8N3zywzMx/nUPT0124gryTzBZIF6R3WxqLebmI/mmI/mNiwkmqbRakgiKnkKNhcKInJBYSmeo8llripwG8HvMPNrt3cQyei2LD6H6YqmphthrXN2oaBHCYRCIfr7+xEEoVxU6uvrMRqN5HI5zp49i8/nY+fOndfcbhZFkRdffJEPfOADfPazn+XjH//4NV/3VsCWLyQle2ufz0c6nb6h3jOVuNpCsrCwwPDwMDt27KCzs3PTf1tqZdXX15NOp5mammJoaAiv10tDQwN+v58HDzTy+TOzJHNF7GaJoqIRyRRodpowhscxuBwcPnx43ZG3qKr0zcVxmAxV+dx2k0QiV2RwMVGzkGiaxj+dXSQnK1VtllS+yPOTUUZX0jU9tVYSeZ6filFnM+Aqq8kNq0FFURZiOdRksEzvrRzkxVcV42vbblajfs2FCj1IKSOkvb2dYrHIKz++yORYlFgsBoDZbNYtw1e9m2rBKIk8dKCJv352hqlwFpdFIlNQUDV4+GBTFaEhkszyD0+cYzIq09nahLCU5bYuD//xHbsYWdbtSrb5bGXdAejOtP/rmRmGlpK01FmwrFKQn5+M4rIa+NgdXTWvLZgsYJaqKd+CICAKbEr17aq3saPRzsBcnDb3KjU4mWU+lOBN2z0c2afb4DhddTwxneXHCxmiGROsFGmanuf2+hxHPFbu2ldPY4OfhnpP1WZoaDHJSzNRGl3mcqFqdGqMhzI8NhriF2tkwVgMetGRixpUfCSyomGQBMzG9Yt76fRnzUf4V/fs4ieXYqwkC0gC9Prt/MLRliuyGEv3rVZ783phMplobm6mubkZVVWJx+OEQiGmpqa4cOECTqeTTCZTnr1cz8zy5Zdf5t3vfjef/vSn+fjHP35TnX9vJrZUIVl7E2dnZ8uK7aamJhYXF68rwvJqcCX336sZqq/996VWlslkYseOHezYsaOsDC8dnXscTt7QaeH5+TyBZBGDKNJeZ+JtTWnam9vo7d24RSUKwqpGZL2Rpcb6xboS8WyR+Wh2nfmj3SQRyxaZDNUuJOF0gXxRWffQ2kwSwWSBgZEJ7LlgFb23hFa3BUlY782UzMvsbnJWeTNVwmAwcP/BDgaWC6iA2wK5XJ7ZUBIRDU9hhfl5odzTVjXdWywnq3R6rdzZ68ViFPnRUIDZaJZOr417dvmqvLiWoin+n2/0sZDSsNuszExEeW4qzr17/Pzq6Q4O1dgVTwTTXAqkaHKay7+T02KgoKi8NBXjfUfkmgygDq+V/jXqelXVUDXWsacUVWMimCYrK3R4rfzKqQ7+ujjDWDBFJldAzmU42e3l19+8t/yaJy6F+HrfIhajRLvHRr6ospjI0V/0cKrLSyIWYWRokIuaVt5p+3w+psIZ5KJWddoRRQGnWWJwIbHh7wK62eieZifPT0awruZ5yIrKYjzHzkYH3fXVcyVN06ratlarlRM9DcxFdR1Jx2rrbiugFODl8XjYvn07sVisTMEPhUKcOXOmfP82irreCP39/bzzne/k93//9/nkJz95yxYR2GKFpARVVRkeHiYQCHDs2DE8Hk/VkOpmnEo2s0gpFoucO3eOdDrNqVOnsFptLMVzmA0i3g12QbWU6kDZUrqrq4t8Pk8wGORhc5C9liwh2YTHbqBeS7B3z65NzdpEQeCNO+r5p77FMmNFW400dZgkTna7a77WsupSnClU/76KqiHAutyLSjSsLpjpfBGT4fLvnsopaMU8WrrA8ZPHN2SfHGxzsbfFycBcApdVV6XHsjImg8g7DjRt+iAdaHXx4dva+HrfIktJGQQDzT4b7znoY7eryNLSEiMjI6RFOz9dlFhKa2gIeGwmHj7UzNv3NXCiy0NRVZEEoepnZTIZPv/jsyykBbY3ezCuFrRYVuZnIyFOb/PWpPrGs0XyRW3dXEk/Zem+WLUKyZ29Xs5MRJgKZ/A7zGhoBJMFWt2WqsyV6XCGvzkzo2tlFA2X1cD9exv47bf28OLILIOjkxzZ3cvJ3R2XC5Km8dhIEFEQaFw9QRklkXaPjelwjpWilWN79+qC0zX59XMZO/m8ilwwYTRdvvaNZk2VEASB9x1pIZouMB7M6E7eq4aUv3iiraooaJrG8PAw0WiU48ePl9u2FqNU0zJlqyCfzzM0NITf72fPnj1lMWkoFGJkZIRCoYDX6y0Xlo38wAYHB3nHO97Bb/3Wb/Gbv/mbt3QRgS1YSPL5PP39/aiqurpo6x9CiSL3WueqZzIZ+vr6MJvNnDp1ihdmEvyPJ4eZjWQRBZ3y+ql7emhfZS1tVkTWwmw2l5Xh+/bJDA0NEQqFECWRiYkJEolEWUC10Q7nA8dbV4frug0HaNjNBn719o51qtxKWIwSd+/w8Y2+RaxGBZtJoqiorCQLNNWZOdpZuyftc5h44w4f3zm/jEYBu0kilVcIJ9Lc1iTx1jtvq0k8MIgiv/3mXv7uxTleXB3idnqsPHyomdNXCKsSBIG372vkVLeH4SVdfb23xVnuuXd1dRFJZvh337zATCSLXVIwSgIrsTyff0Zvad213beOmZZIJOjv72c6Y8LjNJaLCOjphdF0lguLyZqFpM1jwWGSiOXkqqFwfNV3arO2TKfXxife0M3X+xaZiWQAgYPtLt5/tLXccksXinzuySmmw5kyQSGSkfmns4sUMwn8+UV+4a4D+P3V9NhCUSWSlsvhVSWYV91qS0woQRCq8uuz2SyuqSWeW1jg0nyQepuI1WJFlYzkZZWT3Zs7afudZv7dW3sZXEgSTBWosxo42OaqEvipqsrQ0BDJZJJjx45dNTNqKyCfz3P27Fnq6urYs2ePbvS5KnYszUnS6TShUIiVlRVGR0fLfmCJRIJ9+/YxMTHBgw8+yCc+8Ql+7/d+75YvIrDFCkk+n+f555/H4/Gwb9++dYvnjchtrwVJksoaj1LrLBqN0tfXR3NzM7t27aJ/PsHvfnuInKxiM4qoGjwzFmY6nOHLHzmCw3y5GF2L3YmiKAwPD5NKpcrFMxaLEQgEGBkZKTvuNjTodg+lE5nHZuLP3r2XZ8bDjK6ksZsk7uz11rRdr8SHjrcxF83SPxcnmpER0IOdfvOenk1VvQC/fKodUYQnRsNE0gWUQo67Osz89juOblhEdL+n1QwUm5F//cZtxE/KZFZV8xu14c7OxvjRcIC5SJY2t5W37vFzvNON126q6Tc1sJghkIXeJjeSKOhurfk887EcX3r8PO6sr+xabDQay47J3d3dOAMp0omNnQ02+xibXBbu6PXyo6EAclHFZjKQyMkoqsb9exuqTirjwTQ/HgowGkjhthq5a3s9b9zh4w/evoPlRB5xNVyr8nszMJdgNpKl3WMt36cGp5nx5Rg/Glziv/7CoQ1jEswGkQanmYlQuurUnJMVJFGo6blmtVo5sWcbvyo6+aezC0SSOYJxGU3J0OsCf2GJpSV97ldrw2A2SDUjmEtkhlQqxdGjR28KceZmoWTF7nK5ajp5l6zhHQ4HXV1dyLJMJBIhGAzyyCOPsLy8jNPp5MSJE/zGb/zG/xFFBLZYITGbzezZswe/37/hDb6ZueqlolWawczPz3Px4kV27txJR4fuXPuPL82RKyhVIjPzKu32R0PLPHxQNz8T1rRONsNau5PSw1kpoEqlUgQCAWZmZhgaGsLj8eD3+2loaMBqsfDW3Q28dfe1/b5Oi4H/98FdnJ9PMBXO4LLqKYKbtbVKsBglfv2OLu7rdfJs3yC9rQ0cP7B73e88vJTkG/2LDC0msZsNvHmXj3cebMZmkqizGmtSQR8bDfI/n5omu2oDPhfN0j8f56N3dHLfntpeasFUHriscjaZTJhMJvyCGVlQsdvt5Xtos9nIZDL09PTQ1dXFydA8X31lsUrYFs/q9v371pAWNE0jkCxQVFWaXBZ+6bZ26qwGnrwUJp1XaHSZuW9PA2/ZffmUMLyU5P/72QThdAGHycBiPMfwUpK5aJZHTnXUdByOZApAZU69RiqZQpDz4HbhrHNv+DpBEHjLbj9Tz2aqrGcCqTx7m53suwI19s27/OxocDC4mNBJBvVW2h0Qi4TL97CUX+/3+68qIlZVVc6fP082m+XYsWObUua3GgqFAq+88gpOp/OKcRCVMBqNNDY20tjYyDe+8Q1+6Zd+CafTyfLyMs3NzRw/fpy//du/Ze/evVd+sy2MLVVIBEGgsbGxZkriq8ltvxJKp5BiscjExAQLCwscOXKE+vrLu9+LS0mMa1g2kiiApquuK9/nanC1diclSmJPTw/ZbJZgMEggEODSpUs4HI4yA6yUxHfVv7MgcKi9ruYgGfQWydPjYfrmYoiCwPFOD7f3eIiGw4wPD3J6z8Yq+6HFJP/hh6PEsjIOs4FQKs+XX5hjPJjm/7lvR80har6o8NWXF5AVjQ7v5eHsUjzH115Z4M5eb80TU4PDDGjIilp1yskUFA606rTinp4eJicnmZycxOFwMDExwdLSEttdXrbXm5kI52DVysRkEHnb3oYqK/WZSIYvPz+n261oenjX+4+18t4jrbzjQBPJnFKe/5SgaRrfGlgiki6wrYLqG80UeGwkxJt2+sqCzrVocpoRBYF8UReNJhIJcrk8gsVGZ719Q2uSEu7s9ZKRFX54YYVwWreeOb3Ny4dPtF0VPXajMLJ6j7tMzy45P09OTmI2m8tFxePxrPsul2KmC4UCx44du2nsy5uB0knE4XBcUxGpxPT0NA899BAPPvggn/3sZ/Vo3+VlHn30UVpaWm7CVb+22FKF5Eq4mSeS0hd/cHCQfD7PyZMn1w2M/U4zwVS1ylbVNECj3m6+YhHRNI1XZmI8OxEhnkrjzId48EgX23s2dk5di5lIhucnoxSKAvtaerljv5VIOEwwGGRqagqz2VwW8Lnd7vL1FIoqPx0J8ux4BFlROdbp5v69DTVPBCXkZIX/+OglXpyOoawW959eDHK0yczdnigH9++r6dPzzYFFYlmZ9grBWrqg8PJ0jMGFRM3iNRXKEkoVdPV6BertJkKpAlOhDPtaNt5Nn+hy0+m1rQ6v9ZZZJF3AKAncu0ePNp2YmGB+fp6jR4+S0MysxLOYlQxSLs49ngjNQFix4XXZuWNXMye6L9t/xLIyf/qTcWYiWXx2I6IoMhZI89+emOT379fjec2O9bOsdEFhLJDGY6s2hXRbjUyHM4wF0jULycG2OrY3OBheSmCmAIqMZnJgkUTeuqdh0++NIAjct6eBu3rrWU7ksJmkda2z60Wl87OiKOXwrqGhIYrFYlX4mSRJDAwMoCgKR44cuSWLiM1mY9++fdfFGF1YWODtb3879913X7mIADQ1Nd0Qw8StgFuqkKw1bryRyGR0UZuqqpw8eXLDL/vDh5q5uJwilS9iN0komq7ytpkN3LtJywX0IvK5J6f454ElcoUiiqJgMhqYJcOfdKhVGQ4b4Zv9S3z+zEyZaWWQBO7qred3791OS0tL+WEOBAKcP38e0DMIvPV+/uqVCGcmo2iabhzYNxfnqbEwf/LO3TWzIAB+OhLkhekYXpsRq1FCAyKJNM9Oxbm9p6dmEVFUjaHFJA6zoWrRspskImmZS4F0zUJiMgiIG+RqFFUNUWTTnbTdbOC33tLDXz8zw1gwjaIU8diNvPtwM6e63WWq6fa9h/irl4L0zcbJyXqY08kuNx+9/XZO5tLlE196aoVzcW95QXxuIs5cNFtWlJd+p+lwlp8MB2q6KxtEPXlxrZW6qumL/Wa/k8kg8sk3dPLnPxhgNFzEanPS6LLw4AGdeHA1sJkktvluHhNKkqTyBmbXrl1ldXgp/EwURYxGI/v377/m1MDXE7Is09fXh81mY//+/ddVRJaWlnjb297G3XffzV/+5V/eFOnCVsCW+1QFQajZ2rpZJ5JIJEJ/fz+SJLFz586aO6YHDzQzGUzzzf4lIqsD6jqrkX9/b2/NjO8Szs7G+eeBJTSliNOgYnXaKGr6UPlbA0t8qIbIC/S22d88O0NRVcvZHllZ5YlLIfY0O3nvkZaqh1nTNOLxOIFAgG+/OMpjo0VcZgmH1YTRaERRYWQ5xfcHV2qKywBemIwiwGoR0Uin00iagsFkYjhc5O01XicK+uK1NpSq5Py6WdHsqrexzWdjeCmJxSghiXpRCabybG9wsM1f2+MKdCbUp9+xi5lItqy5sEgCg4ODZDIZjh8/zp8/Nccz42G8NhMem5F0vsjPRkMYDSKfvHtbWSuQyWQIBoNlavELQQv5AmiqCQSDHgImCFhNElObqOstRomT2zx8f3AFl8VYZk4txnP4HCYObmKVrygK8+PDPNwj0nbfMWRNpLnOvC7HY6ugshXb0dHB2bNnURQFm81WthSqbIFtVW8pWZY5e/YsFovluovIysoKDzzwACdOnOBv/uZvtuzveiOw5QrJZrgZhWRubo6RkRF27drF1NTUpqJEUYB/86ZtPHSgkXMLCSxGiVPbPFX+UrXwzFiIbK6Ay6SbxomigITOCHpsNLRpIXl6PFKO/SxH4K7aXv/0YpD3HqnusQqCgNvtxu1288N5CYNxCbtZpJAvkM1kkQwSqALPjgU3LSSldpa66kGEpuFyOUnF8+X/thEEQeCeXX49p7ug04tVTWM5kcdjM3LbagzrRhAFgY/d2cl/+ck4C7EspZ/S5DTz8Ts7q+i7wVSex0ZCXFhM4DAbuKPHy+keL6Ig0LUqftN3lf0AHD9+nOVUkb7ZOF6bsSzIrLMaUTU4MxHlA8cK+Bz6fa7U/BQKBWbOTPD8UoBwOIokiZjNJsxmMzlZoaGGFX0J7z7UzEw4s0rV1tA08NpNPHKqvWaLUZZl+vv7EUXxmqOjX2+Urt1oNHLs2LGy4LfUArt48SKFQoH6+vpyYdkqDK7SScRsNnPgwIHrKiKhUIgHH3yQffv28aUvfemW+uyuB7fUb3cj6b+qqjI6Osri4mJ5qD4zM1OzUFVmiHR4rXRdQ6sgnU4zM78AgoDdbquik4qrFtibIZPXf+e1vW2DKJDMbX4/REFvFVksFl31rarIsoySyxONRnjuuefKw/q1KXLHOz28PB0lEo9jMRiwOx3kZRVREDja7t705z58qImJYJqXZ2KE0wU0BNxWA//XXV1VFiPle1Qogqa3p7Y3OPizd+3hzESUlWQev8PE7T3eKjX9UjzHH/1glJlIFkkQUDWNM5MR3rHcxK/drgvzcrkc/f39WCwWDhw4gCRJhFIZcrKCx1p9DTaTRDhdIJwubKj9MJlMvO1IN8/M5YimZbxWgWKhwHIwgaZBp2RgaWmpip5dCa/dxO/fv4NXZmLMrvp+nehyb2iXD5Rt4Cuv/VZBaTdfWohL1y6K4jq9RaXLg9PpLBcVp9P5ulBjSwXQZDJx8ODB6yoi0WiUhx56iN7eXr7yla/cUjOh68WWKyRXCre6EScSWZY5d+4c2WyWU6dOYbPpu9daNinXIjJci0gkwvnz5znS4eFsOElBUctWIIqqUVS1K/a6dzU5EYSlKmqqqmnkixqHOzancR7rdPP9wRVS+SIOs0F/MCQjBqPGQyfa2NZhIhAI0NfXV26PNTQ04PF4ON1u4VvmAnNpiYJgILEaWHWi081d2zcXptlNBn7//h2cm9fDoWwmiZNdnnVFZC6a5R9enOfsbAwNXcH+oRNt9PrtPLC/tu34N/sXmQ5naHNfnlfEMjKPDq1w9456Wux6CJTX661ixDW59EzxVEHBbb28SJTmXg3O2pTU5joLn7y7m789M8tSIo+qGWnw2nj7LjeHvcWyMtztdpfbjKXvFugtrloamEqUnKVLeoVbqa9eOZzerCVUqbfo7u6mUCgQCoUIhULMzMxgMBiqEg1fi0JaLBbp7+/HYDBc90kkHo/z0EMP0dLSwte+9rVbiuL8arDlCslmkCSJfD7/qt4jnU7rgT9W67qh+kats8q8gGstIouLi2UtyummFvrCw7wyE0MQ9JNCUdVoc1t4z5HN6X939nrZ1+zk/EISs0FAFIWymO89hzd/7W1dHu7Z5eNnF0Nl00RBEDjU5uKhgy3YzQaamprKNg+BQIChoSFkWUbTND55m58Z1cvZuSSiAKe2eXnLbv+GPfpYVhcZNjhNGEQRSRQ40uHmSId7w2sLpwv80ff1U4XLos8cnhkPMxZI86fv2lNTW6FpGi9MxbCbDFU04jqrgblYjhfGVmiX52hra6Onp6fqM2uus3B6m5cfXwygqho2k0S6oJDKF3n4UPOmBpAARzvc7G12cnE5RVFR2d7oKBMWtm/fXqZnl9L4Sqpmv99f04a8EqXvp8/nY9euXbeUYK2k+nY4HNfMcDKZTOvy60OhEKOjo+Tz+bLliN/vvylK+GKxSF9fHwaDgYMHD15X4Uomkzz88MN4vV6++c1vbplW3WsBQas12X6dUCwWa546JicnSSQSHDp06LreOxwOMzAwQGtr64ZunWfPnsXv99PR0VEVkXmtJxFN0xgfH2d+fp4DBw6UtSiZgsK3zy3x+GiIfFHlVLeHdx9uqRn1Wol4VuYfX57nsdEw+aLCsQ43HzzeelUqdkXVODMR4YXpCIWixpH2Ou7e4as59J6bm2N0dBSfz0cmkyk7nJYWxLUPcihV4PNnZnhhKkpR1Wh0mvngidYqU8SN8E9nF/n8mRma6yzlgqBqGgvRHB883sojpzs2fJ2maXzky/2k8kpVG0rTNGbCad7gz/PhO3rLQtK1yBQU/u6FOZ4eD5OVFWxGiTft8vGLJ9pu6BC7WCwSXqVnB4PBcmunlA+ydrFKJpOcPXuW1tbWmmadWxUlO/WSdciNOkVpmlYmPQSDQeLxeDkjZKN27PWgdBIRRZFDhw5dVxFJp9O8613vwmAw8P3vf/+mJx1uNWy5QqIoSs05yOzsLMFgkKNHj17z+5achHfv3l3TDHFgYIC6ujq6urrKBQSuTamuKEo5z+Lw4cM3/AulrTKfxJuwyJQK4MLCAgcPHsTj0VtumUyGQCBQfpCdTmd5rmK0WPntfx7mwmISp1nCIIkksjImg8Tv3tu7aSvnPz56iafGwrStCXBaiufY3+LiT9+1p+Zr/9cz0/zzwBKtdZaykn0lliaby/Hpt/dwYtfmFv+gCwJDqQJ+p3lTGvSNQCkit7QglnbZpeKczWbp7++nq6uL7u7um3otNxqldECPx1P2n7pZKMU2l/5XWZy9Xu81D7UVRaGvr+9VFZFsNst73vMeisUiP/zhD3E6a+cA/Z+KW661da0zElVVGRkZYWlpiaNHj27oS1RCZZJhqb5ey86qZHciSVKV3cmNhJ6vfeOhqirnBi/QPxvD19bDUs6Ae9Xe3Gaz0dXVVWYvlRbDyclJJtImBuc0vHYz9lX2mt0ksRjL8c2BpU0LicdmRIMqG3XQT1BrBYlr8a7DzVxYTDIWTCMABVlGUIq892jLVRUR/eebrtjKulEQRbFse7M2TuDixYsA5QVx7f3YyijllL9WrTij0ViVERKLxQiFQoyNjZHNZsvFuZbrbiUURSkHVl1vEcnlcnzgAx8gm83y4x//+F9kEYFbsJBcC2tLlmUGBgbI5/NVQ/Urvf/1DNWTyST9/f14vd4berR/LSDLMj99vp8vX8gSlo0o47OYDPMcbq/jd+/dXkVPNZlMtLa20traiqIoTD49hqqtIOczxPP6g240GrGZJabDmXV2JZW4a3s9Px4OEkoVqF9tUUUzuq383Ts2z3vxO8x8+h27eGI0xPMjc6j5Iu+4bSd37Nw4cncroXLQbLPZGBwcpKWlhUKhwIsvvnhFu5GtgnQ6zdmzZ2lsbLxixOzNwEbFORQKEQgEGB0dxW63l+/j2vmUoigMDAygaRpHjhy5riKSz+f58Ic/TCQS4ac//Sl1dZsnOf6fjC1XSDb7Ml7LiaT0Jbfb7Zw8efKKR15N07BarYyPj5NKpcqtm6s5VQQCAS5cuEB3dzddXV2v625SUTX65+IsJXI0Oc0c7qhbZ51eiWw2y9m+Pr5yUWUlZ8DnMGKSBLKyygtTUf7qmWn+/Vu3b/haSZJob/RiNEZwOs1oqkJBlslkMsTyGo0OI4HlJRoaGjakQO5rcfErpzv4uxf1KFvQ6b/vO96yqdakBKdZotcQxtdW4MiR2664UdhqKNFeDx48WLaBLzkUBINBLly4gKqqVXYjW4VKmkqlOHv2LC0tLVtmnlPS/XR2diLLcjkmd2BgALh84nO73eV7u1H66NVAlmV++Zd/mfn5eR5//PFyG/hfKrbcjKSkc9gI0WiUc+fOcffdd2/6HqFQiHPnztHW1nZVO6XSPERV1SpTxGQyidvtLheVtUdlTdOYmZlhcnJyXazs64FAMs8f/WCU0eUURVVDEgV6/Xb+6IGdGzKgSlkcCYOHz51N4zRL5ahb0Af8gijw5V86vGGAF0AiJ/PxfzzPSjJPg8OEQRRI5Iqk8kXevdvBkbosqVRq0/sYSObpn4ujanr4VS22ViWKxWLZBPDw4cO3HENmdnaW8fFxDh3a2AYeqAqdCgaDpNPpsvPzRvfxtUKpiLS2tq5jxW1FlJweKu+jwWCgq6uLxsbGa96AFItFfuVXfoWRkREef/xxGho2t0f6l4BbqpAkEglefvll7rnnnpqvv5qhegklZlbplLN2qJ7L5cpD5mg0WjVkttlsjIyMEAwGOXTo0A091iZzRZ4aCzMXzdLgNHH3Dt9V5VH/+28N8/xkFI/NgMUokS+qRDIyR9rr+PP3VLuWBoNBBgcH2bZtGzMFB3/0g1GaXOaqIX5OVkgXFP7nBw7S7av9sA0uJPivP5tgIZ4rU2rfstvPv7qrC6MkVlFio9EoDoejrFe5Vsdi0LUKJb7/wYMHbynVsKZpTE1NMTMzw5EjR67pe7P2Ptrt9nJRuRHspatBIpGgr6+Pjo4Otm3bdtN/3o2EqqqcO3eOfD5PU1MT4XCYaDSKzWaraoFt1kpUFIWPfexj9Pf388QTT9DU1PQa/gZbF7dUIUmn0zz77LPce++9G77u4sWLrKyscPjw4SseNSuV6nDloXpJMBUIBAiHw4De2tm7dy8+n++GPcTT4Qy/++2LzMey5b+rt5v44wd2crCt9qIzG8ny0a8MYBQF7BWZIpmCQq6o8j8/cIBev84gm5+fZ3R0lL1799LU1MRMJMO/+up5DIKAsyLHPZQqUGcz8qVfOnxFU8l8UaF/LkG6UGRHg4N2z8a75RLrpnQfjUZjuahUOhbXQkms53Q6r9uN9fWCpmlcunSJ5eVljh49isNxZep2LZRaN8FgsMxeKhWVmyXgi8fj9PX1lVu4txJKRaRQKFQ5EJco2iVLfKDcSqyvr69qJSqKwic/+UnOnDnDk08+SWtr6+vyu2xFbLmt3JWU7WtTDEFf5Etfksp43lq4Hn1ISTDldrvLwiWbzcaFCxeQJImGhoZ1i2G6UCSQ0C3Rr2TZXrquP39sgtlolvrVNpGqaoRSBf7LT8b50kcO13SKjWVlZEVbF61qkgRSeZVYRq7Stxw5cqRcbDu9Nu7srecnwwFkVcNiEEkXFFRN412Hmq9YREBPxTt5FW60laybynnA4OAgmqaVd4Yl+/FKJJNJ+vr6aGxs3FAHtJVRyiiPRCIcP378Vc9zjEYjTU1NZTFpiVpcEvBVzlVuRNsvFovR39/Ptm16/sythFKg1toiAvqaUgqeKrXAQqEQU1NTXLhwAYfDwU9+8hMeeughvvCFL/D000/zxBNP/LyIrMGWKySbYW2KIej92r6+PhwOB7fddttVDdWv1+6kNKNpbm4uz15KRnSBQKC8GHrrfTy5JPLjsQTpgoJJEnnzbh+/8YbuTWNsF2I5hpZSOC2GcmCRKOrxtAuxHOfnEzUjTDu81nJ+usdWYf1RULCZDHR4LFy4cIF4PM6JEyfW6Vv+7zdtw2Mz8tOLQbKrqvmHDzXz7sM3jwW1kWNxMBhkfHycCxcu4PV6y63EdDrNwMAAnZ2ddHdfXX7LVkFlvOzx48dvuDK7FrV4YWGBixcv4nK5yvf5apIM1yIajdLf38/27dtpb2+/odd+s6GqKoODg+RyOY4ePbopWaHS7LSUXz88PMxTTz3FZz7zGURR5EMf+hCTk5O0tLS85sSHP/qjP+KP//iPq/5u586djIyMvKbXsRFuyUJSLBYxGo1lRkZ7e/s1D9Vfjd1J5eyl0oiutBj+5RPjfGckiYCG1SiRV0W+PbBMIlvk0++onYmblRUUVcNsqL4uSdRNCXNybcaa22rkHQea+MrL84TTBaxGiaysUFQ13n7Qz+ylCyiKwvHjxzfcoVqNEh+/s4sP39ZGIluk3m4q+3q9Fqh8iLdv3046nSYQCLCwsMDw8DAADQ0NNDY23lJFRFGU8mn5tYiXXethlc/n1yUZbhR+VgvhcJhz586xc+fOW24XXioi2Wz2ikVkI1itVg4fPszJkydZWFjgd37nd+jv7+eDH/wghUKBubm515wpuHfvXn72s5+V/7xV5oNb4yoqcKXEt5LWY3p6mrGxMfbs2XPFL/jaofrVFpFXZmJ8o2+R4YUILlHmgyd7Nh3gC4KA0ergzGIRq9mE06xfa1EpoqgqT46s8Nw2M0e3t264mHd6bfgcJlaSecwV7KlkrojdbGBX0+Zip0dOt2MzSXzn3DLxXBG3zcj9u+rZLiwhSbarojraTYZNT02vFex2O93d3RiNRpLJJC0tLWSzWZ5//vmyf1VDQwxT+wAAMlVJREFUQ8NrNmS+HpR0TMB1LWQ3AmazuUr3U9lKVFW1yrJl7fWFQiHOnz/Prl27brk42NIpMJPJXPe91zSNT3/603z1q1/liSeeYPfu3eX3Hh0dfV3o5gaDYUsO+F//FeMaIYoiY2NjxGIxjh07dlVDdblYJCcrWAziVReRHw8H+E8/GiOTlxHRCEgSf/LEPCnNxC8crf1QLcbzpPJ6BocoiZgkEyZMmBWFUKrA4PQymeVJ6urqynOV0kzHZBB55FQ7//VnEwSTecwGkXxRt23/hSPNG9qbV8IginzoRBvvPdpCPCMjyFmGBs/hb2i45QwANU1jcnKS2dnZqnlOaThaciwWRbHc/vJ6vVtm+F4oFOjr6yvbkW8FG/i1rcQStbg0D6ikFqdSKc6fP18mZNxKKBWRdDrN0aNHr+sUqGka/+W//Bf+9m//lscff7xcREBfgyr//FpibGyMlpYWLBYLp06d4k/+5E9qesq9lthyrC3QH8KNLqtQKPDkk09iNps5ceLEFYfqclHh71+c5Rt9S8SzMk11Fj50vI13HNi8PVIoqrz3b15mMZbBaQSLxYogCMSyMk6zxNc/eryK3VSJcLrA+z9/FkXTqv5NTlbIySqf/YV97PJbyrTiSCSyjg77zHiEb/QvMhnK0FJn4aGDTdy/t+Ga/LUq6b2dnZ23XBEpUauPHDlSk91Ucokt6X6KxWLVsP71Eu/lcrny3O5WYZZlMplyCywSiQB6K7Grq2tLn/rWQtO0stfd9bYSNU3jz//8z/nMZz7DY489xuHDh2/ClV47Hn30UVKpFDt37mRpaYk//uM/ZmFhgQsXLrzu1iy3TCEpDdULhQJ79+6luXnzIbCmafyXH1/iG32Lq7nYAvmihijAJ9/YzQeP125RvTy+zCe+fhGLQcRhM8Oqu1VR1UjmZP6/d+/l9Lbanl3/76OXePRCAIdZwmIUKSgaiazM3mYn/+tDB6sKQiUdNhQKYTabyyeVq7Ed3whr6b23Ekqml6lUiiNHjly16E7TNJLJZLlAp9PpTR2LbxZK3lP19fXs3r37llmAS1heXubChQt0dHSQy+UIh8OvCbX4RkDTNIaGhkgkEhw9evS62GqapvHf//t/5z//5//Mj3/8Y06cOHETrvTGIBaL0dnZyWc+8xl+9Vd/9XW9lluitRUMBjl37hwdHR1lDcdmUFWVhWiG751fxiiJ2M36F99qgkS2yN+9MM/Dh5qxGtc/EMFgkNGLw0iStLqjvbwQlMz0alFwS/g3b+wmkZV5eSZGMl/EKInsbnbyRw/sWneqWEuHLbVtSrbWpaJyNZ5Ltei9twpKgWOqqnL8+PFr2k0KgoDL5cLlctHb21u2Hl9eXmZ0dBSn01k+9V0Pc+lqUKInNzc3s3379luuiJQsWw4dOoTPp3udVZ76RkZGyvG4pcKyVYKbSvTqeDzOsWPHrruI/PVf/zX/6T/9Jx599NEtXUQA3G43O3bsYHx8/PW+lK1ZSARBKA/IZ2ZmGBsbY+/evbS0tPDyyy9vGodbGqpfXE6SK6rUWat/RatJJJGTmQ5n2F0xvNY0jdnZWSYmJrjn+B5+El7kUiCN0SAirl5PIlekuc7MgdbNUwldFiN/+vAeLgXSzEQyNDjMHGhzXbE1ValHWRs0pShKeSHcKMtCVVWGhoaIxWIb0nu3OkrRsmaz+br9jyphs9no7Oyks7OzSkw6NTVVPvWVmEs3YsEvifVuRXoywMLCAqOjoxw8eLCcnwP6PKC+vp76+np27txJKpUiGAwyPz9/Q6jFNwKlIhKLxV7VSeRLX/oSf/iHf8j3v/99Tp8+fROu9MYilUoxMTHBhz/84df7UrZma0uWZYrFIsPDwwSDQQ4fPozb7Qagv78fj8ezTllbKTIEODsb51//0wWsJrHKfTYrK6gafO1Xj9Lq1tsmJav5SruTwYUE/+5bw8QyMioaArrq+z88sJNTm7S1bgYqNRaBQIBcLleeBZTM/s6dO4eiKBw6dOiW851Kp9P09/fjdrtvunNy6dRXshoByvdxowJ9NYhEIgwMDNDbWztMaytjbm6OsbGxq3KEqEQ+ny/fx0gkcs3U4hsBTdO4ePEikUiEY8eOXVcLU9M0vvKVr/Cbv/mbfOc73+FNb3rTTbjSV4/f+q3f4sEHH6Szs5PFxUX+8A//kIGBAYaHh8vrwOuFLVlISs69iqJw5MiRqi/H+fPnsdvt9PT0lP+uUmQoCAKiKFJUVd7/t33MRjK4LHoka1FRSeYVTnR5+O/v2w/oRaukej106FBVT34lkefRoRXmYzkanWbu29tQ0/rjtYKmaWWNRSAQIJVKIQgCVquVQ4cO3XIOuCXvppaWlte8HaRpGrFYrDxXKSnCGxoa8Pl81+T8fCtSZIGy6WjlZu16UFmgQ6FQFbXY5/PdFL1DiZQRDodfVRH5+te/zic+8Qm+8Y1vcN99993w67xReP/738/TTz9NOBzG7/dzxx138B//43+sWgtfL2zJQvLCCy8AsH///nVfwKGhIQwGAzt37gQ2V6oPLyX5d98aJpjMr7bLoKveymfes49Wt4VMJsPAwABWq3XDn7XVUVqEbTYbgiAQj8dxuVzl9thWLyolsdu2bdted++mygIdDAbLzs+lduJGQ/+lpSWGh4fZv3//LekAOzU1xfT09DWbR14Ja912M5nMDXctriwiR48eve73/Na3vsWv//qv87WvfY0HHnjgVV/Xv1RsyUKSyWRq6j1GRkZQVZU9e/Zcld1JOl/kiUthVpJ5Or1W7uz1YjZIG9qd3ErYiN5bajUEAgEikQh2u71cVK7HZfdmYnl5maGhIfbs2XNFBt7rgVwuV76XJafd0lzF6XQyPz/P2NjYupnCrYKSRufo0aM3nTpambkei8VetWuxpmmMjo4SDAY5duzYdReR73//+zzyyCP8wz/8Aw8//PB1vcfPoWNLFpJisVhzoD4+Pk42m2Xv3r2oqlpmUl2P3cmOHTtuOe8guDp6b7FYrKIVG43GKmPJ17OolLI4Dhw4UGYHbWWUKNqlto0gCCiKwo4dO2hra7sldCIlaJrGxMQECwsLr9qB+HpQeS/D4TCSJFVlrl9pRlVyUA4EAq+qiPzoRz/iwx/+MF/4whd43/ved13v8XNcxpYsJIqi1IzUnZqaIhaLsW/fPmB9hshmKD1Ec3NzHDhw4JbbSVZe/6FDh656MFqyxii1bQRBKLdsXks1eImevLCwwOHDh2+5aFJN0xgbG2NhYQGv10ssFivPAkpsuq3cHi1d/9LSEseOHXvdmX2V1OJgMIgsy1WuxWtnVKXrX15e5tixY9fdun388cd5//vfz1/91V/xoQ99aEud1G9V3FKFRNM0FhYWGBkZKVs/X22mtaIoZbHSoUOHXvOd2KtFJb33yJEj170IlCzHS0WlpAa/2QthKS8mEom8qut/vVDqyYdCofL1l2xGSvcym81WiSC3EnuutJNfWVnh6NGjW+7+a5pWphaXZlR1dXVVc5WJiYlyEbzeIvL000/z3ve+l//23/4bjzzyyM+LyA3CLVNIKuchpYUwEAigaVqVvmKjopLP5xkYGEAURQ4ePLhlRFRXi5JQ70bTeyv9lgKBQHkhvJa8+quBoiicP3+eXC7H4cOHXzOV+Y1CqYgnEolN1fYl+/ZAIEAikShrLEoiyNcLlUXw1bSDXkvkcrkqyxZRFFFVld27d9PU1HRdp+jnnnuOd73rXfzpn/4pH/vYx35eRG4gtmQhWZuSWJlmWNnKqqRvVnotNTY2ljUByWSSgYEBPB7PTdco3Axks1n6+/uxWq0cOHDgptpTVNKKK/PqGxoarnvxl2WZ/v5+BEHg0KFDr5v/1fWisgj+/+2daVBUV/rGH0QBF0BBaBFFXFAEZRUNJjEhIrII3TiJxnFGYpzELDpxLLM4M//UmMTRlCl1jImapEatZCgXuhGX4IaAwRWaRkHjghEFhaYRWbqhF7rv/4N1bgBBoPvC7QvnV8UH+wO8fbu9zz3nvO/zhISEdFrEW89YDBw4kH26Ntf6xhzIsN7jx48t6m7ii9bbiY8fPwaAFq7FnVlF5+bmQiwW4/PPP8eKFSuoiHCMVQsJmVTvTIZI820GpVIJnU4HR0dH1NXVwdvbG+PHjxfcl6eurg4KhQLu7u6YNGlSj4ogyauvrKxETU0Nm1ffladrYl44aNAgTJ061Wo9mtqjqakJBQUFMJlMCA4ONlsEiWMxERbiXdXdZ1Qmk4m1DQkNDRXcShAA7ty5g7KyMrYxoK3W4o481RQKBebNm4d//vOfWL16teDuA0LAaoVEr9e3mFTvyqG6yWRCcXEx7t+/Dzs7O/YQj2zZCOGpmGRBWIN7r16vb9FWPHDgQPZatte+SUw2hw8fLkjzQr1eD4VCgQEDBnBqA9/6jMpgMHSLY3HzVEZzbUP4hrQoT5s2rd0zTY1Gw26B1dTUsE7aGo0GU6ZMwbVr1xAbG4s1a9bgk08+Edz3UChYpZA0NTVBq9Wy/+7KExsJnamsrGTtTsiWjVKphFqtZs8B3N3drfK8xJrde5vngVRVVaF///7s0zWxxSD53l5eXhg3bpzg/vOSldTgwYMxderUblsxEMdiItIajYYd3LNkO5EkA5JQJ2v8jnfE3bt3ce/evWeKSGv0ej0ePXqE8vJyzJs3D/3798eAAQMwe/Zs/PDDD1axItu4cSPWrl2LDz74AFu3buW7HM6wSiFJSkrCnTt3IJFIkJCQAE9Pz07djAwGAwoLC6HT6Z6yOyE0NjZCqVSyB6JcnANwhbntvXzRPK9epVKBYRg4OjqipqYGEyZMwJgxY/guscs0NjZCLpdj2LBhmDx5co9uJzY2NrKiQp6uycqvswOl5ExHp9PxlspoKURELBmWvHr1KpYvXw47Ozt2JR0VFYWNGzfCx8eH44o7R25uLhYsWAAnJydERERQIeluysrKkJKSAplMhvPnz2PatGkQi8UQi8XtbvMQuxMHBwcEBAR06gCu9TkAsRcRiUQ9fijZvL03ODhYcO3JZEakpKQEAwYMaDFf0V1eS1xDtuPImRTf24nNhyA7Y4hI8uGbmposOtPhk5KSEpSUlFgkInfu3EF0dDRef/11bNq0CTY2Nrh69SoOHz6Mt99+GyKRiOOqO4bk63z77bf44osvEBQURIWkp2AYBuXl5UhNTYVMJsPZs2cREBDAisqECRNgY2ODrKwsNDY2YuzYsZg4caJZT5F6vZ4VFZJaKBKJeqR1k7T3khuA0PazGYZhbwCBgYEYNmwY1Go1ez1JyJQ1byfW1tZCoVBg9OjRVrcd13qgFHjasdhoNEKhUIBhGAQHBwtCuFtDDCRDQ0Ph5PTsqIb2KCkpQUxMDOLj47Ft2zar6dJMSkqCi4sLtmzZgpdffpkKCV8wDIOqqipWVM6cOQNfX19MmTIFMpkM//nPfzjz5TcYDFCpVFAqlezhMhEVrj2rmrf3CtE4kgy6VVRUICQkpM2nyIaGBlZU6urq2syr55Pq6mrWPNLat+NI1xK5njqdDi4uLtBoNLCzs0NISIjgvkMA2CwgS0SkrKwMc+fORVRUFHbs2GE1IrJv3z6sX78eubm5cHBwoEJiLTAMg+rqarz55ptIT0+Ht7c3bG1tIRaLIZFIOM3JJp5VSqWS3WIgomJpljWf7b1cQLbjamtrERIS0qlp49ZmiOQcoDuTC58FMb+cNGkSPD09e/RvWwoRlatXr6KpqQkmk4kVaTc3N6t3fyYQEbHEhbi8vBzR0dF48cUX8f3331tNq3lpaSmmTZuGU6dOISAgAACokFgLOp0OSUlJuHz5Mo4ePQpPT08cPXoUUqkUJ06cgIeHBysqwcHBnN2gSeYCEZX+/fuzZypdHTKzpvZec2hqasKVK1dgMBgQEhJi1nYVWfmRcwAHBwdWVCwV6c5AHIinTJnCy765pRgMBsjlctjb2yMgIKDF9STuz5a47PYEpaWlKC4utkhElEolYmJiMG3aNOzdu9dqRAQADh06hMTExBY1GY1GNjdJp9NZVb3mIkghMZlM+Pzzz/Huu+8+lQOhVqvx888/QyqVIj09HS4uLkhISIBEIkFYWBin8wCkDZYYIRJR6SgdjrT3WquFekfo9Xrk5+ezMxZcbKU0z6tXqVSwtbVl22A766fWFcrKynDr1i3BOBC3Rq/XQy6Xs44Hra+PwWBgrydx2SUrle64nuZAPoOQkBCzQ7WqqqoQGxsLPz8/JCcnW922Xn19Pe7du9fitaVLl8LX1xcff/wxaz4rdAQpJJ2loaEBJ06cgFQqxbFjxzB48GDEx8dDIpEgPDycsy9d83z15v5fIpGoxeSy0Np726KhoQH5+flwcnLidAuxOa2vp8lkemZefVcpKSnB3bt3BfsZ6HQ6yOVyDBkypFOfQfPrqVKpYDQauz29sCOIiHQ13rc51dXViIuLw7hx47B//36rbOJoC7q1JWC0Wi1Onz4NmUyGtLQ09O/fH/Hx8UhMTMQLL7zAWatkW/5fZHuBtBkLsb0XePJ0lZ+fD5FI1GPtsW0dLjdvK+7K50aEvKysDCEhIWYf6vKJVquFXC6Hs7OzWd5xrY06icUIWa30RMfggwcPcPPmTYtEpKamBvHx8RgxYgRkMpmgOh2pkPQSDAYDMjMzIZVKcejQIRiNRsTFxUEikeDll1/m3F23vLwcDx48YGcrPDw8BDNbQSCdTd7e3vD29uZlv51YjZMna+JSQFYrz/rcSKpeZWWlVdqod4bmw5J+fn6cfAako06lUrFRzeTBpzuaHx4+fIgbN24gKCgILi4uZv2Ouro6SCQSODk54fDhw7wPElP6qJA0p6mpCTk5OTh48CAOHToEjUaDuLg4iMVizJ492+L2VNLe6+DggHHjxrGphY2NjYLx/1IqlSgqKoKvr69VdTY1NjayK5Vn5dUT88KamhpBOuACT95rXl4eXF1du827jHiqkfRCBwcHVqS5cCwuLy/Hr7/+apGIqNVqzJ8/H3Z2djh69KhgOtN6O31eSJpjNBpx4cIFpKSkIDU1FY8fP0Z0dDTEYjGioqK6/BT7rPZejUbDWrVYs/9XaWkpbt++jalTp8LNzY3vctqlvbx6V1dX3L17t8s28NZEQ0MD5HI53NzcemxLsXnzA4kXJiuVzkTitoaIiCUZ9w0NDXj11VdhMpnw888/C3J7uLdChaQdTCYTcnNzWVEpLy9HVFQUxGIxYmJiOrRvIO29Y8eO7XArqPXAnjX4fzEMw7qvBgcHm91VwwckF1ypVLIddZ6envDw8OjRLBAu0Gg0yMvLg4eHB3x8fHipnTgWE6Fu7qbdmXOqiooKXL9+3SIR0Wq1WLhwIdRqNU6cOCHI863eDBWSTmAymVBQUMCKSklJCWbPng2xWIy4uLinbk6lpaW4deuWWe291uD/xTAMfv31VzZWVohPfiRQq1+/fhg1ahSbB8JXXr05qNVqyOVyeHp6Wk2eTlvnVMSxmETiNodsiwYGBprdZq3T6bB48WKoVCqcPHlSkJ12vR0qJF2EYRhcu3aNNZW8ceMGIiIiIJFIEBMTg3//+99obGzEhg0bzN4HJpDtGqVSyU6Bd7f/l9FoRFFRETQaDUJCQgR5kKnT6ZCfn8/azpBtmNYxzaQNljxZW9NgWH19PeRyOWvFb60Qx2KVSsV+R4lQazQaXLt2DQEBAWZvixoMBixZsgT37t1DRkaG2SsaSvdChcQCiM+UVCrFwYMHcevWLQwcOBDvvfceli5dCnd3d86eIpv7fz169Ig9A+DS/8tgMKCgoIA1/rPmBoD2IJ1NQ4cOfWZ7bPNEzcrKSmi12hbbNXyeU9XW1iI/Px/e3t4YO3Ysb3V0FbKlSM5VSJfimDFjOhzSbYumpia8+eabuHHjBjIzM636jK6vQ4WEA2pqajB//nyoVCpIJBKcOnUKeXl5mDlzJhISEiAWizFy5EjORKWpqYndr+bKWkSr1bLdZd2dDd9daDQa9lDa19e3S9dBrVaz17S+vp6TgClzIKFgQjCQbA+VSsW2ipNOMIZhWgxBdvT9MhqNWL58ORQKBTIzM60u4I3SEiokHLBo0SLU19dj3759bK50aWkppFIpZDIZLly4gLCwMNaqxcvLizNRMRqN7FOgSqXCgAEDuuz/pdFokJ+fDxcXlx4Pc+KKuro65OfnY9SoURafJ7QOmDInr94cHj9+DIVCAR8fH4wePbrb/k53olKpcPXq1Rb+Zc1z1snqr/kQZOvVn9FoxMqVK3Hu3DlkZWVZVcs5pW2okHBAVVUVhg4d2uaAIcMwePjwIWt//8svvyAgIAASiQRisZjTQ1Rz/L9IDoenpyeb7yI0yFM86ZDjkvby6t3d3eHo6MjZ9aqurkZBQQEmTpyIUaNGcfI7e5qqqipcuXKlQxNMEn2tUqnYWAEbGxvY29vD398fq1atwpkzZ5CZmSnYVVlfgwpJD8IwDCorK3Ho0CHIZDJkZmbC19eXFZWubsc8i874f5EW5QkTJsDLy4uTv9vTkPfQEzdgEilAthTJ6o8YIZr72ZH34Ovri5EjR3Jcdc9A3oOfn1+XtqFIQ0lycjLWr18Pd3d31NfXY+/evRCLxbytjnfs2IEdO3agpKQEAODv749PP/0UMTExvNRj7VAh4QmGYfD48WOkpaVBKpXi9OnTGDduHGt/7+/vz9l/oub+X0qlEkajEYMHD0ZdXR0mT54s2K0D0lrKh4syWf2R1QqAFm3FnT1jIltBQnWCBoBHjx7hypUrXRaR5phMJqxduxanT5+Gj48Pzp49i8GDB2PRokX46quvOK64Y44cOQJbW1v4+PiAYRjs3bsXmzZtgkKhgL+/f4/XY+1QIbESamtrceTIETZTxdPTkxWVoKAgTkXl5s2bKCsrw4ABA55qgRWK/xcx/rOGifvWRp0Gg6FT17SyshKFhYWCzUMBft+Smzx5stlCyDAMPvvsM+zduxdZWVnw9fWFwWBAdnY27t69i7feeovjqs3DxcUFmzZtwrJly/guxeqgQmKF1NfXt8hUGT58OOtUHBYWZraoMAyD27dv4+HDhwgODoaTkxPUajVr1SIU/y+SqBcYGGjxrA7XMAyD+vp6VlQaGhpaXFNysExCtaZOnfpUpo5QICJiyZYcwzDYuHEjdu7ciczMTKvM5zAajTh48CCSkpKgUCjg5+fHd0lWBxUSK6ehoQHHjx9nM1WGDBnCdn+Fh4d3eguluXFhcHBwm91HZGLZWv2/iG1LaWkpgoODzU7U60naOlh2cHBAZWWlRdPefEM6zCwVkS1btmDLli3IyMhAUFAQt0VaSGFhIcLDw6HVajFkyBAkJycjNjaW77KsEiokAkKr1eLUqVNspoqdnR27Unn++efbXUEYjUZcuXIFOp2u08aFbfl/iUQiuLm58TLtToY/KyoqEBoaKkjbFq1Wi9u3b6OiogIAnmorFkrHHBERS3LuGYbB9u3b8eWXX+LEiRMICwvjuErL0ev1uH//Pmpra5GSkoIffvgB2dnZdEXSBlRIBIper2+RqWIymTBv3jw2U4WsIJRKJYqLi2Fvb4/AwECztquI/5dSqWTt2olVS0/4fzEMg+vXr+Px48cICQkRrHU4cVIOCgqCo6Mje1BPLNt7Mq/eXGpqapCfn29RlxzDMPjuu++wbt06pKenIzw8nOMqu4fIyEiMHz8eu3bt4rsUq4MKSS+gqakJv/zyC5up0tjYiLi4ODz//PPYsGEDXn31Vaxbt46TafWe9v8ymUwoLCwUtPcX8Pu5TltOymSolHhWWWO+OvD7vM6ECRPMHphkGAZ79uzB2rVrcfToUcyaNYvjKruPV155BV5eXtizZw/fpVgdVikk33zzDTZt2oSKigoEBgbi66+/xvTp0/kuSxAYjUacP38eu3btwoEDBzBhwgT4+/sjMTERUVFRnD7Nt+f/JRKJONmqIVtyBoMBwcHBVnFOYw4kIz4kJKTDc5225n9IBxgXefXmQvy/LBWRn376CWvWrMHhw4cRERHBcZXcsXbtWsTExMDLywv19fVITk5mt+HmzJnDd3lWh9UJyf79+7FkyRLs3LkTM2bMwNatW3Hw4EHcvHlTsN0tPU1OTg7i4+OxatUqREVFQSqVIjU1FUqlEnPmzIFEIkF0dHSHmSpdoT3/L5FIZNYEODGQtLGxQVBQkGDakltDMl3MyYjnMq/eEoiIjB8/3uzBVYZhcODAAaxcuRJSqRRz587luEpuWbZsGTIyMlBeXg5nZ2cEBATg448/piLSDlYnJDNmzEBYWBi2b98O4MkT2ujRo7Fy5Up88sknPFcnDF577TVERkZi+fLl7GsmkwkKhYK1v79//z4iIyMhFosRGxvLaeCTpf5fer0e+fn5sLe3F6yBJMMwuHPnDsrKyhAaGmqxaDfPAamsrIRGo2nhV9VdyY91dXWQy+UWm0jKZDIsX74c+/fvx7x58ziskGINWJWQ6PV6DBo0CCkpKZBIJOzrSUlJqKmpQVpaGn/FCQiGYZ55s2YYBkVFRayo3Lp1i81UiYuLg4uLC6eiUl1dzd4Ayf6/u7t7m/5fWq0Wcrkcjo6OmDJlitWcD3QFhmFQXFyMhw8fdluHGemqU6lUqK2thbOzMztZz9X2JRERSz3Mjh49iqVLl+Knn35CYmIiJ7VRrAurEpKHDx/C09MT58+fb9HJ8dFHHyE7OxuXLl3isbreCZl0l0qlkEqlKCwsxKxZsyAWixEfH89ppgrZ/ycRuAzDsKLi4uKCxsZG5Ofnw9XVFZMnT7bazqVnQdqUlUolQkNDu9UtmNBeXr0lWTUkWMvb29siETl+/Dj+/Oc/Y/fu3ViwYIHZv4di3VAhobCQ7Rhify+XyzFz5kyIxWIkJCRwmqlCbEXIVH1TUxN7sOzv7y/IMxGGYXDjxg1UVVUhNDSUlzbl1uFS9vb2rKh0dvuSiMiYMWMsCtbKyMjAokWLsGvXLvzxj38U5IMBpXNYlZDQrS3rgWEY3L9/nxWVixcvIiwsDGKxGGKxmNNMFTLg5ujoCJ1OB71eLzj/r+azLqGhoT0yX9MRRqORjRWoqqpiYwXc3d3bbStWq9XIy8uzOOL37NmzeO2117Bt2za88cYbVER6OVYlJMCTw/bp06fj66+/BvBkO8TLywsrVqygh+08QTJVZDIZZDIZcnJyEBgYyNrfjxs3zuwbBXGOJWFO5FC5tf+XSCTq0U6lrkDsZ2praxEaGmqVsy6dyatXq9WQy+VsOJi5nD9/HvPnz8dXX32Ft956i4pIH8DqhGT//v1ISkrCrl27MH36dGzduhUHDhzAjRs3BOuQ2ptgGAZKpZLNVMnKysLkyZNZUZk0aVKnbxyVlZUoKip6pnMs6VRSKpVspxKxarGGuRKTyYSioiKo1WqEhoZ2W/cUl7SVVz906FDU1tbC09MTkyZNMvt3X758GRKJBF988QXef/99KiJ9BKsTEgDYvn07O5AYFBSEbdu2YcaMGXyXRWkFwzCorq5ukakyYcIE1v7ez8+v3a6rhw8f4saNG5gyZUqn54NIp5JSqWRz1clWDR83cDJ139DQgNDQUKsQtq7CMAyqqqpQWFgIW1tbGAwG9rp21VctPz8f8fHx+L//+z/87W9/oyLSh7BKIaEIDzI8RzJVTp48iVGjRrGiEhgYyIrKL7/8AoPBgMDAQLi6upr191r7fzk7O7Oi0hPnEyaTqYURphBFBHjiTiyXy+Hh4YEJEyZAq9W2yKt3cnJi24qf1YF29epVxMXF4cMPP8THH39MRaSPQYWE0i3U19fj2LFjkEqlOH78OJupUltbi7S0NFy+fJmzaFydTsdu0zx+/PgpV12uaW7dEhISYpXnNp2hoaEBeXl5GDFiBHx8fJ66+TfPq3/06BEGDRrUZl799evXERMTgxUrVuDTTz+lItIHoULyDM6ePYtNmzZBLpejvLwcqampLbrJKJ1Do9EgPT0dn376KX777Tf4+Phg1qxZkEgkeO655zidXG998+sO/6+CggKYTCYEBwcLoqOsLRoaGiCXy+Hu7o6JEyd2eF1a59Xn5uaiuLgYzz//PNatW4e//OUv+OKLL3gVkQ0bNkAmk+HGjRsYOHAgZs6ciS+//NKiMx9K5xDm/4IeQqPRIDAwEG+++Sbmz5/PdzmCxcHBASdPnmSfgH/77TfIZDIsXLgQ9vb2iI+Ph0QieWamSmexs7ODp6cnPD09W8xUlJSUWOz/1dTUBIVCARsbG0GLSGNjY5dEBAD69++PESNGYMSIETAajTCZTMjNzcWHH37INmCkp6dj9uzZvDUcZGdn4/3330dYWBiamprw97//HVFRUbh+/XqPDIb2ZeiKpJPY2NjQFYmZ3LlzB3/6059w4MCBFs6xer0eZ86cYTNVALCZKi+99BKn5w6W+n8ZDAYoFArY2toiKChIkP5fwBMRycvLg5ubW5c67FpTUlKC6OhoJCQk4A9/+APS0tKQmpoKFxcXKBQKjqs2D5VKBXd3d2RnZwvKrl6IUCHpJFRILKMj/6+mpiacPXuWzVTRarWYN28exGIxXnnlFU5nM4j/F7Fq6cj/y2AwID8/HwMGDEBgYKBgRUSr1SIvLw+urq7w9fU1W0RKS0sxd+5cREdH49tvv2WvF8MwqKioaLeVu6cpLi6Gj48PCgsLrTILvjdBhaSTUCHpOYxGI86dO4eUlBQcOnQItbW1iI6OhkQiwZw5czi1HunI/6upqQn5+flwcHBAQECAIE0kgd9FxMXFxSIfs/LycsydOxezZs3C999/b7WiajKZkJCQgJqaGuTk5PBdTq+HCkknoULCDyaTCZcuXUJKSgpSU1NRWVmJqKgoSCQSzJ07l9NMFYZhWoRKGY1GAMDgwYMRHBws2O4s4qg8bNgwi0REqVQiJiYGYWFh2LNnj9WKCAC8++67SE9PR05ODmfdgZT2oULSSaiQ8I/JZEJ+fj5rf19aWorIyEhIJBLExsZymnVOzhL69esHk8kEg8GA4cOHQyQSwdXVVTAH7TqdDnl5eRg6dCj8/PzMvj4qlQpxcXHw9/fH//73P6t+/ytWrEBaWhrOnj1rkekkpfNQIekkVEisC2JNQkTl9u3beOWVVyAWiy3OVCHbQMOGDYOfnx+AJ3MxZKUiBP8v4ImIyOVyODk5wd/f3+zrUV1djdjYWIwfPx4HDhyw2vfLMAxWrlyJ1NRUZGVlwcfHh++S+gxUSJ6BWq1GcXExACA4OBibN29GREQEXFxczI4cpXAPsW8nolJUVISXXnqJzVRxc3Pr9E2UtMY+6yzB2v2/gCcdcXl5eRaLSE1NDeLj4+Hh4QGZTGY1768t3nvvPSQnJyMtLa3F7Iizs7NVuDH3ZqiQPIOsrCxEREQ89XpSUhL27NnT8wVROoRkqhBRUSgULTJVPDw82r2pkiG9rrTGWpv/F/C7iJCUSXNFpK6uDhKJBM7OzkhLS7NKV+PmtPc+d+/ejTfeeKNni+ljUCGh9FoYhsG9e/cglUqRmpqKixcvYvr06WymyujRo9mbT0VFBW7dugWRSNTpIb3WNDY2sttffPh/AU9ERC6XY/DgwRZFFavVasyfPx92dnY4duwYfaKnPBMqJJQ+AcMwePDgAZupcu7cOQQFBUEikcDHxwfvvPMOtm3bhsTERE4O7Nvz/xKJRN2WnEhEZNCgQZg6darZItLQ0IBXX30VDMPg2LFj3ZI5T+ldUCERCNRHiDuIpUdqair27t0LuVyO0NBQREVFITEx0ewVSXt0t/8X8GRoUi6XY+DAgRaJiFarxcKFC6HRaHD8+HE4OTlZXBul90OFRCBER0fj9ddfb+EjVFRURH2ELEAulyMqKgrvvvsuxo4dC6lUioyMDPj4+CAhIQGJiYmYPHkyp0OIrTPVHRwcIBKJnnLU7ervlMvlFg9N6nQ6LF68GFVVVTh58iSGDh1q1u+h9D2okAgU6iNkGUajkTXkXL16NYDfM1UOHz7MZqp4eXmxosL1ZDvx/1IqlaiqqsKAAQNYUemM/xfwu32LnZ1di8yXrqLX67FkyRKUlpYiIyMDLi4uZv0eSt+EColAoT5ClkMOxNujrq6uRaaKu7s7KyqhoaGci0p7/l/Dhg1rU1SIfQvxADO3HoPBgGXLluHmzZs4c+YM3NzcLH07lD4GFRIBQn2Eeh6SqSKTyXDs2DE4OzsjISEBEokEM2bM4NQupLn/V2VlJQC08P/q168fKyL9+/e3yEiyqakJy5cvx5UrV5CZmQmRSMTZ+6D0HaiQCBDqI8QvjY2NOHnyJGQyGY4cOQIHB4cWmSpc2oe05f81fPhw1NfXw97e3iJLe6PRiBUrVuDChQvIysrCyJEjOaub0regQiIwqI+QdaHX63H69GnIZDKkpaXBxsYGcXFxSExMxKxZszidBGcYBtXV1bh27RoMBgNsbGxY/6/hw4d3SVBMJhNWrVqFzMxMZGZmUqcGikVQIREI1EfI+jEYDGymSlpaGnQ6HeLi4iCRSBAREWHxZLjRaGQTGgMDA1tM1Wu1WgwfPhzu7u4d+n+ZTCZ89NFHOHbsGLKysugDCcViqJAIBOojJCyMRiNycnLYTJW6ujrExMRAIpEgMjKyy0OJRESAJ75vzVcfDMNAo9GwZyoajQaurq5wd3d/yv/LZDLhH//4B6RSKTIzM+kDCYUTqJAIBOojJFxMJhMuXrzIiopKpWqRqdLR5LjRaERBQQFMJhNCQkI63MLSaDTsmUp9fT3s7Oxw6dIlLFiwALt378aPP/6IzMxM+Pr6cvk2zeLs2bPYtGkT5HI5ysvLqcO2QKFCQqH0ICaTCXK5HFKpFDKZDGVlZYiMjIRYLG4zU8VoNOLKlSswGo0IDg7u8kF+Y2MjLl26hE8++QTXrl2Dvb09/vrXv+K9996zinOR9PR0nDt3DqGhoZg/fz4VEoFChYRC4QmTyYSrV6+yolJcXIzZs2cjISEB8+bNg52dHd5++20sXrwYc+fONbsbjGEYbN68Gd999x2WLFmCS5cuITs7G8HBwThw4AC8vb25fWNmQjN/hIswA6gpVsGOHTsQEBAAJycnODk5ITw8HOnp6XyXJRj69euHoKAgfP755ygqKoJCocBzzz2HnTt3YuzYsZg5cyauXbuGiRMnmt3iyzAMvv76a2zZsgWpqalYv349Tp8+jfLycrzzzju05ZfCCXRFQjGbI0eOwNbWFj4+PmAYBnv37sWmTZugUCjg7+/Pd3mCRafTITY2Frdu3YKnpyfkcjlmzpwJiUSChIQEjBgxolP2KQzDYNeuXfjss89w/PhxPPfccz1QvfnQFYlwoSsSitnEx8cjNjYWPj4+mDhxItavX48hQ4bg4sWLfJcmWIxGIxYuXIja2loUFhbiwoULuHXrFuLj45GSkoJJkyYhKioK27dvR2lpKdp7DmQYBrt378a//vUvHDlyxOpFhCJsqJBQOMFoNGLfvn3QaDQIDw/nuxzBYmtri/j4eNZ918bGBmPHjsWaNWuQk5ODu3fvYsGCBTh27Bj8/f0RERGBrVu34u7du6yoMAyDH3/8EWvXrsXhw4fx4osv8vyuKL0durVFsYjCwkKEh4dDq9ViyJAhSE5ORmxsLN9l9XoYhkFFRQVSU1Mhk8mQnZ2NKVOmQCwWw97eHuvXr4dMJkNUVBTfpXYaurUlXKiQUCxCr9fj/v37qK2tRUpKCn744QdkZ2fDz8+P79L6DAzD4NGjR0hLS0NycjLOnDmDn376CYsXL+a7tA5Rq9UoLi4G8GTQcvPmzYiIiICLi4tVtCdTOgcVEgqnREZGYvz48di1axffpfRJSKSwUMw8s7KyEBER8dTrSUlJ2LNnT88XRDEL7mxKKRQ8mY3Q6XR8l9FnsbGxEYyIAMDLL7/cbsMARThQIaGYzdq1axETEwMvLy/U19cjOTkZWVlZOHHiBN+lUSiUHoQKCcVsKisrsWTJEpSXl8PZ2RkBAQE4ceIE5syZw3dpFAqlB6FnJBQKhUKxCDpHQqFQKBSLoEJC6dVs3LgRNjY2WLVqFd+lUCi9FioklF5Lbm4udu3ahYCAAL5LoVB6NVRIKL0StVqNxYsX4/vvv8ewYcP4LodC6dVQIaH0St5//33ExcUhMjKS71IolF4Pbf+l9Dr27duH/Px85Obm8l0KhdInoEJC6VWUlpbigw8+wKlTp+Dg4MB3ORRKn4DOkVB6FYcOHUJiYmKLREGj0QgbGxv069cPOp3O7LRBCoXSNvSMhNKrmD17NgoLC1FQUMD+TJs2DYsXL0ZBQQEVEQ745ptv4O3tDQcHB8yYMQOXL1/muyQKz9CtLUqvwtHREVOmTGnx2uDBg+Hq6vrU65Sus3//fqxevRo7d+7EjBkzsHXrVsydOxc3b96Eu7s73+VReIKuSCgUSqfZvHkz3nrrLSxduhR+fn7YuXMnBg0ahP/+9798l0bhEboiofR6srKy+C6hV6DX6yGXy7F27Vr2tX79+iEyMhIXLlzgsTIK39AVCYVC6RRVVVUwGo0QiUQtXheJRKioqOCpKoo1QIWEQqFQKBZBhYRC6QH+9a9/wcbGpsWPr68v32V1ieHDh8PW1hZKpbLF60qlEiNGjOCpKoo1QIWEQukh/P39UV5ezv7k5OTwXVKXsLOzQ2hoKDIyMtjXTCYTMjIyEB4ezmNlFL6hh+0USg/Rv39/wT+5r169GklJSZg2bRqmT5+OrVu3QqPRYOnSpXyXRuERKiQUSg9x+/ZtjBw5Eg4ODggPD8eGDRvg5eXFd1ldYuHChVCpVPj0009RUVGBoKAgHD9+/KkDeErfglqkUCg9QHp6OtRqNSZNmoTy8nKsW7cODx48QFFRERwdHfkuj0KxCCokFAoP1NTUYMyYMdi8eTOWLVvGdzkUikXQw3YKhQeGDh2KiRMnori4mO9SKBSLoUJCofCAWq3GnTt34OHhwXcpFIrFUCGhUHqANWvWIDs7GyUlJTh//jxrdb9o0SK+S6NQLIZ2bVEoPUBZWRkWLVqER48ewc3NDS+88AIuXrwINzc3vkujUCyGHrZTKBQKxSLo1haFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCyCCgmFQqFQLIIKCYVCoVAsggoJhUKhUCzi/wHTyqLUMD2lJAAAAABJRU5ErkJggg=="
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# %% Load the data\n",
+ "s = retrieve(\"weber_fechner\",rng=np.random.default_rng(seed=180), resolution=20)\n",
+ "X_ = s.domain()\n",
+ "y_ = s.experiment_runner(X_)\n",
+ "data = pd.DataFrame(np.column_stack([X_, y_]), columns=[\"S1\", \"S2\", \"difference_detected\"])\n",
+ "show_results = partial(show_results_complete, data_=data, projection=\"3d\")\n",
+ "show_results(label=\"input data\")\n",
+ "X, y = data[[\"S1\", \"S2\"]], data[\"difference_detected\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "89405909",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRk+VnfCX/ufm/suWdVZe1dS++belG1QCC0WKAxZtOgYcZahsW8MtjzHl6DfTwvMKAjM2M8+MCYATyv0IwB2RKSQYC1gRq1JDfdre6qrn1fc8+MPe5+7+/940ZEZWRmVeVald19P+f0kSoz8saNGxG/731+z/N8H0kIIUhJSUlJSVkj8r0+gZSUlJSUNzapkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpLwl+MhHPsKePXvu2XNJksSv/Mqv3JXnT0m526RCktJDs9nkl3/5l/l7f+/v0d/fjyRJ/OEf/uGajmXbNr/yK7/C888/v6HnmJKSsrVQ7/UJpGwt5ubm+F/+l/+FXbt28eijj65LBGzb5ld/9VcB+J7v+Z6NOcE3KI7joKrp1y3lzUkakaT0sG3bNiYnJ7l69Sr/2//2v93r01kxrusSx/FdeS4hBI7jrOpvTNPc0kLSarXu9SmkvIFJhSSlB8MwGB0dXdFjX3nlFd73vvcxODiIZVns3buXj33sYwBcuXKFoaEhAH71V38VSZJWlCe4dOkSP/ZjP0Z/fz+ZTIZnn32Wv/zLv+x5zPPPP48kSXzmM5/hX/7Lf8mOHTvIZDLU63UA/vN//s889NBDmKbJQw89xBe+8IVlnyuOY37rt36LBx98ENM0GRkZ4Wd+5meoVCo9j9uzZw8f+MAH+PKXv8zb3vY2LMvi937v91Z0jTosfu2/8iu/giRJXLhwgY985COUSiWKxSIf/ehHsW17yd//h//wH3jyySexLIv+/n5+/Md/nOvXr/c85oUXXuDHfuzH2LVrF4ZhsHPnTv6n/+l/WiJ6H/nIR8jlcly8eJHv//7vJ5/P8xM/8ROrej0pKQvZurdIKVuamZkZ3vve9zI0NMQv/dIvUSqVuHLlCp///OcBGBoa4nd/93f52Z/9WX7oh36IH/7hHwbgkUceueUxp6enOXLkCLZt8/M///MMDAzw6U9/mr//9/8+n/vc5/ihH/qhnsf/2q/9Grqu8wu/8At4noeu63zlK1/hR37kR3jggQf45Cc/yfz8PB/96EcZGxtb8nw/8zM/wx/+4R/y0Y9+lJ//+Z/n8uXL/M7v/A6vvfYa3/rWt9A0rfvYs2fP8qEPfYif+Zmf4ad+6qc4dOjQRlxGPvjBD7J3714++clP8uqrr/Lv//2/Z3h4mN/4jd/oPuYTn/gE//P//D/zwQ9+kJ/8yZ9kdnaW3/7t3+a7v/u7ee211yiVSgB89rOfxbZtfvZnf5aBgQFeeuklfvu3f5sbN27w2c9+tud5wzDkfe97H+94xzv41//6X5PJZDbk9aS8RREpKbfg5ZdfFoD41Kc+teR3X/jCFwQgXn755Vv+/ezsrADEL//yL6/o+f7pP/2nAhAvvPBC92eNRkPs3btX7NmzR0RRJIQQ4utf/7oAxL59+4Rt2z3HeOyxx8S2bdtEtVrt/uwrX/mKAMTu3bu7P3vhhRcEIP7oj/6o5++/9KUvLfn57t27BSC+9KUvreh1fPjDH+55LiHEkuvwy7/8ywIQH/vYx3oe90M/9ENiYGCg++8rV64IRVHEJz7xiZ7HHT9+XKiq2vPzxddCCCE++clPCkmSxNWrV3vODxC/9Eu/tKLXk5JyJ9KtrZQ10bkL/ou/+AuCINiQY/7VX/0VTz/9NO94xzu6P8vlcvz0T/80V65c4dSpUz2P//CHP4xlWd1/T05OcvToUT784Q9TLBa7P3/Pe97DAw880PO3n/3sZykWi7znPe9hbm6u+9+TTz5JLpfj61//es/j9+7dy/ve974NeZ0L+Uf/6B/1/Pu7vuu7mJ+f727Tff7znyeOYz74wQ/2nOfo6CgHDhzoOc+F16LVajE3N8eRI0cQQvDaa68tee6f/dmf3fDXk/LWJBWSlDXxzne+kx/5kR/hV3/1VxkcHOQHf/AH+dSnPoXneWs+5tWrV5fdMrr//vu7v1/I3r17l/w9wIEDB5YcY/Fxz58/T61WY3h4mKGhoZ7/ms0mMzMzt32ujWLXrl09/+7r6wPo5mnOnz+PEIIDBw4sOc/Tp0/3nOe1a9f4yEc+Qn9/P7lcjqGhId75zncCUKvVep5HVdVlt/tSUtZCmiNJWROSJPG5z32OF198kS9+8Yt8+ctf5mMf+xi/+Zu/yYsvvkgul9v0c1h4B75a4jhmeHiYP/qjP1r2951CgY14rtuhKMqyPxftCdhxHCNJEv/lv/yXZR/buc5RFPGe97yHcrnML/7iL3L48GGy2Szj4+N85CMfWVLRZhgGspzeR6ZsDKmQpKyLZ599lmeffZZPfOIT/PEf/zE/8RM/wWc+8xl+8id/EkmSVnWs3bt3c/bs2SU/P3PmTPf3d/p7SO7iF7P4uPv37+drX/sazz333KaJxEawf/9+hBDs3buXgwcP3vJxx48f59y5c3z605/mH/7Df9j9+Ve/+tW7cZopb3HSW5KUNVGpVLp3zR0ee+wxgO72VqcSqFqtruiY3//9389LL73Ef/2v/7X7s1arxe///u+zZ8+eJXmOxWzbto3HHnuMT3/60z1bOV/96leX5Fc++MEPEkURv/Zrv7bkOGEYrvicN5sf/uEfRlEUfvVXf3XJ9RZCMD8/D9yMbBY+RgjBv/23//bunWzKW5Y0IklZwu/8zu9QrVaZmJgA4Itf/CI3btwA4Od+7ucoFot8+tOf5t/9u3/HD/3QD7F//34ajQZ/8Ad/QKFQ4Pu///uBZDvogQce4D/+x//IwYMH6e/v56GHHuKhhx5a9nl/6Zd+iT/5kz/h/e9/Pz//8z9Pf38/n/70p7l8+TJ/+qd/uqKtmE9+8pP8wA/8AO94xzv42Mc+Rrlc5rd/+7d58MEHaTab3ce9853v5Gd+5mf45Cc/ydGjR3nve9+LpmmcP3+ez372s/zbf/tv+dEf/dH1Xsp1s3//fn7913+df/7P/zlXrlzhH/yDf0A+n+fy5ct84Qtf4Kd/+qf5hV/4BQ4fPsz+/fv5hV/4BcbHxykUCvzpn/7pkp6YlJRN4Z7Vi6VsWTrlrsv9d/nyZSGEEK+++qr40Ic+JHbt2iUMwxDDw8PiAx/4gHjllVd6jvXtb39bPPnkk0LX9RWVAl+8eFH86I/+qCiVSsI0TfH000+Lv/iLv+h5TKf897Of/eyyx/jTP/1Tcf/99wvDMMQDDzwgPv/5zy9bkiuEEL//+78vnnzySWFZlsjn8+Lhhx8W/+yf/TMxMTHRcz1+4Ad+4M4Xrs1qyn9nZ2d7HvepT32q5zovfE3veMc7RDabFdlsVhw+fFh8/OMfF2fPnu0+5tSpU+Ld7363yOVyYnBwUPzUT/2UOHbs2JIS7g9/+MMim82u+PWkpNwJSYhF8XJKSkpKSsoqSHMkKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpIhSQlJSUlZV2kQpKSkpKSsi5SIUlJSUlJWRepkKSkpKSkrItUSFJSUlJS1kUqJCkpKSkp6yIVkpSUlJSUdZEKSUpKSkrKukiFJCUlJSVlXaRCkpKSkpKyLlIhSUlJSUlZF6mQpKSkpKSsi1RIUlJSUlLWRSokKSkpKSnrIhWSlJSUlJR1kQpJSkpKSsq6SIUkJSUlJWVdpEKSkpKSkrIuUiFJSUlJSVkXqZCkpKSkpKyLVEhSUlJSUtZFKiQpKSkpKesiFZKUlJSUlHWRCklKSkpKyrpQ7/UJpLy1EEIQRRGe56EoSvc/WU7vaVJS3qikQpJy1xBCEAQBYRjieV7357Iso6oqqqqmwpKS8gZEEkKIe30SKW9+oigiCALiOEaSJHzfR5ZlhBAIIYjjGCEEkiQhSVIqLCkpbyBSIUnZVIQQhGFIGIYASJLUjUwkSVr28R1R6dB5nK7raJqGqqrL/m1KSsq9Id3aStk04jjuRiFAN9roiEQnAlmIJEkoitL9d0dYXnzxRQ4dOkSpVEKWZRRF6YlaUmFJSbl3pEKSsuF0Fv8gCHq2qxY/ZiWLf0dYOv+rKEr32L7vI0lSV1g0Tes+JhWWlJS7RyokKRtKZ9vqxIkTDA8PMzg4uCGLeucYt4pYFgvL4hxLKiwpKZtHKiQpG0ZnQY+iiEajQV9f34Yt4Au3xBb/vCMsnd/HcYzv+3ielwpLSspdIBWSlHXT6Q0Jw5A4jpFl+ZYL/2bSEYdUWFJS7i6pkKSsi85WVhRFAF0R6ZT2bhRrEablhKXzn+d5+L7fPedUWFJS1k4qJClrpnOnvzAKWcitFv57tUgvTPorirJEWBZGLJ0y404PSyosKSm3JhWSlFXT2crqVGUtt9DeKYJY7cK8GVtltxMW13W7j0mFJSXl9qRCkrIq4jgmDMMlW1mLuRc5kvWyEmFxXZcwDBkcHEyFJSWlTSokKStiJb0hC9loIblXyfvFwlKpVKhUKuRyOSAR0sU5llRYUt5qpEKSckeWszm500L5RoxI7kTndUuShKZpPT5hnufhum4qLClvSVIhSbktC3tDOvmClbBWIQmixE5FU3qfZysK02JB7QhLFEVdq/yFOZaOrctKhDgl5Y1EKiQpy3Kr3pCVstqFv+YEHBtvcHG2hQD29Fs8NlagP6v3nNNWpiMQHbFdKCxhGHZ/v5xPWCosKW9kUiFJWcKtekNWw2qExPYjvnpmjstzNv0ZDUmC71yvMVX3+MDDIxTMN6bb762EJQzDrvtxR1gW+oSllvkpbzRSIUnp4U69IStlNUJyed7m6rzN3gELtb2lVcpoXJyzuTDb4omdRWDrRCTruSapsKS8GUmFJAVYWW/IaliNkJRbySKqLsiLyJKEqcpM173u8d5s3ElYIJ0emfLGIBWSlA3ZylrM7YSk6fp86/glWrHCQLGA44fEyzw2iASW3uv0+2bmVsKy0Nk4nR6ZshVJheQtThRFXL9+HcuyKBaLm+7WOz5b4fe/cpTJlkDEMZEQZAwdVddRRMjuoQIAc00fQ5XZP5jpHu+txnLC0qmiC4KAVquF4zhs27atKyzp9MiUe0EqJG9RFvaG3Lhxg5GREUql0oYdf7GQCCEYHx/nM988TSXO8czhYVRFxvd9Ls/UqLRcpqamuDY+jWkZDOYzvOPgMGMls+cYb2UWz2JptVpMTU0xODi4bMSSTo9MuVukQvIWZPEI3M3YGpEkqXv8MAw5deoUUzOzRPlR9hkWmqogEBiGwcEdQ1wq27z//kGU2KdWq6P4DZwbp/nW1Hn6+vrwfb/r1nsv2Wpi1hEOuPWQr3R6ZMpmkwrJW4iFC83CqixZlruL/kbRWazq9TpHjx7FNE2effbtnHlpksVrsSQBAixd5YFtfcAIkAherVajUqkwPz/PpUuXmJiYoK+vr/ufYRgbet5vJBaPK06nR6bcK1IheYtwu4T6ZnWN1+t1/u7v/o49e/awe+8+dFXhvqEsL14uUzQtOuvXbNOnYKlsL5o9fy/LclcwGo0G/f39ZDIZKpUK169f59SpU2QymR5h0TRtw1/HVuZOfmfpkK+Uu0EqJG8BFtqc3MryfSMjkjAMmZ2dpdG0kUcP8pXxmNalS2wvmRwYzjJWsrgw28LUZPxIYCgy7zzQTylzaxHo7P8PDAwwMDAAQBAEVKtVKpUKly9f5sSJE+Tz+a6oFIvF7rbPm5HFEcntSKdHpmwmb95vWcqKbU42cpphrVbj2LFjCCG4FBS4drmFpSlkNIWTE3WuzLd47wMjHBq2GK+65E2VA8M59g5Yq34uTdMYGhpiaGgIAM/zusJy9uxZPM+jUCh0haVQKPRs/bzRWc97djthSadHpqyWVEjepKymN2QjtraEEFy7do1z586xb98+5loB56/Os2NU7/plDeR0Lsw2OTlR4797clv3uVfCSs7RMAxGRkYYGUlyLI7jdG3fJyYmCMOQYrHYFZZ8Pv+G7sFYTURyJxYKy0qmR3ZKjVNn4xRIheRNSadDfaU2J+tNtgdBwIkTJ6hWqzz55JP09/dz/qXTtPyYvkXbVQNZncmaR8uPyOqbGx1YloVlWWzfvh0hBLZtd4Xl2rVrCCEolUr09fXR399PNptd0aK4lRbOzTqXdHpkympIheRNxMLekNXYnKwnIqlWqxw7doxcLsdzzz2HrifRh6FKyFLSna6rN8/BC2MMRUZXVhcJrDdqkiSJbDZLNptlbGwMIQTNZrMrLJcvX+5J7vf19WFZ1pZeFDcyIrkTKxGWSqVCJpPp5qZSYXnrkArJm4TlekNWs2202ohECMGVK1e4cOEC9913H4OjY/zXqzXOTjXQFJmCiOk3Ja6WbfYMZNAUmaYXUnUC3nt4CF1NoqDVLDIbPXExn8+Tz+fZtWsXcRzTaDSoVCpMT09z/vx5NE3rERbTNO984LvIvexpWU5YJiYmGBgY6JZkL2eZnwrLm5NUSN7grHYE7nLIstzNpawE3/c5fvw4jUaDp556CtXK8f+8eI3TUw1MVSEWglqjxbABw0WDq2WbOAZDlXlyZ4nn9g8AqxOuzV58ZFmmWCxSLBbZs2cPURR1e1jGx8c5c+YMpml2y4t93+9GX/eKuxmR3ImFopJOj3zrkQrJG5jFCfW1DkhazbZRpVLh2LFjFAoFjhw5gq7rfOP8HGemmuwdyKKryZbVFD43yh4/vH8QU5NxgoiBrM7u/gySBEGw+pzM3bwDVxSF/v5++vv7gaSkuVqtcvXqVVqtFt/85jfJZrPd/EqpVLonpcZbaRFeGGGm0yPfWqRC8gblTr0hq2ElyXYhBJcvX+bixYscOHCA3bt3d5/z7HQTXZW7IgKQ0WXCGKYbLt//0OiSY62We724qKrK4OAgrVYrsXU5eLBbanzhwgUcx1nSw7LZpcZbza7ldhFSOj3yzU0qJG8w1jsCdznuFJH4vs/rr79Oq9Xi6aefplgs9vxeV+RlbOCTYyryxi0CW2nh1HWd4eFhhoeHgaSHpVKpUC6XOX36NL7v95QaFwqFDS813kpbW0D387gSVjPka/FWWMrWIxWSNxCbMTcEbp9sL5fLHDt2jFKpxJEjR9A0jaYbcnyiTs0J6M/q7BvMcPRGjaYXkjOSj1TNDTEUif2D2XWfX+cctzKGYTA6Osro6ChCiJ4elhs3bhDH8ZIelvW+pq0mJOs5n3R65BubVEjeIMRxzPT0NNPT0xw+fHhDF5DlIhIhBBcvXuTy5cscOnSInTt3IkkS18o2//eL17lecQCBhMTOPotDw1nOz7YYrzoggEjw6LDC/qGNEZLOOb0RkCSJTCZDJpNhx44dCCFotVpdYbl69SoApVKJ/v5++vr6yGQya85vbRU6JecbQTo98o1FKiRbnIUjcDvbJxu9eCy2SPE8j9dffx3HcXjmmWcoFJJhU1Es+NPXJrhWdtg/lEGVZYIo5tJci75MkY8d2cW1iosiSRSwEbXJDe+8fiMiSRK5XI5cLsfOnTsRQnRLjefm5rhw4QKqqi7pYbkTWy0iWW0592q4lbB0nI0hFZZ7SSokW5g4jgnDsLuVpSjKhtu9Q+/W1vz8PMeOHWNgYIDHH3+8pxJpvOpwZd5mrGSitr+gmiKzrWByca7FjzyxnQe3J/mTqakpLtdu/XyrXXA2y6F4LWxETqpQKFAoFNi9ezdxHFOv1ymXy0xOTnL27FkMw7ijXf5WE5KNjEjuxHLCsnB6JNBtzO14rKXTIzePVEi2ILfqDdksIelUbZ0/f54rV65w//33s2PHjiVfOj+MiWKBtqgrXVUkwljgRzcX+q208G91ZFmmVCp1J1RGUdStCLudXf7dXLhXwmZGJHdiuVksU1NTzM7O8vDDD3cfk06P3BxSIdliLLQ5gd67980YQAXJnVu9Xsf3fZ599lny+TyQbGWdmWpwfqaJJEns7s/Ql9GYaXiM9d3ceplp+IwWDUbyN++aN1pItoow3Y1zUBTljnb5uVwOgEwmQxiGW8IufytFSAsbJFVVTadHbjL3/tOX0mVhb8jCsL3DZiyms7OznDt3DlmWefvb395dkMIo5o9fvsELF+bxgxghgaXJ7O7PUHMCLsw2yekqdS8ga6i874GRnj6SrbLwvxlYbJfv+35XVMrlMi+88MKWsMvfihFS53yWi1jS6ZEbRyokW4DVzA3ZqIiks5V17do1duzYQbVa7bmrffV6jb89N8dAVqfQn9iCVGyfy3M2739omLlmwEzd5fC2PEf29XP/tnzP8e8kJG/kHMm9Rtd1RkZGKJfLGIbBtm3btoRd/r3c2lqOTrPuciwUlnTI1/pJheQes5rekI0SEsdxOHbsGGEY8va3vx3btimXyz2Pef1GjUgICtZNG/i+jM5c08cNYn76u/bc9jnShX/z6WwlrcYuv6+vj1wutykL4laOSG7Hwm0wSIVlLaRCcg/pfFDv1twQgJmZGY4fP87IyAj3338/iqLguu6SRd8PY5RlzkeS6Emq34o7CclqRWYtDsVvBRZ/Zu6VXX6nHHcrLayr6bRfyO2EJZ0euTypkNwDFvaGrGZuSKffYy1f2DiOOXfuHNevX+fBBx9k+/bt3d91Fuk4FnhhjKnJHN6W5+8uV/DDuJv7cIMkajo4fOcmw82ISNIIp5eVXI/b2eXPzMxsmF1+51y2WkSyEbmihcKy3PTIhcLyVp0emQrJXWY9NiedL+lqvyC2bXPs2DHiOObIkSNks71CIJB4dSbiS392iqoTMJI3eG7/APdvy3FqsompyQiSKOXxnSWe2FW643NuRtVWSi9ruaFYqV3+QmFZiV1+573eSu9THMdd2/+NZGElZTo9MiEVkrvIakfgLqbz+NUs0FNTU5w4cYLt27dz6NChZQXor07P87VrMYMDLlld4cJsi0vzNh98cgeP7ixx7HoNWYLHd5U4sq8fU7uziKURyeazEVtJt7LL71i5nDx5smuX39fXR6lUWnZx7mw7bqWFcq1bW6slFZZUSO4Ki3tD1voBWhiR3Ik4jjlz5gwTExM89NBDjI6OLvu4csvnhYtVTAV2tntD+rM6NyoOz5+d5dd/8AHe/+DIqs/1TkISxzHfPnGJh/Ztp5TLrOh4KUvZ6OvSscsfHBwEklLjjrBcvHgR27bJ5/Ndj7COXf5W3dq6F+dzO2G5du0ajUaD++677001PTIVkk1m8Qjc9cxXWKmQtFotjh07BsCRI0fIZG69UN+oOtS9iOyi3Yv+rM58K2Cm4bGr/84L/WJuJyRCCP722AVeO3+dY5cm+K6H9/Pwvu13vC5RHHNl3uZ6xcENY7YVDPYMZLqOw3eLrfJlvxsR2q3s8iuVSo9dfqeJdStFjRuVI1kvC7/znTL/TuHMm2V6ZCokm8TChqeNnBtyp+qlyclJTp48yY4dOzh06NAd78iyuoquyPhe7wLghRGaIpHR1/ZFvJ2QvHL2GscujgMQhBF/89o5Lk3O8+4nD5GzlnpKdTg3H1Cvl4HEpuVa2eFq2eW77+snb771Psr3okrqVnb5c3NzALzwwgs9pcYbYZe/Vu5VRHI7oihaYiZ5u+mRbxRheet9++4CmzU3pHOs5YQkiiJOnz7N9PQ0Dz/8MCMjy29HCSG4VnY4N9NEU2Qe2pZn32CGF89V8cIYQ5Vx/IiZhs/3HBxkMHfrhf1OLCckZ65N8Y1j55f8/MrUPH/01Zd51xMHOTA2vOT3VTfmcjVk3y6VQls0YiG4Mu9wca7FY2PFJX+zGWylO264t9HRQrv8vr4+yuUyb3vb25a1y+8ISzabvWvnvJWFZCG3cjZeKCwf+tCH+PCHP8yHPvShe3HadyQVkg0mjmOmpqYA6O/v3xTL98VC0mw2OXbsGLIsc+TIkVtakEex4P/5u+t87fQMLT8RuYGsxrsP9nPlBkxUHSIBqizx2M4iH3pqbF3nuXjRvT5T5kt/d+qWf+P4AX/54knu3z3POx/Zj2nc3G+rezFeJLoiAiBLEgVT5VrZuWtCspXYSn0bnUX7Vnb58/PzXLx4cYldvmmam/Ya3ihCspjlhGVqampL+Kndiq17Zm8wFtqcTExMYBhG13RvI1ksJBMTE5w8eZJdu3Zx4MCB235xXrgwz18enyJnqOwdMIgFTNZc/urULN+3LeaBJ/ZTc0OG8wYPjOZRlfV9CRcKyXytyRe/fZyMoVO3HSRuvXhcmphlcq7G9z15iJ3Dfe3XLSHE0sVzOTfitwpbKTparqv9Vnb5lUqFqampFdvlr5WtKiQrKadeiCRJ2LZ921znvSYVkg1g8VaWoijd/7/RdHIPYRhy+vRpZmZmePTRR7vJ0Nvxwvk5BEkiHUCRYEfJ5OJsk6uKxH+/s7hhycmFpcot1+fz3ziK4wVAQNY0GJ+cwvcDLMvCtMzu86qyjBAwV7f53b98ib7+Ae7ftwPJizEVmG36DLddhr0wxg5iHh/Yul+wzWQrRSQrOZeFdvl79+5dsV3+Wrmd19a9Yi0FAJ0Jm52Chq1IKiTrZLneEEVRuqW+G40sy7RaLU6ePImmaTz33HMr7kSuOgG6svSuEUnCjTa2yqWzqLh+wBe+cZS6ndTTB0HA2evXUWSJQi5LuVbFn/XRdZ2MZVEq5AmQuVZ2KdsB4xWHixNzDPb3UTKTxsjL8zZS+1ocHM6ybzAVknvNWgwbV2qXv7CHZTXbO1s1IlnLObVarSWNxFuJVEjWyMLekMU2J5s1N6SzfXbq1Cn27NnDfffdt6oP5aGRPBdmWz0LUOKpBUPmxm6VJNVlgr/49nFmqg0A7JbN9PQ0uVyOgYEBojji0NAQjZZDq2UjxSE3JqaouBFzvkpfVsdUDRQRcv3aVeZzBd79+EFMXSGMBaWMymjBRJW3xmJ6L9gqQrIRho23ssuvVCqcP38e13VXZZe/VYVkLTdrnf6drUoqJGtg8QjcxVVZmzHJMAxDTp48ie/77Nu3jwMHDtzxb6JYcHa6QcuL2D2Q4b0PDPPK1QqX5lqUMjpRLKi7AQ9ty7Nfq274OZ+8UUbkZBRZoVwuU61WGRoeIp/PJ3ewSDQdD01VGRsdotpyyBZKuNN1zIZLHIZUHQdIrumNqRn+/Jvf4R9/4Bn6C7kNPdc3IlspR7IZFvIdu/xOBaLjON2I5eTJk3e0y3+zCInv+wRB0B1mthVJhWQV3GoE7mI2OiKp1+scPXoU0zTJ5/Mr+kBdnmvxfzx/mUtzLYIoJm+qvPf+Yf7f776PL74+xempBpom870Ht/GDj47y8jevb+jC9NLpq1yabfBA3yjXxifwfJ+xsTF0Y2mi0TJ1qk2HQtakYbvomoauxxStLAIIg4CWbRPHAdev3+A3PjXBcw/t5ZmH7qO/v39T/JTeCGylra27YSHfscvftm3bErv869evE8dxT6nxVhSStWwfN5tNgFRI3gwsTqjfrkNdluUNSbYLIbh+/Tpnz55l79697N+/n5deeumOIuX4Ef/maxe4OGezrWCgqzJVO+BPX5ugP6fz/3nvARw/QpGlrrPvRnpjnbg0wYunrwBw7uJlshmLwwf24/hL80Y506DRcvHCmOvzTTK6ymDeZLbp40cxupL4EwlZI2fJjG3rRyPklQtTnLs+zQOjOYYG+pZYdmwmW2Xxhq1zLnd7qNVK7PIBzp07x8DAAH19fWQymXt+vdaSI2k2m92ena1KKiQrYOEI3JU0F27E1lYYhpw4cYJKpcITTzzRTUiuJNp59XqVK/M2YyWzKxQDOR0vjPnyyRk+8NAolr60KWojoqjLk/N89ZXT1Gt1AArFAv19/TheSCFr0rQ9YhLBMg2NuuNxo+Iw0/AJohhFliiaKjv6c0yUmzTFze3DohxStHSQ9O6X6pItURrJ4nkep06dIgzD7l1pf3//pg1x2gpstYjkXjdHLrTL932fb37zm+RyOWZnZ7lw4cKG2OWvl7VsbXVKf7dadLWQVEhuw0pH4C5mvRFJrVbj2LFjWJbFkSNHemrrl2v0W0zFDhDQM0MdIKMrVO0AL4yXCMlKjnsnpit1/vybR5mYnMR1kiqtQqFAp2WkbrsYmookyYRhSBCETNVcblRcLF0hq2sEsWCu5SOAh3eWaDgBkgSRZxN5AYvbT8JY8NLFaQ7tHOF7nnqaOAwol8tUKhWuXLnSHeLUiVhu1az5RmQr5Ui22nTEDnv27OmW43d6WCYmJtZsl79e1iIkzWbzrjoCrIVUSG7BemxO1hqRdNxBz507x759+9i3b9+S51xJRDJaMFAkCTeIeizfG27IfcM5TG3pF369EUmt5fDnLxzl0pWrKIrC2M4xrly5AovWOi8I0RQZS1douR6zTR9dlbHa56QrEgVTo+aGeH7AaMHAMlRuTNrYt3n+s9enmS7XedcTBykOjuIY/QwNRaiRi+I3mZyc5OzZs5im2bVNv5Ul+u3Yaov3Vllcttq89s5nuSNuiqJ0BQPWbpe/Hjo51tUKyVYv/YVUSJZltSNwF7OWZHsQBJw4cYJqtcqTTz7ZnQ+xkmOfmKjzxdenOD/TZCRv8K7DQxwezXF8vE5/Vu/mSBRZ4gMPj9yyQGCti6TjBfzhF/+Wc5euMTjQz8jwYDcfIhYpiUzSZ1OzPVRFQSCxeLyJpkhEriCKBaoqU7c9spaO5zq3PAcJ8MKQ/+vLr6Bli4yOjKIqMpoicd9wH088tgdJxFSrVcrlMpcuXaLVanXLSfv7+ykWi1vyrvp2bJXFe6tFJHf67i62yw+CoJtfWWiXv1BY1pt763xv04jkTc5aR+AuZrVCUq1WOXbsGLlcjueee+62IfbiY790pcK/+vI5Gk6IpSuMVx2Ojdf5wUdGGcwZvHqtSt0JGcob/IPHtvE9BweXPe5ak+1+EPB7n/0S569PMjI6QjabxfFD8hkz2YVadEhZVbk61yQII3Ql6a6PJRUhou619sIYVYZS1mx3w4PtJdt1WdOg5Xo9xxRCkLNM5hsOkzUPatO4rRZPPrAfw7Q4M9VkMKuzfyjbs3h4nke5XKZcLnfLSUulUjdi2epf3jQiuTWrrdjSNO2Wdvlnzpzp2uUv7GFZrXAu3N1YDbZtpxHJG4U79YashpXmSIQQXLlyhfPnz3PgwAH27Nlzx+dcuAUVx4L/58VrNN2Qnf1W92/nmh5fPT3Dv/vvHuOjR3bR9CK2FQyM20w2XMvWlm3b/J//6b9wba7Ozp07e7YCGraLrqpoqtJ9rYGQeenCDLYXIRBICExVIYhChKmhSYl9vRPE7BvOg7h5DSWSBseW45HLGNiuT9wWvkLGpOF4tPwIP4wpWSpNx+WFV09xcPd2cqV+rpYd9g/1fhkNw2Dbtm3dctJWq0WlUqFcLnP58mVkWe7mVvr7++9JcvZ2pNtst2a9pb+L7fJd1+1+Nm7cuEEURau2y1+rkHQikq3MW15IVtobshpWkiPxfZ/jx4/TaDR4+umnKZVKKzr2wohkuuFxreLQl9V7zrkz4fD0VIN3HhhkcAXl56vd2pqbm+OPvvg3TDdDxnaMIS3TXR5EMUEY0l8q4AcR3zk/i+tH9Gc0kMALIupuyEBWA2KcUGAZGrsGTErm0uMJBEgkTYyKgqEqqLJEw/ZASmzlkYD2tYiF4MyVcVR9Duvh+4DlozFIhHShc23HYLBcLjMxMcHZs2exLKs71S4Mw3vuxrqVFu+t1rOxkT5bkiR1e1i2b9/ec9OxGrv8TqJ9te9Zq9Xa0j0k8BYXksUjcDdCRODOW1uVSoVjx45RKBR47rnnVpXUW7jg64qMIklEca8ARLFAkSQMdeVfpJVubQkhuHjxIn/94jEc2WLH9hxBeIvoSyJx7I0F5ZaPHcYULS15LgSaImFqCn4keHRHgTAWFDI6mqLgeDcjjs6xFhJEEbqm0PQi5ltJNZcsSShSImAdR2AhBLPVJmcvXOJYSeGR/TtWXHnXMRjct28fYRh2K8Hq9TovvPBCd+Rsf3//mrY6NoKtIiRbSdRgc4Vt8U3Hcnb5C5P7nWh2rV52tm2nQrJVWdgbstD7fyPoCMniL5cQgsuXL3Px4kUOHDjA7t2715TID4IkbzCQ03l0rMgLF+bI6gqqIhMLwXTdY7Rg8MiOlc/oWElex/d9Xn/9dc7fmKEiLDRTJ4pi8paZWMMvei0SEqau0nJ9Wq6PiAWmqeO38x6Q5EiiWCBJUMro+GGEH4Soioypatief/OAC3RF11QuzTaZqrntTTIJhRhVkbD9CFmKkSXwI0F/zkCXBF8/er47iTGfWd02laqqDA0N0Wg0yOVy7N27t1tmfPz48W5XdWcr7G7kV7bS4r1Vk+13g9vZ5U9PT3Pu3DkMwyCTySCEwPO8Vdnlp1VbW5BOQr3TY7B9+51nha+Wzl3HwjsQz/M4fvw4rVaLp59+mmJxbYOYppoRxydaXI6neNuuEv/jc7uZqDpcnre762x/RuPj37NvVWNy7xSRVKtVjh49SiBpTHo6WrseIBaChuOSs0w8PyBcIEaqKuP6IZoukzVUVEWi1nQp5Uw8PwRinCBmpKBjaAphHHejkDCKCUOffNakabs980tURabSSpyBdVXuljiHqDiux0jewAuTY40WdfqzOlL76lydLvMfvvoy3/v4QQ7vWn6K5EowTZPt27f3bHWUy+WeAU4L8ysbOWejw1bKkbzRk+0byXJ2+bVajfHxcaIo4lvf+taq7PKbzeaWNmyEt5iQLOwNaTQamzYDufMB7ghJuVzm2LFjlEoljhw5sqb69DgW/P++fZXPvDSD40doZ8+TM1U+emQ3v/mjD/PCxXmulx36Mhrfdd8Ao8XV3XHfKtm+0KZlaNsY3z4/s7gQC4CW66HKMjnToOl6eEHMeBMuO1U0TWUkbzCU05msuXhVG11V8CKBqcnsKFkosowXLLJQkW4m7U1dpYZARkKVFeabLQT09MmoxCApGLrK9pKKjISuqbhB0HNYLwj50kunuDQ5x7seP4ipr+79WBJ5Ldjq2LVrF3EcU6vVKJfLjI+Pc/r06W6PQqd/ZSPyK1stItkq5wJbK2ejKAr9/f0EQYDneTz66KOrsstvtVps27btrpzrv/pX/4p//s//Of/kn/wTfuu3fmvFf/eWEZLFvSGbOXyq8wEOw5CrV69y+fJlDh06xM6dO9f8ZXvh4jz/8ZVxJGDAksjmTMotn3//zSscHM7x/gfXfnfdOefFd7gdx+Fyucz9Dz7MV49exvGDWxwBwjim6XjIqsqpGxUmWzGlnIAw5sJsi6Gczn1DOeZbPl4YMZxV2D9SJKfL2N6tj+uHIW4QYmkKlqHR8nzCSCAvcy3DKCIIInKGRQzLHjeOBVUn5MuvXeHrJ8d5z5OHeMf9Y6uK4G5Hp5u+0/y2sEdhoR16J7+y2LV2NWyVxfutvLW1Ujo3liuxy8/n8zQaDVqt1l2bjvjyyy/ze7/3ezzyyCOr/ts3vZDcqjdEURR837/zAdZA58t97NgxfN/nmWeeSaxC1sFfn54liAUDpkIYJIvoQFZnvOryt+dmeXjH+o6/eGur2Wxy9OhRdF3nqaef4c++fZKG7ZIx9N68xZIDwXjFodz06bMULF1B01SsWDDf8tlesnhkrNAtdCiYKkEYYWraksih97ASXgRzLR9FEmQNhfmW33MnHMVJtsTQZCRZQRIxqiz3bLfFAsarLvOtpEETL+Rz3zzJiWsz/OS7H6Vg3d4mYy3bSYt7FBzH6SkljeO4JzG7UnPBrRQFbORQtI1gKwrJrexRbmWX/7nPfY5/82/+DbVajdOnTxNFEe9617t429vetuFd981mk5/4iZ/gD/7gD/j1X//1Vf/9m1pIbmdzspkRyfz8PJAsIG9729s2ZBujYvuosoQk3ewWl6Qkc1B11j+NcWGyfXJykhMnTrBr1y7279/PX/zXk0yVawAEYdS1e1+8pAohKGQsXrtWQ5Zi4ijG0DRiQJGTCq6WFwJJvqCQMWk6N5sLCxmTestdUqEVx4J5V3Bhzse0K6iyRH/OxGx37BtqMjnRD2P6szo7+rI07OQ4qiyTNXVabiJ+TTekbAfkTAVVljENHdv1OHZhgv/Tdfgf3vUo2wbWlr9aKYtLSZvNJuVymbm5OS5evNg1F+zkWG6VX9lKOZI0IrkzKy1J7nw+fu7nfo6Pf/zjvP/97+fAgQMcPXqU//1//9/ZtWsXr7766oae28c//nF+4Ad+gHe/+92pkCxkuRG4C9kMIYnjmIsXL3LlyhUUReG+++7bsF6DB7YVeH28Tixuvo4wTvomDo2svzSwkyM5ffo04+PjPProowwNDfE3r57l4sTsggcm5oumlrwud0Feo5i1qNsuuioRxSADXuC3jRIT+VPa/SY5y6DWsHv6T+q2i2VqRFGMv6CkuO7HXJ5rIUvQl9EII8F03WEgbzFUkCi3EmPH0YLBzoEstut3xSiMY0LH7zYxukGEEInAGLqG4/rIkoQqS0yWm3z2+dd46vBunr5/N8pdWIgWutbu3r27m5hdOMc8m812RaWvr697V7vVIpKtci6wdYVktVGbLMvYts1/89/8N/zoj/4ocRwzNTW1oef1mc98hldffZWXX355zcd40wnJ4t6QWyXUN2pmSAfXdbtbWc8++yyvvPLKhg63+sAjo3z93CwTFRtdionsgIYbsncww/cdHlr38eM45sqVK2iaxpEjR8hkMrx85ipHL9xY9vFuECIB+YzJbLVFw4dz03NYmkLJ0piue3gxZIQgCEKaXkghY9Kf0cgYOi3HWxJ5QOLbJUsSectIREnTuDbfQFdkRPtyqopEwVSptlzGigX2D+dpuT6GlmyTLTnugiZGy9AReGiqgh+End5FYiGQ5eR//+70Fa5MzfPep+5noHB3yy47idn+/n7279/fza+Uy2XOnTuH53ldq440Irk1W22rDdZ2Tp2KwE75b6fSdKO4fv06/+Sf/BO++tWvrsu54U0lJJ3ekM4CfrsGw42MSGZnZ3n99dcZGhriySefRFXVdc8kOT3Z4Plzc7T8kMOjeb734CCf+MEH+L2vn+O1axUUWeJ9Dw7z4Wd30Z9dn/313Nwc5XKZXC7HM888g6IonLk6xYsnL9/27wRwY67B2VmHSstLemeAgqkynDe4areoOCFqAJamsKuks30gj+eHy1Z+dUhKij0KWRPbDQijpD9kYQpFlRPLFC+IaDk+uYxJEIa9TYxAEAkqLZ+aGyJLEqYqkzUNmn6IId+cWw9QMG/uO09XGvzJ117hHY/s59EVNjFuBsvlVzr+YJAkSDvbYP39/ViWdU/OdStFR7B1I5K17FBsZvnvd77zHWZmZnjiiSe6P4uiiG984xv8zu/8Dp7nrUj83hRCstDmZKWOvRsxfCqOY86fP8+1a9d44IEH2LFjR/d36xm3+9nvjPN7L1zBaW/DyNIkX3htgv/1hx/iF9+1k9dPtTjy9qeWzBRZLUIILl26xKVLlygUCgwNDaEoCtdnKnzppVNtM0SDhu0uez2FgAtzNuWWx4Clo+karutRcQJMVeG+koxqWWQyFiVLI29qeH5IGEXkMwaVeuuW75MQ0HQCEIJixmSqUmfhsuCHSfe6qcrIkkQYRsSx6CkGCCLB5TmbqhOgKRJCQEUIcmYivPUgJo6SSZFDeYOC2ft1iITgv568zKWJOd79tsMU2k2M93LBtCyLHTt2sH37dr7+9a/z4IMP0mw2e4Y3LexfuRszNmBrbm3dawubxURRtKb3YzMtUr7v+76P48eP9/zsox/9KIcPH+YXf/EXVxxBba0rvQbWOjdkvRGJ4zgcO3aMMAx5+9vfvuSNXuvW2fWyzR988wpRLBjJG0iSRBDFnJlu8n+/eI1/+HgfmiTWLSIdr69ms8kzzzzDtWvXiOOYuVqTP/vm60RtEWw6HnnLxPGD7s862H5M1QnI6woCge/7mKZOQUhUnYCCKTGS18jlTCQJNE3puvk27OS4bhD2HDeKBZM1l4oTY3sBGV3B1GR0TafuOmSjmDASuGHMaMEgoytYptZNpgdhRD5j0nTcJBJxAkoZDVkCBMiKSqXlsqvPRJblZKsrCsjqas+WmBCCGJnr8y2uzbe4MFnhA8/ej75FtpM621r5fJ7BwUH27NnTza+Uy2WuXbvGqVOnyOVyXWHZCCv0253PVooAtmpEspatrc10/83n8zz00EM9P8tmswwMDCz5+e14QwvJakfgLmQ9QjIzM8Px48cZGRnh/vvvX/bDsdaI59uXyth+xHBbRAA0RcZQZf7m3Cz/w+N9646karUar732GoVCodsgKUkSLdfn+W8cxVtUhtt02yaJhoHtJVVWkgSKIhNFMdKCOz/fT8pq5c41aa+7WdPoqdDqHldVeqqqLs/ZzDoxsojQFImGG9JwoWRAqMoISUGWI3b1WWwrGuSzRmLa2EGChpNMYrQDF1WR6OTzLVNPPLxiQSRgKKsBAitr9ST4hYCaB1fnql0fs6m6x9xXX+PggM5T942u6/pvJAs/8wvzK3CzP6FcLnP27NlufmVh/8pGRRFbMSLZakKylhyJ67pEUZR2tm8Gax2Bu5C1LPRxHHP27Flu3LjBgw8+eNuk11q3toJo+TteWZLav1vb3BDo7VLfv38/e/fu7V63IIr56muXkM3l73yCKOre7ddth4xhEEYeWUOh6YWUrJv5hbrjkzOVrstvIWNSt91lj9u1QskYTNds6j7oUtztWDdUmZoT4oaC7VnB6JBFKWfiej5Zy6DRWj5p7wXJZ0PXNBACy9BxFlRzLVxiFif4Y0nhymwFS1fQ2+aPfhQz2/CJ3BYz1QaFwVH2bhtY5TuwcXQ+A7f73C/sTxBCdPMrlUqFa9euASwZQ7xWMUhzJHdmLRFJq9UCuKumjc8///yq/+YNJyTrGYG7kNVuPdm2zbFjx4jjmCNHjtwx1Fzr1tYjYwV0RablR+SM5O2JhcD2I77v8CC6pq5JoKIo4uTJk8zNzfHEE08wMDCw4Hcx3z59g4bjU7yFkAA4QcTJizNU3JgojhnIqGwvWlyeazHf8tEUmSCKMVSZ/UM5vMYcA6aOH9zhOkjQcDxkRcUJQkpG7wJgajKOFxDrYGgyjueTz5hLKrTCSFBpz6RXFQlTkynbHpm8RRglj3X8CE2VyS3Kh3QS/KWsxbnpOgKpKyKQOC3bRLSCmIwX8mffep0n7tvJsw/tQb8He/GrvZmQJIlMJkMmk2FsbKzrWFsul3uMBRcKy2r289OtrTuzFmv7VquVbMFa1iad1cbwhhKSO/WGrIZORLKSO6mpqSlOnDjB9u3bOXTo0IruKlYakbS8kG9cmGeq5rK9ZPJd+wf4vvuH+NLJaWw/RJFl/DBmMKfz3z+zKylRXaWQtFotXnvttW5p78IyPyEEX33lDDfm6gghkoijtdTJ1w9jXr1eo+rG6FLy/Nf9mJzm88C2POVWQNMLyRkq20smpYxGxVNptFxkVb9ls2EHS9eo1x2IYxRVJwzD7kODSPRsURmaiu14xEKQzyRRiRvGXJxtUXPbfS0iEZ2CpVFpucSxQNM04liwo2gua4diaApNx0MI0PWlXw2JJGEPYGoqRy/e4NLUHO976v5Nb2JczEoiktux0LG2k1/pjCHuzDDvjJrtjCG+3ed+q21tbeQ8ko1irRHJVp/UCW8QIVnYG7KeEbgL6byhtyvJi6KIs2fPMjExwUMPPcTo6Mr3xleydXZhpskvfuEk49Wb2z47+yw++Q8e4MHtBb5ycoaaG/DYWJEffWI7ewez2La9KiHpiODY2BgHDx5c8uX69olLnLwygSRJRHFEw3bJWgZBEBJEN59nsuZS92KKhoQsJddLCEHNjfEieGB77x6uqWu4YUxWT9IkN5sNBX67x8cLYiYbHpVWhCCmL6OR0WVmag6DeQNZSoTWC2PGChqylzj/JjmOZCFt2B4ZU+PaVJOqE9CX0ZClxOu34Ub4kWDvgIUXxsjAcDGHKtFjmwKAJNH0IqIoxlQlfD+gUMgQtT9zYSwQCCxNQpaTGTCxEFSbDv/p66/x1OFdPPPAnrvSxNh72huzwCiKwsDAQDdS9X2/uw12+vRpgiDoya/kcrklIxK20sK9VSOSN+O8dngDCMlGjsBdyJ2EpNVqcezYMYBug95quFNEEseCX/urs1yvJI69qiwTRjFXyzb/61fO83s/8Rj/4NGljp8dc8U7RVKdfM74+DgPP/xw18dnIccvjfPiqXavSLuqCcB2fRRZJmfdTJA7oSCOImTpZi5EkiQQMfNNj4d2FKm3y4R1VSUMIxA37VxgYS7CZK7e5PR0k6oTYepJ4UN1LiBvqhQtlUorGWyVNXV2FFVG8wrlOVAVBXeRcWTN9ik3PfpzFsQ3h5T1ZXXmGi5yyWC00LYZETFIvbYpVTtk3g6p2V7SaW4o5A2VubqDpsjIioLnh/RndHIiQlVkgvbnMYgEjh/ytdcucn58jg+8/cG70sS42c2Iuq73jJq1bbubuO+MYFjoD7bVIpKtKCRrSba/EWaRwBYWks0YgbuQrtHfMnmMjtfU2NgYhw4dWtMH8k45kjPTDS7OtsgbKmr7+KoikzNUTk81uDRnL5kx3jku3P5D6bouR48eJYoi3v72ty/7Qbw0McfXXjnT/be0KIkfxTFNO5mPHkbJ3XwcL128YpFMOmw4HnnLwAsipM4d/wJxWvj4huPSDBKPsMG8SRxFoKpkNEHFCdhRyrF3QCWIYixNYahoUWu00NWlIgKASCIULwgoZgy8IOjan3SecyELbVMmKzYTjQDH88noCrEQiReXobCzZNJq9/LsHyqiEePbYVeAyq0gscVvNzTeqLpcm6vzA08d4vEDY5u6sK53a2s1SJJENpslm80yNjZGHMfd/MrU1BTnzp0Dki7pMAzvOF/jbrAVhWStOZI0IlkjQgjq9TqNRoOBgYENFxGg6wC8MGqIoojTp08zPT3NI488suxd/Eq5U3lxww2JYoGq9H6wVFnCDZLf3+q84dZ3pPPz8xw7dozBwUEefPDBZcVmulLnq6+cTmZ1tBfmzvjbLgIaXshsK6CU0Rnry3B5rkXTC8kaChLQ8pNmvs7dftPxyVkGAoEXtMXpFj3s09UWqpIYJ/rt66TIEoqUlPzuKN3M47Rcn4yuUl50rFgk4qYpchJBtHwMNcAy9G6BgqnJ5JbruWnbprgR+GG0oBlRQrVk6k6AUpDY3d9JcgqKWYvxZj15rV7EjYqDJEHRUhFAy4u4Om/z5VfOMj5X5Z2PHeg2MW4W92KBkWWZYrFIsVhk7969hGHIt7/9bRRF6c7X6Iwh7vSv3O1FfasJSefGOI1I7hKdKKRSqXDp0iWee+65TXuuhYt9xzZdURSOHDmy7iqJhSNxl+PAcI6MrtDyQooLSmdbfkTeVJeNRjrHhaUJ94Vd6ocPH2ZsbPk74lrL4QvfOEbL9ZCAgmVSd9ye6CEIY05M1Jmse0RCRiZmOK/z0FgfpyYqlFvJ6zJUmQPDOYZyRtv516TheCASD67pZSKSDvmMxXi1gucnDrxekHSxx4Il4pq3DOaqdRw/bHfae0zWXKYbPkEUk9EVipZKxldo+tBwbaJYkDENtuVVtFvMrs+aBqcm59rlwVYya0WIblLfX5AjypkGtaZLEEZkTJWyExDEgr5M8t5JQN5UKbcCQmQujs9xfabK9z5+gMO7RjZ8wb+bEcmdUFUVSZLYtWsXhUIBz/O622CnTp0iDMOeMcSL8yubwVbz2uqsM2vNkWx1toyQLO4N0TRt02zeO3SEZHx8nFOnTrFr1y4OHDiwIXcyd9ra6s/qfPDJHfzhi9eYb/mYqpxskUjwoafGyJvLvzXLCUkQBLz++us0m83bjvF1vIAvfOMoLTfJewig7rRnjKgKTntxOj3V5Mq8TTFrohDjhxLXKw6yJPGuQyPMtTz8IKI/q5FtlygXMlZi3Q7dpkBNVTC0zthhQbkVYAcRxayJCBwC36Mmovb7reJGSUQ2kL0prFlTp+F43VG7TcfjetXlRtVHEhGakljJ192QA8N5vCCk6SUi15/VGcqbKLLUM5ArjgWSrFC3PSxNoeX7OJ6Ppibd7b6fRINaW9A6c+eRkmtmeyGynkFXl6n80lXqtk++ZOCHIV9++TQXJ+b4vicOYhkbZ1ey1fo2FibbDcNYkl/pJO4vX77cza90EvfrMQu8FVstIul8X9cSkdzNHpK1siWEZLneEFVVN11IZFnm4sWL1Ot1Hnvsse7Eso1guaotIQQtL8LQZDRF5iffsYf+rM5/+s44s02fXf0ZfvypHcsm2Tt0tvk6x67Vahw9epRcLnfbMb5hFPHn33qd+Xprye9szycWYOkKjh8yUXUoZE1UKWmANDQFAUzXPRw/YDSvk7OSxkRILOEby5T2BlGM5IcUVI2/uzjLXMtHkhVcdx4l8ujPGpRtn1rTQVJkLF3l8PYSpbaIGpqK25lw2D627UdMVF10WaKUzeD6AaYm0/BiZhoeD4xmWbi++mHYjZDqjsts3WO6FeAFMTKCjK4gk2zjZWJBDASxTNZQKJgqqiITRkmFVsMNmbMjJMCSw2T+Sc7A9XwkSUqi0NDHVHvfgwvjs0zO1/i+Jw+xb9vgLd/b1bCVnH/h1uW/C/MrO3fuJI5j6vU65XKZyclJzp49i2maXVEplUobkl/ZakISRdGatug30x5lI7nnQrJ4BO7CwVMdK/jNoNFo4DjJQvjcc89t+F3R4qqtvzk7yx988wpX5x0MVeYHHh7hH33XXn7syR386BPb8cMYXV1ZRVon2rl+/Tpnzpxh37597Nu37zYGiIIvvXSKG7OVWx4zFoKWF5BRdWJJgThKplG10RUZJwhwg5icmUQcWdNAlrmlJXwnR/L69TJzdkgpa2A3m8SxT6hZCM3g7Qez1J0Az/fRhY9ozDPZFFimiW5Z6Lp5c2ER4AQxfhiTy2i4fhJFiFiQ0SWabkAQJddx0YnQcFxqbsyVqocqS+gKBBHMtwLyhoIqS7T8CFmCvCGxf6SIrsgokoTt+VwtO8w2fVp2CAjyUZJwn6zY9OUM/DDGdUPyhtKzVRlEyWTI2nSTo9de5MkDO/ixdzxI/g6TGO/EVoxIVvrZLZVKlEolIBnn3OlfuXjxIo7jLOlfWa0gdPIRW01I1lJx2mw204jkdtxqBG6HzrbTRn9hhBCMj49z+vRpdF1n3759mxJaLxSSvz4zy7/8s1P4UYyhKth+xJ+8fINLsy1+58cfRZal7hbQSpAkiXPnzlGr1ZZ0qS/HN45d4OrkPKam9gyiWnxMBGR0BU0WRMgsvC/0whhdkckYN88zimOCUCRWJcs5BEvJQjrT8NBlQbNRR5FlisUCAom6ExLGgrH+DNAurxYQhAFx4ON7Ljdm51AVFb2dQJeJUeRkqJeqSARhiK5piFigyDcHZy0mFnBtvokmy5QyOo7noSkyiizhhTF7R3PIUtL0aGkKIo4wTA0Jidl5n+mGl1TYxe3Z9lKyRdaf0XA8H8PQGcsb5DUJVenYziTuwzUnQFOTv/vrY1e4MlPlf3z3Y+we6bvt+3YntoqQdMrR17Jwq6rK4OAgg4NJpOZ5Xtcm/+TJk90qsI6wrKSCqROtbTUhWUvOptVq0de3vs/J3eCeCMlKbE46vR0bmTQLw5CTJ08yPz/P448/zpUrVzZ0+NRCOlGDEIL/61tX8KOYoqV1X6cXRrxyrcor16o8vWflH5RWq0UURbiuu6RLfTlePXedV85eBegOomos8r3yw5jZZogbgOP67OwzOT3ZQLJMFCK8MMYNYu4bznY7wlUlKZUNoojASTy4bDcgFjevp4REGAv8ICTyPUxdwbIy6LpGEIZEIiBadPkFglI+S8vVMDJZCv1DXJiqcnG+iedB3p4kEAqzjkJfVqeYz9OwXRpeyOFtRUy9PdxqEUEUg6wiRyGu72PoGmEUYagyLS8ijAV9mZtfh4U5n1YAuqqgKTJty0pyhkLFDihYGg8N9NF0PRRJIpcxaLnJLPmqHVBzAopt92EhBLqmc2mqxh9+5RW+77F9vP3BvWtqYtxKW1sbmfg3DINt27axbdu27lCnhfkVRVF6bFyW+/x3vtNvBiFxHIedO3duwhltLPdESDofuDsNnoK1vwGLqdfrHD16FNM0uwvw9evXNy0P08mRNL2IK/MOhqr0vFZdkXGDmNOTjRULyfT0NMePH0eWZQ4fPnxHETl/Y4bnj57r/lsADTtJrodhhB9FXCs7nJyo0/RCgiDgamuG+0fzPLCtwNWyjRdLaKrC7oEMh4aTEFtGQlXknp6OzgRCU705DwQg8l3kMMKXVbLZJOoIggDbj8lbOjmj973tVn6ReGednKwy3wowrSy269GScxhyjBlHVJoe05UWhqYyXDAoaoI4islnDOqt3giplDWJJxuEsUBXZfwgGXQlyyqqHKIpNx+7OOdje8k4Xl1XoZn8LEn+SxhG4ijciYSajoeuKiiKQmPOTpyQ28fJmAaO57dLhUNeOXuNq1Nl3vf0/QwWV7d9sZW2tjYrApAkiVwuRy6XY9euXcRx3B1DPD4+zpkzZ7Asq2cMsaqqW1JI1npD3Gw2V90MfS+4Z1tbnQ7t2/0ekihiPcN5Fjre7t27l/3793e/gBs9bnchna0tU0ss4G2/93mESM6tmLlzYjGOY86dO8eNGzd46KGHug1gt2NirspfvXhi2WvcWRjdUOLo9SoxEkVTxRE+XhhzfLzOc/f1s3cwgxcmJoyD+UxSJkxix96p/FpIxyHYMnWuztYZr7Qo6hKHdvRzbs6l3Aow1MTYMRaJdclQMdO9g8+3S3s7C/hcy2e+FVCyVISIyZsquZxBueXz8K5BNGIcz0OEPnLoMTUxjqqqWJbFQF+RZgDzdgCSjCa5lCyN8ZqHLEeYqowbxjQ9n7H+LHlTQwiBZWhJzodkNoosSZQsjesVB1OVMHQNLwjwoxhTV5FFBFLvAuH4IRIROdOgYrdLpTUVpyOwQiC31WW21uRP/vo7HHloL/fv3o6qyEtzPLdgqwjJwomkm8nCbvp9+/YRBMGS/EqhUOharm+lqG2t3l9p1dY6kSRp3ZVbQRBw8uRJKpXKsrmEjZiSeCs6IqUpMj/w0Ah/8sqNdp4hMf6ruwFFS+N7Dty+iqczCz4IAp599llyuRwXLly47XmX6y3+8wuvEy7eN1pALATnp+qEyAxkNDzPW9AL4XOj4vDIWLG7qNUdF0vX0FWF2i0s4QHmWz7Hz81QbrjESBiyxEFL4uEdRcarDnU3pGRobCuajOQ0mraHrimYukrd7k3aJ02ZyaIbR8nQKlVJ+k7m6g4PbMvRt6BUOI5jXNfFsR1OXplkvBmDqqNIEsgyRUtnMKfTcEOqTogqSwzldEbzKoosYekajhcy3wqYqnvYfjITpWRp5AyVih0Q+R5IMkKXGM6qZBc0Oza9kKm6R6M91tdQZSQpmaEStLvfHT9CVaSus3PyOgP+7785jqxf4PD+3Tywo8SjY8UlExsXshUjkrt9PpqmMTQ01K22dF2XcrnM7OwsAN/85jd7+lfuZYf4enIkqZCsk/UMn6rVahw7dgzLsjhy5AiGYWzo8e/EQpH6R9+9l4tzLb5zrYobtCMRS+PX/v79lG4TkZTLZY4ePcrg4GB3Fjzc3sfLdn0+/42jCAS6puLfIrkOJO7CUmKNstBvTJYlHH/p8VVFoeF4txy/6wUxr10rU6nbDBYs4jgiROHCbJNHjSKP7Swm+2vtRsUwap+bJNFygmSyoe12exhV+abb7kL8ICTbl1/iwCLLMplMBt2wuNxSsbIhWTX5ErdshynbQeR19g1lkdQMhtYWAimJPoIwpukLzs+0iGKBoSXbj9ddh5GCQV/GYmLeQ5UE+wczbC+atNpRRsuLOD/TwgkSW5cwFjRbAaoqY3sByAqel0Rk24tmt9veC2Iuzdm0vIisEfPqybNcmxlmtrmD9z84jHWLIoytdLe9VZLbpmmyfft28vk81WqVJ554gkqlwvz8PBcvXkRV1Z4xxMutCZvFWoUkLf+9A5s1DlcIwbVr1zh37twdy2IVRblt9/laiWLB1YrHdCtJtudMlf/jxx/l5asVzkw1KVoq33Nw6JYiIoTg8uXLXLx4kUOHDrFz586e17Cwj2QhfhDyhReOUWslZc0dg8S6vdQWHmC0L8u1yhyRLhGFIYp6s3mwaPV+NDri0bEWWTJ+V8ClyXnKdZvRvhy6rmG3bFQRIWsWE3WPsT6rJ+KQkJLcghBEIqbScKh5EU03ApEMt9JVmZYXYqrJH7phjIQgpyZCKSHhLnoPG15Iy48YLmQIwxBNS8aHZh2fluvSbDSJw3l0TcfLWFimRX+pgO0FXJhpIEkyg/kkGY+WzGGp2AE7d1hkYg1T18iYMi3Px9Q0YgRX5m2cIHEw7rxEXZHw4yTqUWUJs8/C0iW0Bett2fZpehF9WQ2jLfzzM5P8da3O/n6DR3f13/IzslUikru1tbVSOvmIfD5PPp/vya+Uy2Vu3LjB6dOnyWazXVEplUqbOuN9LTmSTrHBVp+OCFs8IlFVdVW9JEEQcOLECarVKm9729vuWDanKAque+ttmrXwt+fm+M2vXWC84hBFgj+bfoV/8fcO8fCOAs/s7eeZvcsvDB2CIOD48ePU6/VbdqkvF5HEccxfvXiSqXLt5s/aBok5y8TzA/wwYqbh4QQxw8UM/aZCwdSotAJMFVwvxCPpPN/Zf9MiJskb+D0i0HQ9VEUhYxg0HYeZ6RlqDQfLsjANPRGYdsggiQjHY2kkI4Gmqrjt/pQTEw3KdnKHr6gaqogYyOnUnICyHeBFCpofsmfAYiCr47WjrXzG7EmOi/bsET9I3IYhGd5FewbH6IiFJiUVMY7j0KpXmZ6ZRtFMKk0Jy9AIIwlTN3A8D1OVqdgBjh+RNfSk36Z9HdwgQAK8WEZXpIWXiHzGYqLSRJZ0hvNJnk+WJLKm3nVKbvkRqpzMY+kUL8iSRKVa4z99/VXy73mMfduXbn9uJSF5I1jIL8yv7N+/v2vDVKlUOH/+PK7rUigUesYQb+RrSnMk95DVRCTVapWjR4+Sz+d57rnnVpSgX+s43Ftx7EaNf/b5k7hhhKkm+/qnJxv8488c4zM/+RTbirevsupUlmUyGY4cOXLL17C4UEEIwddfO8fFidllH99yPRxf8NLVKjN1G2QV6VqV4bzOo2MFLs3ZzDZcIgHb8zr3b8szWspRtx10TSUIomXNF8MownYc6uV54liwZ2yU6ngLL4i6vRRCCNwgZjBn9EQyYRglVu5tgbpWdphr+fRltGS7DYEdKNTciIe25YmQuHz1OofGCkumGzZsl1iSmW96+GHEYMFCk2yanujmGQSClh8xYqqUMgZRHCMrMqND/dRtl0IQ0GzZxNUWFdfBVWV0XSNjWQhZQZEl8hmDWrlOr1wk22siCpEUFUWWieIYQ9ex2zcpyoIFvzOJMWcZeH6IrsiomrbE1TgWEEUhf/7t4zy4Zxvf/eh9qIrSTd5LW2hr641oIa9pGsPDwwwPDwPJTUXHH+zGjRvEcdzTv5LJZNb1GtMcySaxUVtbQgiuXLnC+fPnOXDgAHv27FnxG77ROZI/fuk6XhiRMxQkJGI5RNcVak7IF45O8P96575b/m0n3F5cWbYciwXw1XPXee389dt0tsOLl+eZrrsMFDKIKBn4NFF1MVWFI/v6qbUcJicnObyvv9sJnrVMJETXNn0xjUaT8zdmEJrF0EA/Y6UsAxWXqXriYRVGAtuPKWQVdrUjnKablAn35TPM15Ja2igWTDc8LE3uLroSEpYqqDkhqq6TI6TfhKyx9Ms4UXW5NG/jhYlH24WZFgVTJZCSrnKlPYgqb6rs7EvMGWVJopAxOTdVY7ruJR37hsJgX4H5lo+hAlFIpdag4UcM5Uxq5bnughALqDsBThCjyklCvjJvY6NSzBq0XI+GG3UNJW++GdD0Q6brHpqqMFLKMnujQiui26PT9JKqsmJbBE9emeT41RkKA6P4sp4URSgRpeXflrvOVoxIVrtoW5aFZVls374dIQTNZpNyuczc3BwXL15E07Qef7DVVpJGUbRq65fO1laaI1knd7JJ8X2f48eP02g0ePrpp7u2C6s5/kYKydnp1s3emPYNoyRJxEJwYXapxxX0Wtc//vjj3Q7f27FQSE5fneL5o+eSO9wgSvb1F1Gxfcotn4KlQ/tuzVIUokgwUXNxgghLV9BluttDEoAQuEHYM+AKAAHTc/O8dr2Gg47swaTb5PREncd395PVFabqHlEMJVPmkbEi/dmbXzzT0Kg0bHKZ5LgiTsROXiSEkgSyotBoOQwO5ZJ+jE6yvk3DDbk4ZwMwnDeJYkGoGdQcnz0DJogkr5IzVAZzOqZ2c/bLqYka1yoecZxsL801fWRZImuo+FFMhIZi6ezqU9meAY2QasvBCwUX5j1akYwiq0hKYlXfn9FohYKpqo2qJon8Xf1Wt/ItFknkNV33CGOBIkvoqsxIMUO56VK1QyQJLE1mrGRhtYXF8SMuzrewL5e5f8829u7azrVZm0stwXc5QY8ly71gK22zwfp9tiRJ6uZXdu/eTRRF3fzK9evXOXXqFNlstscf7E7CtRZxs207KYtPcyTr43blv5VKhWPHjlEoFHjuuefWZPS20UKyvWhwZb5XMIQQKJLEaGHptpZt2xw9ehRJklZlXd8RkmvTZb780ikgmdmhyjI506C5qMfDC2MiAZqiIER0c+64odNwXPwwJqPeHGwlhCCXMbvi0dmSark+YRgyPTPNpXkXG4O+jE7GMvB8n7oTc+xamfc8uI0Htgum5+aIA5/B/E0RyRg6zXZ+oFv6q8n0ZTQmai6mJne3jrxQoMmCgpXkaCRJxjK0HpuXcivAC2OG8mayxSQEicWkIBQy9w0uve5JD03MjYqNJKCU0dAUBS8IqNohsgQPjuaTcm1VZjBvdLvlIwHNRkjdDjHkEOG7IMvMuypxVufhsX6aXlL+25fVyZgadjuim2/6TFTdJErRlSQX0vKZrtk8sK0AkoTnB+QMtbs1CFB1I5peSMlUmJieodFssm/HMOcrgsvzNo+N3d158Yt5I25trQZFUbqiAckNbKd/5ezZs3ieR7FY7EYsy+VX1jqvHUi3tm7HWre2OnM3Ll68yMGDB9m9e/eaP8Qb3ZD4I0/s4O+uVLC9ZKBSLJL5Iroq84OLHH1nZmZ4/fXX2bFjx6qnMMqyzHy9xd8dvXazaopk8l/T8chnDFoL7EqKloalq7TaUwA7NNtTDUtZg8D3u3mQQtZaYqPScFxEFDE7PUUsJBwli6kLMqaO7wdISBTMpNfi+nyT3QMZ+rIG85WbomaoKl4QIkgqoaZqDkEkyBsKh7cXk6R6K0BTJGIkZElib7+ZTC6MYqI4xnZ9SvkMjXaZcCQEEqDIMsGC6FWSOoO2itiOT7wgx2PqGjfKLdx2lVUcx7hRjGnoZCPR7R8pmDpZS+/Z2guimNlWyFBfAU2+OcVT9TwqLY/zV64xkDOwLAvfE0kjZcbEdnzmWj6yBLoqoSkqfhCQNxXKdkDd8RnJGwwP5Gk6N0ugJSCMQUZ0XY0bLZtXTp5HKEZ3NsxC7nZfx1bc2trM89F1fUl+peMPdv36dYCe/IplWWuejqgoyl0tU14rWzoiWSwknudx/PhxWq0WzzzzzC3nbqzm+BuZbH/XoUE+/s59/ME3r9DyI+IYihmFf/H+wxwaSe4q4jjm/PnzXLt2jYceeoht225tGX8rbC/ka8euYOaWCXklaDgeupokfm03YLiYYVepyZnpJlF7oqAfxggE+waSPEg+kwynupUlfKvZYnp6mmKxyL6x7Zx89TqaoixZvDuLeywEthdgGRqKLHd7PqI4sXs/MV6n5d2crz6Uc3lydz9TdZdyyyNn6vRbCkM5vfu6Ov9bt10MLfnoZrUkKe76QdemRAhBECVDp7qWJbKM4wdJ97yTOADL7dyJqkhIEni+TwzoutZNrjec3uguipPhW1EYYpoaWnuoUyGXY6LSYmi4n4wUYjs2tWoNSZKwLItCPkcsElNJyzRw2+IkteOvqG0E2XBcTC2ZuOh4AYWMiYxLtGjMcRzHTJXnefXkWZ7ckaWYs2h5IccnGpydbhILODCc5eHt+U3f+nqzRyR3wrIsduzYwY4dOxBCdMcQz87Ocv78eXRdJ47j5ObC91ecX+nkR7aSSN+KLS0kqqrieckXuVwuc+zYMUql0m3nbqyGjd7akiSJjz23m7//6CivXK1y+uRx/tvvfYTtQ0kZsud5HDt2DM/zePvb376mkNULQr595jpN11teSIBKK+DMdJnpuodlGuzIqxwazWFoMpfmbPwwsRs5MJxl32CWWAiark/W0LDdRZbwAubL89SqNYZHhsnlcrRcj+39GS7P2kn3dvsP3CBGU2RKVmdqoITtBciyRMbQqbUc/DDm1EQDN4iSngspcfKdbnjkyy0Oj2R5fHcflYa97OIURoJy06PptVBlmd1DeaYaPrNNP7HhJ2nyK2ZURtojgP0wAhHRn7eYqrUQMeQMhWI7gipaSWd7GAkaTsjOPpORUo5Ko0UnDPDDxL4eIKNJ2EEyV4YoImOZzNdaGKpMwdKxdIt8IZ+MjG45VBsOtZkyzVZAEwMCF93Q0TSNMEpsWDILGg/LLS/prI9kfK9O3lSTAV5OSE5PNu5qboSpQOi5/IevvczbH9zHpYbMhTmbvKEiAS9cKHO94vL3Hx7uDiDbDLZaRLLWUtuNQGqXmBcKBfbs2UMURVSrVU6dOsX8/Dzj4+PkcrmeMcS32vJ6o1jIwxtgaysMQy5cuMDly5eXbc5bD+sRkjgWPH9+jq+dnsUNIt6+r58PPDyKpSsM5gz+3oMjGDOnyGjJuVYqFY4ePUp/fz9PPPHEmpqfoijmi996nZmqTdZMFuHFVaBVO+Ab5+doeiEZy6DatCk3FcpOxDv2lTgwnCOMBJoidf2eAExNxQkiQOru68dRzNT0FL4foBSGOD0X4E/NM5gz2F4wmao41D2BLEKitnfY3sFsV0hoO94amkqt6ZDPmpyfrNL0Q0qWhtTewFFlGVOVmaq5PL67j2rTIWeZuAsaHhMnYTg+0WC+FSQjeTWVy3Mt7t9eZCBnMFF1iIVgW9FiR9HsJtYBkBW+dWGWqptskWU1meG8ThQnlWECkCUYzuscGi1QbdqYukYQCc5NN5hueASRIAp8spqMJkuUWwFZU6NWaSJJMnsHM90EuRBwtewyVffxAlBki3yxQNhyaAQxktdK8i6yymjBwFJEtzDg7HQLJxSokkBRVKYaPhlVJqspXc+2vK6QM+S2l5vCn37zBDOeynOP3EfeSgR0IKdzed7m3EyLx3duXh7lzZZs30gURWFgYABN0zh48CC5XK5bZnzmzBl836dUKvXkVzrXcrMrtj75yU/y+c9/vmt+eeTIEX7jN36DQ4cOrfpYWzoiieOYSqVCs9nkmWeeoVAobOjx1yokcSz4/37xNH/++lQ3wfvV07P8p++M83/9D49TaC+knRzM5cuXuXDhAgcPHmTXrl1r+tIJIfjKK6e5Ol1GkiWajk+pX0WWEpPADuemmzS9iMFChigKMUyNMIoZr9hUvSJ9ppTcSS9AU2Ti9kyJIAyJY4GuSFy4egNVU2lpJc6PJ9tisiwx0wrJVxwe3J5nrulTdWM0WbCtYLBzQfe6hETGUJOkvZT0e8iykvy3SARlWUJWVWpNF02VaXUaHk29m6yecyWqIuk1MY3Eir7hwtmpOs/u7efwtgKNlou0aCaJLCt852qZ2WaSI1IkiboX03BbPLS9QCwEfhRjqQqDBQMJQQi4QciFWZuJeoCKIKvL1HwoOzG7h1R0TaHhRBQMlZG8znBeS7bD2hHF1bKNqSr0ZTWEkKg5IRlDZ1u/Tt0J0VQFLXLIyiGTkxMoskIt1qi6CkMFs30ZBbqp0gphZ17vRhax79Bs+Biaiu0FtPyYaq3OK6+f5oH7djMy0Nce4CUzXnU3VUje6ltbK6ETJem6zsjICCMjIwghuvmVSqXCtWvXACiVSjz//PPdkuTNurZ/+7d/y8c//nGeeuopwjDkX/yLf8F73/veblXaarinQiJJNyuFFjM3N8elS5e6FU2bYV/Qaexb7QfvW5fK/PnrU8jSzbneUSw4O93k0y9e4+e+dz+QvL5O1+xTTz216vLkhXz7xCVOXZnsHlcIgReESEDBMrvOvNMND1NXieOb4qIqMkJEjM832XXfII4fdu/0ZUlGkRV8v+NMm4TUMzMzDA8OoGYKfOf0dDv5rGLoOp7vU24FTNe9xD+LJNltGVpPmXDW1JlqNlj4qi1NQpUEIQoKnXMUeBGULKl7PSFpeAzDqF0m7FL1QbckdO3mDUDOUCnbAXNND0OVyGd6rVsUWWam6THfCrrNjgA6UPdk5u2AA0NJn7qMhCbL3aowN4iZrrtoskTRMoniGEuVEcTU3Ih37Cgl57GwHNn2MA2NmWYDVZa7xQ26ppJvj+vdP6ixbyADEmSMPvwwJAgiXM9larxGHPrMz7dQVRVd09B0Hd+PQbEoWlpSVBEk1WeinY9S5aTpMghCjp2+yPaRAQ7v3UUYi26U1GGy5nKt4hDFgpG8we6BDOotBoKthK22tbVVhWTxFpYkSWQyGTKZDGNjY8RxTKPR4OrVq3zuc5/jxIkT6LrOT/3UT/Ge97yHd73rXStqD1gpX/rSl3r+/Yd/+IcMDw/zne98h+/+7u9e1bG21tXmpmX6a6+9xvbt2zEMY9M8cDpv7GoT7n99JukgX7joKXLypf4vJ2eAZJSv67pEUcSRI0fWJSKvXxznxVOXu/9eKMCCxJk3Y+joioKpKYRR3Lvl1f6Hqkg0XR8JyJoGCLAMtW3zkSwk5XKZmdkZRkZHyBWLTNZsImQsTcHQdfwgQJIkTE1msuYSt5PAURzTtJOObaWdE7G9gCgW3Kg4vH6jxonxOrYfsbMvqQpr+EnDYsUJsVSJPQPWkiR/x9tLVRQkSUbuzKzvVCa1/+vkopuul8wJN5OEpqEp1G0fIXo7zCVAJqZmh+RMPbGQN/We0mI3SBo3DUXGD0OEEGiaiiYBkkxtkW1Mh6bj4wUxOStJsnYGeamy1B4GFvfMOhHtmfKGYTA80I9hWvS3hzZFcUyjXqfRaDI7M0u90eg6SCPLTFQd5tqRlq7ItPwQgWBiep6vvfQ6jt1i78DNeRYvX63yH1+d5Ktn5vibc/N89rVJvnRyppv/WQtpRHJnVtJHIssyxWKRRx55hG984xv82q/9GocPH6ZQKPCJT3yCkZERLl68uGnnWKsl9kqdMufVsKW2tjqW6b7v8+yzz+L7PnNzc5v2fAuHZ61GrIJoYTFpL34YMz4+zqlTp9A0jb17965rnsrlyTleeP18z8+Wi+Rsz0dTFA5vK/KNs9P4YdLsJoSg6SWTAHeUkj6VMI4JbJf+QpZqK2nmi+LkDt92bMbGxhacc2LoaOSyPc2OgiQP3bOAtBd9y0gmQYax4Gw5wp6vtjs74PK8zb7BDI/sKDBecfAjwe6hHAOmvKyJpRfEeFESCWSVCE9SkqFU8k0TR02RerrHwygiCMLk9TXtdkOgWNzLSBAJDDXZJuzLZ6i3ekuedTXJhfhRjCm3J0IGIYqWNHbqyvKLpypLWJpE1fbY1pfDbUd7fhSjyBLmIkdfN4got3z6ciZ5I0oqyCKBaRgYhkHDDekzI/pzCrV6nemZGQJZ52o1RtYqKKpKRlfIGUoizO258roi05i5wcRkhl19e5lrhXz7UgVNljg4lGxdOH7EsfE6Y30Wj42tbes4jUhuT2fXY7V9JEEQsGfPHn7zN38TSAbbdUqON5o4jvmn//Sf8txzz/HQQw+t+u+3zNbW7Owsr7/+OkNDQ13L9Gq1umk2753nlyRp1c9xZF8/f35skqjdnQx075AfGZQ4c+YMjz32GJcvX15XefFUuc5ffPsEYRT1uPhKtLc0YsGlOZur8zZ+FLNrIMdYUefw9hIXp+vdxKypyjy2s0hhwWJbzFpUmnbiOOt53fr30ZHRHuEbyulkDJ1K0yFnJFstjuvhBTF7BnIsvhFVZJkoEjihR8WDeSdmuKSitqM3x4+4PGfz7L5+ntpTImNo2F5A1jR6kutBJDg/02SylnSBG6qMoaogxdQ9CU0Bv116vKc/Q8FYKCSChi84dW4aQ1cpWRoZXaFqBxRMFbltlihLMFowyGUMqg0HTVVAwHjFJoyT/pbBnM54NREYXZEJkWnaHg/uzNGXM7s9JlU7mWHS9BJblIyuYocwVW2SNTSQJOpuyGjeIN/xChMw0d5mipEJwxp9WYOx/iyTVZuyHSAJMHWZPUMFhtqNnX4EL5yeAAlMOcR3HWquQkvTODSSQ1WTJsycqTJSzPLK2etcniwzsm0HDTfk4PDN/W9LVzBVmXPTzTULSRqR3J6FI8VXw+Jk+8jIyIae10I+/vGPc+LECb75zW+u6e/veUSysK/igQceYMeOHd3f3ckiZb1IkrSmpsT33D/MZ18d59VrtWSbok1Bh3dtFxx5e9Klfu3atTULSbXp8J9fONZdLBe6+CZbOzEvXq5waa7V3nLR+c7VeS5YGt97cJA9/RZVJySKwmT+xQKjw5xlUG9bws/NV5idnWVs2wjXJ6aIhOBa2aFmB2iqxO6BHIdHsxy/UWOu5SPho6gqQwWD+4Z6E3KSRDv5myyu18o2mipjaFo34rF0BbsVMddw2dnfT7M9zKqTXM8aSQPgqckG1ysuli6T0RQiWWG8GnH/DhVTV6nYIblSjqLedg1or2N+GHNmxmG8Ynd7V1QZxgZy1FoudTckFmBqMvcNZdk5kE0mIkowUXU4O9PEj2XCIEBVJIZyBtuLJvMtHz9OhmttL6iMlQxajk8+Y3BptsGZySZelERHNSfA0FWGMhq2LHC8EFmGQ9uKDGeVrvjONn3Oz7bQVRVLkwhlldlGYjz51N5Byg0bkChYKkbbZsXSNa5M1IklmYwmyOcLaKpMs2Uz1/C4MT3PaCbpXTHMPNVGC0VVmK+3OHH9OLaa576hPT12NHI7elwradXW7emsL2vpbL8b5b//+B//Y/7iL/6Cb3zjG4yNja3pGPdUSBzH4bXXXiMMw2X7KjoWKZv5QV1LU6Kuyvzuhx7jT16+wV+emKbleuzLePz44yO844kHux/itboLO17AF75xdMk425brJQlcU+PqbMyVso2hKmQtgzAIMBWNmhNydrrJU3v6GMioFLJmtwscwDJ0Wo6HQDA/O0+j0WB0dBQ9k0FWVV68WmeuGdDJQJyfdXhke47n9ifNgn4oKGU09gxkyZo6drvPJ2lmNHuS7bGg3ZEeoesanucnEZUAy1zk38XN5HosK8w0fHKGgqHKaKpGEAYoMsw0fb7rvgL7h5LPQ9bU8fyQsH2dZ5oh4xWbUrs3BJIoaLzc4u37BohigR+G5A2VnJXMHBEkW2hnZ5q4QUzRktEyFl4QMVlzuX80x/6hPoJYUK8EGJrcPXat5XK96iFkiX6zXa0nSTS8iIrj88TOYtL0KEtoqtxuFJVw/IDJuockyeTN5HOuKxKljErNCSk3HHb0ZZFlcNtVeaoiE0QRXpREU5LU7nwPY3LZLL6kU8ooDBdVQt9ndq6C47nouo5lWciSztTUFN/yHZ68fx8ZyySME1fkfYM38yhBlFj6H59o0PRC9g5keGyscEv36q22cG+184miqHvTuhqazeaGJtcXI4Tg537u5/jCF77A888/z969e9d8rHsqJKdPnyaXy3H//fcvq9YLk+FrsWBeCWstAbZ0hY8e2cU7hjyuXr3Kgw8+yPbt23ses5ZoJ4wi/uybxyg3ljd5DOMYxw9pRgpRHFHKGQSBj9S2FNEUiRtVl6eg2wVuahogiEmGX4VhxNTUFFEcMbZzrNvcebkWMe35DBYziDBAVVUqLY/Xx+u8+/AQD25fuPUhsF2PfNak6bjkLYuG05tjGM5pzNST6iDfD9C1ZBtLNzSsW72dEszVbEIBJUNDcHOSoiaDHwq8MEZtfx46HmMdQZmsuWiK1F3oAUxNwbZ9ZuoO+4eyZE2Lpu2hSBJu20NrvuVj++0mSSTCsD0nxNSZrLscGi1i+z6u2ntDYwcRddvH0pVuRZuiKphRTNONcIK4J3/jhyG0k+uOX8HSe/3klLY9gB/F3Wg0byXXWFMVHC/x4opFr7G/H4QEQchwMY9lKuj5HJlcnqmay1TVxmt66DQgEFy8bnNjZp59e3ZR7Otn/1COB7fdnHP+N2fnePFKtb2dKPPSlSoXZlv88GPb2FFaKiZpRHJ71rp+2ba9qRHJxz/+cf74j/+YP/uzPyOfzzM1NQVAsVhcse9fh3sqJI899thtf78wGX4vhcTxI/72/BzzLZ+HdxR4eHsB3/d5/fXXcV2XZ599dlmHztVGO0IIvvads0zO1W77OFlKtl5kRSeKo575GEl1Uu/j3SBAU2Qyps70XJWp6SlM02Tb8LbuFy6KBXMO6BqIMMAwDIIwJGeo1JyA6YbHngXVP0C3N6SYtXD9ZPDTRM3FC2KyhsJwXqeoJ1s9Sd9Isi22fyjLYE5HiOWvjaEpyAgcPyRn6Xjt9yeMJSxF6rrpdgjjmNDxKOasHu+x7mkuuB6xENRtl1Iuk2xptYnipCFw8bWMwgDJsgg6Y4EXZexlSUKWkuN6vo9lGPhhsn0mSUmTY8+5RgI3jPBCm8FChvGKjW7e/GxHceKpZS54jfP1Fs1IZmqySixiCqZKRpOpOxGqmVwbx48STzVFUMiaNB2f87M2EzU3iV5kAzvWKOZkhjVBuely+dwZ9g0X2D18H05dw1T6mHciXp9oMJTTu9YqQzmdC7M237lWZUdpdMn13YpCslnrxVpYa6f9Zo/Z/d3f/V0Avud7vqfn55/61Kf4yEc+sqpj3VMhudMiLstyUv0ThuuqfFrPObxytcrP/8fXqdo+SMky89SuPP/tWJNtQ/08/vjjt6z4Wu3W1t8ePc/JyxMYWuLftHjYUQdJkhjJKoy7MS0nJp9NtraiWBDFgt2LFnxJAlVVuD45Q6NaYbCvj1yh2LMgCgGiHdXouo7v+8iyjKap4ATdMt/FZAydesthtulzbKJJpXFzrG9el9iZl8j0FZhr+GiqzLaiyVBOT7bcWkknOgIqdsB8K8mt9Gc1BnM6082QWCRVYI4fEsSwvaCjLVJKEQsypkGt6bK9ZHJ62u4phOhat7SrwgoZk1rLQZFlQMH2fXJGsuXkRzF6t6xbEEkqWTUpbMhnDOaEIIhgvOoSREmTYsHSmGv4ZPsMnPZ2pBtJ5A2FXLsIQAi4UXW4XkmE1jQ0NClOmtIiCUVExEDLC+nP6N1zDcKYi2Wf8Uor8QdTVKbqTfKqxFBGJvEigLGSyY6SyWAxS63lULVD5u2IrJ50vkPi51W1A0aLOZ7ZMUDW1Jkr1/jb1y8zPTNLv6UwE2WYmlN5YHsRIdRuQUpfRuNq2SGI4p6y95mGx9WqR3brrNtbLiJZ643wZluk3KqHby3c82T77ZAkacP9sBZzu8W+6YV8/E+O0fTCnuqsl67WGLJK/K/vfnRVA6hux3fOXeM755LO1m6jYcZMkuILiGOBpspklJgHt5U4MVFnvu4gywqImJGCweGR3ujI0nWuXh+n2WwyOjpKLpdd0jyoKhJFA2qxjO/73bnwthtgmToD2aUOpLqWuPmGseDY9RpVJzGIFHFMEMXMN11EEPO++7LcN5hD19WuODZtD0WW0VWJV69VuTJvE0QdyxTYP1pgFJhr+dgNF11V2FVU2NO3YGtFwHjNZaoZUW3OY+kK2woGfaZM3U+iiY71ye7+DH2WRs40aNgeZTvgwmyLmpNsueW0pIR4vpVEb4oMgZAxFcFYn0kkBA3bwxUyZ2Y9QjpzyqFoJsOsZqp299TyhsojO/vQVIkwipmouZydTsQgn9Fx/YC6F1EwVVQiAmQQgm1Fk70Dme7nreLGjJdblDLaTVNKw2K22mRfQWbvjmL3/cuYetdws+YEuL7Ptr4sYdutQJEkVEVmvuVzeHuRpu1hZSzA4roNRmmAAStDNDXP9fEJZCCTschkszihQn/O7J5D0wv5yulZzs60mJ5rYqoSc+oM33dosFsYcK94swjJZm9tbST3vPz3Tmy2kNzu+F87PUPDC1Ha/RJxHLcrgST++mITP4wxtFt/QGRZvtkxfhvOXZ/mb4/29ooIkvxGxtAJwogzU3VOTzZotctLB9SIt9+fZyRvcKPqEEaC4bzBoe1FXO/mc1qayrmLlxBCsHPnTlRNTZrcbJdmABen64SxYDCrs7ekcaYaU7ZjdFXqOs4eHNAZLiaWHZ2GPUWWQSSNiOWWT90NKbSTxkgSpqGR8XxqHth+yHAxQ3PRpMUgirhedrlW89EUmbyZfPlDFC5MNXhqd5EDw1n8MMbSFWYnmhQyBrGUjLO9UrY5N+cSBCGGKlN1Aqp2wIHhLNuKMk0/mSbYn1EZyunJ7HnXp+GFHBuv4/oRWUNFiIiZFhQtlf2DGeZaiQCNWBrbS0Z3XG8YCc7MuHixxLZ+izBMRLTqRezN6owV87hB0rMzkNPRZIEQEpahc6NSRZEkiu1Iw9KSeSRuEHP/aAFNkdFUmf6s2Z0no6kKU7UG6qKcjyRiYiEI0bpzSwxVxfOCm/Y0nSo2P0isObTEtr7jfdapVIsFTNc9pusef3elynAhQ35wBC3Tz3BGwnUcZss1xmseQ9s1Lpz36O/v5/mrHq+NNxgtmih5hVYA37pYRlNk3nN48xLEK+HNIiRvlOmIsMUjEtj8EuDbCclMw+9Wx3QiC1mWEXGS8G160W2FZCU5kvHZKv/l707eMsy0PZ/TU02+c71BGPiYhk655TEbCfKTDR7eUWC4cDNa8PwgmX/hBsgi5NS582QyGYaHhm96UAk4Pl5v28pLSLLEhVmHvBzyxFgfc65gtuljagq7+y129We6UVKS+HV6ynyjuNOU1jl+0rin6zqO65GxzCUi0mG64eP5AcPtwVSyLEMQEInEEfiRHQsS/BLJTBXLRFM1rlV8RJzMFAHIoNBwQ25UXN6xvw9NTTrhM6aO4/ntRlLBRM3D9iMGshqdlVdXBOWWx31DOQ6O5FAWWeQDlO0AOxQUjGS71dB1JN8no6tM1z3uG8r0LPjJtYmpNB0iScbQktcXthP8hirT9JLu+VKmPWbX8chlDFwvQJHkzuVcghACPwjImQaOH+BHMVfmbKYbHgLItgdn2UFERgMvjpEVFUHIQFbrJuovzba4WnGQJQlVlrg4U0eZbTC2bRh/aBhZMdCLFu+7z+KZbSqtepWXT5zj+Ys+xaxBpGWJo4iCoYGpc3y8zpG9pU11G74TW01I1nI+nTG7b4TpiPAGEJLbTUncCG4nJIdGc8SxIEYkMzXat3lCJHf/y3ViL+ROW1vleouvvXKaMLr1Y/ww5vh4DRFG9OczhGGIaqg0nIhTkw0ODueWmDA2bY/Qc5iemaa/rz+Z27JgfZtr+pydbibbLIaCLEvEksJM2WHODnh8z/J3lEmU5NCfz/Zsi5UyGqam0PKibrOdEIKG45EzFExFwr3FSwzjZDBVGEWoys2/ldq/W+4kwiim4QZ4kcBaVEVl6QpNL6TpR/SpiRml7fhkMzqOl2yrNdyw7S214C5fSmaSzNZt7hsexPOXfiZuJuQTXM/DNAx8LyCIkjzKYiGBxEpHRCHIas9z+lGMKtOzFRREMafHq3ixjCqDrkhEbVuVTm7CCaLue9dwXLKmwStXq9wot9DaVvpVuz2fJYhx/I6vWsDuwTw7ShZ+GNJ0QyZqHpamYLVviLK6oGwHuM0qhZLCw3v2cHB7Hzv7rOR420bQB22+VbvCgB7hug4tO+nZ0cwAF51ywyFr3FwA627IfMsnoylda//NZKsJyXoiknRrawVsha2tW5XoxnFMnzvFjixM2Mm0Q0mIZCKfJPHT37V32UVjJccGaDken//G0cRePWNge/6S4UUAVSdIfJsyJmEYIEsysqKgSckI3bLt99T3i1hQq5ap1hqJy+hgX08fCcBkPUkU54x2MlWWIQxRFYWpxvIJ/g6FrMV8vcV006fuxvhBwEjB4MBIlpMTDcqtZJvKj2IsXWNUDXD9YEk/C0DgB/RZCjeqINpNlnEQoygqkhQxkOktsOhUVEmApavEUYhQVFRF6dq3RO1cgLZgyJVl6TRsr1smnNFlZhqLr7VACOjLW9RtDwkpGfLVHgsMUDBVNCWxL7EAw0hGDDedgJ0DObQFghDFgrmmjxfGWJrC/uECr9+oEEcKhWzSzNhwQ0byN7fOvCDm9fE6NV8QhSGxEFiGjq7KNNywe+1UWWJbTiFvSBQyFuena9yotBguZYnC5P3LxoKKHTBaMrF0BSFgpJjBUAR+EJLPGEzWPPwoJm/evM6SJGGqMm4IUuhx5tx5SuoedvXtoiOCJUujmDFAkdjW38fU5CSyLFPxIA6anHztZSaLOYqlPk7XVc7MJ6OCDU3hwFCW9z84tKnDtt4sQrLZVVsbyZaPSO7F1pbjOBw9ehQhBJ/66FP867+5yl+fmSUW0J/V+dnv3suHntpxiyP2Hnu5iMQPQr7wwjFqLadnoqGuyThe7xaQpsgoqornJ4ObYhEnFVRK0iGtL3TLDULmZqYREoztHENV1W4fiSBxC4abWyVJR7xGELTFQ8SEUdytalos9DnLoNKweflKlRvVpD9EUVXOTbc4MJzhqd0lrlUcWl7ErnyW0ayCU7EX9LOoBJHgylyTmUoN32mRVwUWGnP1xLtKlmWCKGC4YHDfaOHmubWJRUy23cw4mNWZqLlIGQ3LSLbRmm7ItqLRrZYqZJL+ljgWNPwAJwjZP1xgouZRd5OeDCGSKKWYNSi01zeBoN5yKbsx42WHMI4YzOoMZhSmmhGtQND0bLxQYGkyozkVS9e6OaPj43WqTmKgqGkaBU1irGQy1wyYrTnomsqugQx7+61uPuN6xaHqxuQNCUVPTqTlR8SSzIM7irRcH1mSkkjYbSYCY7vUneR9jcIARVGSaI4IRZbwwpjDozlyltF1EYDkM2fqiQjHQvR0uquaRhSFXXPMb5+8zIkrM2wfGyOWFEoZnf1DGV69XieKBW4o8JFRrQzve2IvT+1MZm48f3qKr5yvYSkxg3kLIUxeuuwSRDE/8fSOnufcKNbi5r3ZrEVI4jhOI5KN5G4k2xcuVh3Pr9HRUQ4fPoyiKPzWBx+hagfU3YDRgrmkj+FWLLe1Fccxf/niCaYr9Z6f+2EIYZKDaNg3R92O9WUZsMpM1oLueFghBK4fMTaYYVspgx+GOI7DzPQUxXyBYl9/z0yOjrtvPmNSbzkM5XUUWSKW1e5rj4UgjGEkl4hP3jJ67OYz7Y74q2WH6xWHrKF0t1q8SHBp3mW0aPL2ff0osowiJ7YdNyo37/znGi4vXakw1/TwPQ9d18mbKg/tsJgoN5hu+AgJduR09vUpuI5LKZ+l5XoEUcy0AxNTLv51m+G8zp4BCz+K2zPPkwbKoYLJ/aM5kCBrGdRthxsVl8vzDnYQockSY30mD2wvcGXeoWb7SBL0ZQ32Ddy0koljwfGJBjeqLrIkoagKk7UGOSXm4KBJM5ZxfMFwXmOsZFLKaDh+AJLEpbKXmDBmdHRNwQ8j5lo+pmby9O4iTpBYqeRMtTu/BGDWDlFl0c2NAGR0hXIrIAxDHt89kBhLStCMZHw/IiuBknhSAjftOHRdI275qIqEqWm02k7Fjh8x10pKxQ1VxlCSUmVTScREkmUaTZcDw5muwFXsgG9dvIHznWuMbttGsVRiW9HksR15rldd6p6gPy/zvQ8M8fSeZA5K/+AQ08Jmz5jFoCVj2w6OYyPZDt86UWVMrvLg7mH6+vo2ZNpph4W5zK3CWvpaWq2kITnNkayAlWxt3Y0cieu6CCG4cOECV65cWeL5BUke4E45kcUs3toSQvDX3znLpYlbOxo3HBfL1IgigSKD4wc8u7ef58/NUXVuCl5GFTyzu0gQhoSuzeTEJGPbt6GbmWWtzaM4ZrbWopg12dGncGA05OxkNTlPKanQKhgyu0vJNkez2zFuJLYcQbK1Ml51kKReC31Dkai4ATVPMJqXbibiO2ZXJP977EaViXKTvC4xNNRHFEfUXcG5eZ/vPrAdCYHneTi2g92qU6vMMW0Y5HNZzlfhSktBcx00RWG+5TOV0Xjb7iK2l3SQW5rMcMEgbxkEYYTt+NyouLw+0UACDE0mjARnp1vs7o95ameeEIUgiigYyoKTTXywxqsuOSOxZxeAYlpMztcZyQue3LX8oKi6HTBdbTGQt+jcbyiSRE5XmGv6HBzO0pe9+Tlq2B4ZM4lkJJZPrCPdrOKzTA0RC+qxoBlEGF5Ef0bnmuLS8iKyRrJg1Vsumqoy1pclipMig+m6x5npJk6QPJcsQbY9u6YRycRxhIRgtGB0naJjARdmbZwgomRpeLVZfOFxLeynP6vz08/t4uWjNXaO9LF/z037cSdIilFyhoqua+i6QalUYlTEnByv4sYSly9f5uTJk8liaRVxlCz5bJZ9Q9nudt9q2YpCEkXRqsWyIyTp1tYGcbcikldeeQXHcW7Zpb7WYy+MSF4+c5XTV6fu+HdNx8cNBBlLgyimmNH4/odHuV6xabkRliYT1aYoGApT09PYLZv7D+wnkpQeq3dIFqZzM03OTjW7pakPjpV4Zk+JkiFxvTPgqGCSjRo9HdVhHIMfkLX0bj9LFN/qBkDQtF3y2RKul2y1SEh0jDzm6y1uzNXJ6Cq5rEUcR2iKSt6IqDk+FTtgIKthmiamadJHH1EY4TgON8pNLs0FmDJoUpJ0zujJvPUbFZfDo73hv+MHmLqKG0Zcnnfaw7+Sj7qhJjmGyZrH3oEMxYxCNm8RhCFecPPaVexknG9n61AC4ihEURWqt6ocICkQiOLksbKqAxJR2z7ej+KlBQQCai2PYs5kR8ni+I0qWV3ubvs4foSuyN3xxbbr40YSJ2cD5pseZrVCX0ZjpKAz0/CZbyYCrskyO0o6I4X/P3t/GizZed53gr+zL7nn3bfagQIKOwkSBCRKlEiJlOW2NXZPezrabrc6RhMdDsWMQ9FfHI7wF320w+EIj9tyj9vh6XHPDL20NG7bWixKFPcNBFBAAVWoverW3XPPsy/vfHhPnptZ91YBKAImOMMnooCoW3lPnjx5zvu8z/P8FwtDUxkOYt7d80gyQduVNs1JJhiGKWfmHEnI1DXqtompZGgFrHgcpozCRPrAF1/7cDQiH/u8kcb8+acXaVpHpfFdU6Ph6ByMY+r24SLqxTnNqsMz5zdYbzqEYcj/9todvnm5S8+Txm2LNYsvXZjnlfOrH1iq4+OaSGz7eJ2yB4Xv+xiGgWV99OCEDyN+IhLJRzkjCcOQTqfDwsLCh+7EON3aevvWNl+/eA1NVanaVskVuD+u73u8fneAl+QoQrDaqvCpkw3qtsaZebk7Ebng+gjubd1DVVUunH+MIJFtkYptzYg9vr095PW7AxRFwdQVwkzw3RsdBl7E555Y4txCzMRdZWfbY1rBSUGSDgdeiGXopez63iic6asnmUBRFU4u1Bl4oWyjOTadOAYBw+GQ7Z0DNN3AdUy50OmS15BnOaquc5xaiqZrVGtV9EDFMEaoWYiuW2RpShAG5LnK3YMRp5vFA6dIl0Nd1RgHMXEmiAVHUG2WruLFCV6UstJyGQfRTOtvguCarlCEEFiWSZZ6ZLlO3b0PPCAgB4lSM1RSRSdJ5IzEMk0GQx/X0ErHRATsjGSrMMoVVNFnqWax3HLZH4Qoihz+a6rC6TmX2gROq+p89+oeQy+m5hgYusbuMJItwtUaQSxFKBuOwXq7wiiICIEgUwiSnKZzmBAMTcHUFPbHMZ842S4g2oKKbRMWbc2Jple5dxBSJcELY27dvsOfvGpx0pFcla4X89rdAXd6IXVbZ7lhsTUI2R6EResvk+91osFaARC51k14bS9nYb7NEycMwiji1v6Yf3txl+HOHVaaDu12m3a7TavVes8W0UTS/uOWSD5oa2s8HlOpVD5W0jMPi5+I1lYUHb/o/ighhODOnTvcvn0b27Z5/vnnGYUp/9urd7lx4LHWdPiLz60wV310aZZJIrm90+WPvv8OUDgJBhE1V3pZ5FMr6GYv4JvXu+SomJLvx+2DEQM/4n//4gZZofcUhAEgUUNnTm6U/e+J5lTNtfGCiDDNuLI7RlMVKgVCC0XBCxNuHHg82fdpVS0URZXmS8qhbIIQgqprsz/wudcPidKMum3w5FqLzV5A14/RJlbFAs4s1miYBVIKUcJSVRU6Bx1OrS2xfdeTJk0Vvayc5LwA2gVh8H6wgaIoaLrk7ijIjYVlmVS1Gju9EQo5O7uyyrNtm4V2kyTT0TRN2n/meQG7PbzOaQHTbVad0k9EIBj58pyTVLaLNDUgTHNsXcWyrEI1GdqOVoIH4kzw7u6IzV5AmgvaFYPVVoUbe0MCRXqm930fXVc5v1IvkX5bw5A3741QNB1dpCS54N3A42Tb4em1GqMoR+QZC1WT+YpMvhXb5LXbXfw4o2YpKCLHMlSWLZedgc84yqTLJJQM/kmbU24uFExDn+HHyPmPwSiIy2RxMAzoeAkpCuQ5tq4xjjIajo5lGURxwjiWra6t/S6Xu/u8ori8MfS52wuxdYnas3SVM3MOQZJzMI6xdJWfPdviF8/Pl8/+xXsFIbZ4zhzH5okNi6t7Ps3TC5xtS9fOd999lyiKaDQazM3N0W63qVarR9aQj9ugHR5tRjJJJD8p8RNRkXzYra00TXnrrbfo9XqcPXuW/f193t3z+G/++av0gwRNkdj9/+tXb/A//tXnefFk65HeR1VVuiOft751cVZMUJGzEFOXC96E33Bpa0iOiqtTbAElo3kQxLx9r8+Lp+fY3N6l0+kCsL68jB/eZ/daHNsydIZxLnWdDBUUUBTZB7d1lXGU0g8SXEsriYa7k2Y8EuZ7bWfAd2528aJscmjmd0a8cm6BzZ7PvZ6PqiicXqix1jDLdghI+fhbm9ukOZw9fRJVVTm/pPLa3QE9P0FXIM4yFOCJBRdVEQSh9PcYBxGZgCBKaVRtWraGqauEIdhC7tSDKMa0LB5bqXKyZRNFEUqesrPXYRxGaLpJo+qwVNG40YtQHQNb14iSlEGYstpysdScycXzo4w7PWlbaxkaJ+crnGjZ3OmFhClkvocKLLgai4WwVBCnvL45ZHuUQp6hayrbwwTLSzg15zIIUoIkY65qsNFyWHD1suq5eRCgKCp1U0EIDQfJD9kZRpyZc1mra1RdCz+QFaNp6ARRwjiSHJIJFDrPBXmeYJoGQdGam5lRFVG3DTRFcnsaFZskSclyQZIrLJqHFUfPS0r5eABdN0CkqMAwyhGBNP1yDI3Tcw6qAn6U8C++9g6x1eSlC6cxC22v3WHE9jDm//QzG6iqgmNoR2C/oyg9IqmiFPr4cQ4LCwssLCyQZDnfvb7P127s0722Q1u7xeNNhZPLMqnMzc1hmubHMpE8imjjRB7lpxXJ+4zjbGOn48NubY3HY1577TUsy+KVV16RbZftbf77f/0Wg1C+z2TJD5KMv/kv3+RPf+tnZ4bL7zeCOOVbV7ZZ2Th57L/HaYoyQWoFIcNYQSWHKdTOhC0+CGKu3rxNnsScPnWCu5t3CZME7QGtuChJQWSFX3hStGXk50tzyUKfPMACmXxsU0dRJX+iO/T5/q0eXrETVYqB/N4o4s3NHq+cneOTp9pEsfQyT6cSZRzH3Li7zaansO/BW6MdVttVHltw+bnHF3hna8AgSGg6FidaNhutog+uyOHzzjjh8s4YPxWIrMtqw+L0nMvb90L6YYqq5qiKwmrD5mTboWKbVB2Lg5HPXp6xFchdt9H3mTcz6sBwlNBTVFzbYrlhc2HJLa/tOEr5/i15ToaukvkJ24OA8ysNPnOmzd4wJMsFLddAi0al93vXi9kehDiGhltxECJH5IL9cUSQZLx0qnnYApzAbv2QHI0wFTimOnPv24ZGz08YRSmupTEuYOG6Ko2nciFwTI00FxiqQJ0mN8YJrungWqb0dclytgYRu6OINBPMFUKYO8OIKJVukHEqcE21vP65gCt7Y7w4pV2Rcvq5EPRDlWbVoGlpeHFG1ZLEwmnpmF6Qosd9Ll1+l3OnT1CrVFiomVw/8NkZSV+WSQghSY+qonCiZXNl15tplcap/H6XCkfIXAj+7cVdvnmjh6ao6FaD61EFP1JZQmdzc7O0pJjs4j9OCeVRWlue5+G67nu/8GMSP/ZE8l7xYVYk29vbvPXWW5w8eZJz586hqiqqqrI5zLi6H6Fw2G6bJLiDccz3bvX4mbNzH+i9wjjhj199Fy98OMFvsog3Ky4VA8ZBDhw+AELIP5E3JDMMllfWME0TS5OL5YMSCUDV0pl3NTYHOVGSoiuSFe7HGcsNi7nKbNsuSjMqtkwau6OIUST1sybXZOI3vtUPCeIMRYkLTsdhO8r3fO5u73B1ZDBO5LmrisKN3QE9L+EXzs/xylmJ7snzXM6QpjZdm/2QV+8OUBQ5TwhSwfV9n5WGzYW2Qm46aLpE0C1WTUCUO77XNkfFwq7iWAZhkrOTGDyz7GCIlN44QMnHLNkWIoQws7Bsi5sHAf0wkYtn8VnDJOPa7ogTrUWeP9EqW24HB6PyfIeh1NoydVUqDmgaqq5h6wmdQq9LPYa0mmcphq4iUBAiK98zy0XhKXP4/YdxwjAWDMOMJEmk2ZehMg4EFVMm92GUSv01V94Lpq7z6p0+d7uSp6Qpcg7SdHTOLVTo+jFJJlhfcDkzX0EVcq4yDBKGgTT9mlQ8qqJQMRXGYcqnT7VR8pSj2z5RACsgimIuXbnO2tICy0uLxTEOX3mr4/OH7+xzqwBBLNUtapbG1T2fuYpRKBSnPLlU5YmlavE7Ad+73Zeq0UXyynLBtQOPHdHgVz/1OHEc0+v12N7eJkkSvva1r9Fqtcr5iuu6P7bd/aPOSH5SOCTwE5BIPgz4b57nXL58ma2tLZ577jkWFxfLf9M0DS/Jj/hMTMekzH+/kWU5/+5bb3KvM8A2CwmSh1iZurZJ3/N5fKnCgZcQxCm2Ic2L/ChFV6Q/+uryApqiomkqfpKyYplomjpj9yvfX+p4aKrCLzyxzB9e2uJgFCNUlTxLma9afOZ0+8jnNXWdOM0Y+aGEKwqF+589TVVIM0EqBJZpMPRDDE3D1g22dvbpdrskZh0vDWk4OoEfYxsqtUqVvb7H21sDfu78klSpPUou5/qBj0ClZipATsO1CZOU/XFEowpn23ahWCvD0DTSPGe763PgJTRdS1Z1SMTVIEjZHKZ89mybjSXpMtgbDAnDkNwb44UJtwc6uqLJrFd8YEtTiDOVrZ6Po0kjqvF9xl0TwcQsz7EtS3Jysgw0HUubvbxCSK2uKM1YqFeYdzVuHAS0qxaqIi18h4GsBEoJ+UxweS/g9sEYgUBVZYtv3jXJ4wgvzkmQC//jixVWWnK43hnHbA8Tao6JrsiLnAvo+TGLdYtPnWxKgmIQyarV0Avo8UQtWZk6b4FpGER+yMgPWSg00Qa+rMb6QYI3zLEtlUGUUXNM8izjztYON3e6nD21wenC1mBvFPH/+N49doYRSzUTAby759F0dJ5drbE1iDA1hc+fn+Nnz7ZLJNjdnpxVTUOCNVWhbum8s+Pxq0+DaZosLS2h6zphGPL000/T7XbpdDpcv34dwzDK2cqHzV15r3hUHslPZyQfIN5Pa+tHSSTTLPVXXnnlSLmoaRrLTo5ravhxNrNwTnaUz68fzxk4LoQQ/NEP3uH2bhdVUQmTDAS4llXa0k6HY+qExYzk7HyFcZjyzp6PHyWIPMdSc14+3WRjRe7iXdtgHEqZdz+MqVT0clHoejEX7w3ZGUhZj3NLdZ5YdPnCE4vsDmWFMV93aNlHS36pJSZtWwEqOpiGSpyrWFpJhSeIM9oVg6W6WyLP4iRl894e5Alra2tc2guKY8qLqet66YHeHceMCj5EHKdEyWESTHKBl0jL2UmkaSrlTlSdMJ2t7uTwXSWME7xY2vSqpoppGsSFXP2hMGJOu+ZIUcRqVe72BGhKzrtv7eFFMeNxhKqq6LqOY9ukWYyqOOXcyTZ0TF2jULtnoWpRMTWCTEGJJes8SnOiKOX8egPXNvEj6bz4xuaQjpeAqqGIIQtVk8WaSdeLyQFd02k4Ok+t1Mod/J6XcnN/VEizqAgEXpzTC3PONDU03aBer9NwdBquXQ7X+0FKnKTULQPDKLxlChWE/VHEJ0+2ZwbxE0HOlVYFZ2vEOE5pFJBdyzTZHfg0HJ2KpRMmKV6UcWnXZ7fvo2kKvi+wsgTXdtgfhiiKTJyWkSEGO9y61+bZs2u8emfA9jDisQW3TFZ1S+fagc/JOZf/8lNrqPdxlMr7SBw10MoEM940Qggu7Xj8yZ2cP+5vs1y3+Myps/zs0w6DwYButzvDXZnMVmq12kfaBnvU1tZPE8mHGD9KIjk4OOCNN95gaWnpoXa+Bhl/4+fP8ff+4zVptARlhfLXXtpgqf7+MeDfeusGb9+SePjJTZ8UfhDTelNxmnNl1+P6gUeaZmy0XZ5erfH8RoNzCy43t/YReca5tWVcx0YIUcp9TI4thJAoMD8iReVPLu9LRWJdBUXhrc0eWz2PL15YZLlhsYzEpBuahqFrpXqvJOvppJko4b9VW0qqv7M9IjUMFJESp7KN86kzC2USSdOUnW2JmlpeWabqOFQHh9+XVLtNixmLFFUE6UsvRF4mQUWRUFRb1xgFCfZUyy7NcrI0oVo3yl1+6RFfnIely0Q4sfXVNQ2BIAlTKpZGu+rMCE1mhYKzpaucXWrwzq6HowMiQwjBTm+ECijhkNEww3EdRmnOjW7EONPRel2W6zbPn2jx+p0efV+2h3RVYaPlsN608MOYqmvznZs77I5iWhVZLUWpytYg5Oy8y6dONfHjFFNTOTlfk5DoQur95n4PQztsdSkoVEyVrhcRWRobFYNaxTgyXFcL6LIQcl5l6Dp5LkHeplH40BRk0QMvZmsQ4sc5DVvn1HyVa3sjOl6MYxl0PA/bUDm7UCkT3M2Oz+7AZ7HhgsjR0hDNMknThHMLLkkmMHWFhapF3dH509evcmO7w3ZWxdbVmYpHVSWgZGcYHRm6x2lOnOWcnXeoOzq7o5ilmomiKARJhh9nPL9+qA793Vt9/uUbB4w8wZqdcfHekCu7Y/7zF1Z46dQcc3OyPR2GId1ul263y+bmJsBMG+yDclfeKx5l2P6TJI8CPwGJRNf1DzxsF0Jw/fp1bt68yZNPPsn6+voDX6tpGkIIfv3lDVoVk3/6jVvc6visNG3+68+c4L9+aeN9v+/F6/f4zts3y79PqwVP602lueDfv7XLzjAGIVnGb94bcrvj88tPtBl29pmzdJaWVmnVK4z8kHrFmTG5mqnkFHjtVgcvETRLAyqBrup0vZhbHZ/Hlw5vyiTLSNKMekUiiKquTXcUcHeY0PVTmkGf9abDs2t1qpbOjQOPMNVZbZpcWG3QLCqaMAzZ2d7BcZ1Spj5MEpbrJlXHZhhGqMWQOIwzNAVOtA8fUpEXsumORZSkmLrOiabFRT8mSDJsQyXLBaMwpekYuGqEpsn5h66pjPxIWtMCizWTpmPQ9RPqto4gI0xy0HQeX66Vi2eeC67ue9zqBMSZhLZutGzmHJVuJBCZ9DqpuA7n5myads54PGb3oMONkRQm1NQEy3HYG49ZbSR85nSLnp+Q5oK6rUvf92Kt3OyM6AXSBldXJRrZ0lWyXGNrEPH4UrWQs4cwjjE0qcSbpHJgfn9ff4LXkmAKi4plFsoDGR0/ASFnY5YuB+MVU8rhZznkisZiVS87ind7AZe2xyS5JEzujSJcM+TMfIVMUemNApaqDqsNu2y3TQAXjqGRF3pcuq5hKDnDTGAbGucWj268bu92uXawxVCrc3L6HhCCNJP8lkn4ccZXrhzwg9sDwjRjrWlzfrHC5V2Pq/vSPEzXFD6x0eBTJ5vy2iUZX7nSQQBrNY2lmiW9enoBX7nc4bm1etkqs22b1dVVVldXpUr1aESn02FnZ4d3330Xx/lg3JWHRZ5LF8yfViQfcbzXAGxSkbxfX+iJl7rv+7z00kvU6/WHvn6yUxBC8JdfWOUvv7D6SB7UN7YO+LPX3539oVIs+FPzkTBJubrnsTtOMRWBXkAlcyEYBAnfu7rNJzckVn6SfBoVh+g+2937W4K7wwhNEQiRo+kGaRKjKXIA2vWO8QKZHLvq0huH/MmVA3YGkmh4bzzi3d0xT6/WeXqtzrlFeUM7plzAh37IeDxmf2+f9lybRHP47q0efT+hYumcWajw7KrLpR3Y78ckQYptaFxYqbHePFxEslxwbd/jdrdDisZizeBEw+DcgsvtbkC/QPa0XZMXNup4vT2SVLYfu+OEH97psz+S/Ie1ptTYurLr0Q8OtaQeW3R5bLFSLsyXdsZc3fXQNcnx8JOMt3fGPLlc5cyCyTjO0RSFtiuZ2QDNZpMb+x6j/gBXT1HIUWIPXTPY7AsWKhqn5o/fPUZpTpym1G0bTVPJslxaH2sKUZKTFFURICuEUUiCimNoLFQl6ik3DxFNUSoX/aoh1ZIFsDtO+eHtHl4kB+GOoVK3dQZBKttpyCplfa7CY0t1siwjiFPe3fckL6ZQWRZIxeC9UcTPPz6PvlYjitMZRJ5S/vdwE5OlOZWKgXKMNbQfZ3SLc2jYGnfubfOdYMzzj59C03W2BhEt1+CZtVr5HPy/fnCP797q03AMLF3lys4Y19T4c08vyiorE6w1LJ5YrpbV2s4wouPFtG2VLDl8duerJrujmN1RPJPAgiRjqx+iayrrzRr1ep3Tp0+Tpim9Xm+Gu9JsNsvE8kEhuRNC8gdNJL7vz8xyP+7xY08k7xWTL+D9DKz6/T6vv/469Xqdl19++X0N1CbHzLKsZLV/0CSy0x3y7771JkIIKrZZktwmx5pe8CX0MSVPE0zHkotBLoqdS84gM5ibP0SI2aYphfpglnnN7HFtQyPzYpl4kwRN0xFFtfMgkcmqYzEYB1zcHHDgZzj6xLNdx49zLm2PWGs6tCoGhqaSZjlBlOCPhnQ7PZaXl+klKt++2iFKJI+i6yfc6we8cm6BXzjX4uLVIWvr8zRtfdbsSMCrdwfcPPAxTB2yiGtewO7Q5qUTVc7MuwyDFENTmasYqKqC35M6XruDgG9c6+IncgecZRlX9zx6fsIrZ1qMw5QkEzQrBjXLIIgSOQNSNe50A0xdLRnmZsGpud0JeHq1QZbLttwEkj2JAy9B11RMRU7RXbdCGATEfsTd3RgzHGA7Do7rYFt2KZpZtXQqloUXxTiGhm7oiDwnCmVyneyS00zw5taQXS8jCGM5THZMao5Jz5fS/LmQ1d3JlkPdCKg6Fjt9n+/d7JEKaFdtsizDi1K6XsIThZ9OJmC1VaGiSzMsXdOIMoUgzstkCZPWmY6XQm8c4VoauqbN3NOqKmG5Nzo+tq5iGwZ5njPwpBHaersCQs4Fb3Z8ru57sjJUJCm2YWt43oiv/fASKytrnF6Z488/s1huMK7v+1y8N2KtaZcKzk1H5/qBz+Udj//usyeOfT5NXUVXFZJUlPBskIAFXVXKuZsQgm/f7PNH7+zT8eRc62Tb4S+/sMLJtiOFPwvuCsgFfdIGu3XrFpqm0Wq1ysG9aT6csDxpy3/Q1tZ4PObMmTMf6Hd+nPGxTySTxT1N0wcmEiEEd+/e5cqVK5w7d45Tp06972SgFoZVjzqH6Y8Dfvdrr5MUv58GMbWKRPhIENDsgl93HbKsByjkhS1tPiV9bU0lP7No603mFiM/pOrYRHFy5Lin5xx2xyleKBnEWZbixzmWZR7yNKbCKdR8USQkU0VyTiTXRME1JeJpexAyVzHRNA0/iNjd3SVJEtY31qlVKnzth3eI07xofRTQ2Uzh1Vtd/tzTS8xZgkVHo92ozjD5O17M3V5A1TbR1Rx0CfftByFXDzQ+99g8VWt2h6uqCmmecbMTMo4ymq4hnf1smzAq0EqDiFNzDgpgF0kEJLJqbxiRoXK/9qalKyRCpTMOyxbOKAhLWfg4zVCL6g7ANEzyPMO0TMxUoVZ3mJ+3iKOQg/0D4jQjUix00+L0coulqsqNg5wsByPNidMcRdM51bZK5NfVfY+7gwRLlY6PWS7oeRENR3q/b3bGGJrKSsNivWkzHqSMw5idMCNIJBNf5Bm2aaIq0PUSxmHKs+t1KckTRCUiLc0ywjhBN4yy7ToJXdcJo0OWe5pljIKYTijY63uYutT9ajkGo1RhGPp4iaBmCs7Nu5BnVF2LOwdjLu96qAq0XQPTNOiNQ/aTjBc26oWxWJ8X5xtcWDps4eyOIuI0L5MIyGeo5Rrc7QXEmcDSD5PCzU7A/jiiaumcaNm8enPEUoGnSbKc7WHEM6s1lgtDrbe3x/yrH24hBCzXbdJccGXP4//+nbv8zV88c0Qs0nVdXNdlfX1dJsxiaH/37l3efvttqtVqObRvNBpHEkaWZY8k2fKT5EUCH4NE8l4LvtQ9evBCn6Yply5dotvt8slPfpJ2u33s6x4WjzrQD6KY//Vrr5VDa3nCcsG3DL0898niWXNtRl7IibbD5Z0RUZqh5DKZ6KZNGsecmZdPgaoUKKr7ZOi9UBo0OZYxo4v13Il5un7C1T0pQwKyF//8apXTC3WCOCnZ9aauEyeHfIC8cCTMs0zqO+l6aZCU5QLXNugNPba3t9ENnfX1dVRNZbs3xkukretkNTIMnTyPGcUZHe9wAFwy+VWdII7p+jGZUNDVKW0vBWxdY28YMo5iWlVHwoQLPt+kKuqMJQJMQlYFSZJgmSajKGQQJAhhU3XtmeE6IG2R84xM6JiGVlreKpoBcXKkcvML58OGa7FYM9jsB+SKKt9Ps4gS2WZartuYtoVp2eA0+ebVPYZhjBABF7eGLLsq6xWTgygnyRRcU+PUnMOF1QZRIsUi7w1idERZoeiaQt3WGUcZFR1+6aklskwmNdPQ6SQplq0TJvmUNhjEiaxKDT3HT/JjWe4ALdfA0XK8RBItsyxHVTU6o4DVhl06Jo7ClB/cGTAIUnRNcl80JeCp1QYiyxmEGkPhc36jzmJNItzGQcS+l5CjUrdUCR+OY6qWTseTwpJPrcpW1ju3ttk5GPDFTz/JcrtOxdQKQcl8lk+T5MxVzBKl5ccZ/8v373Hx3pAgydFVhcWaSctR2fVSvD0PFLnB+rXnlsp15ju3+gRpzrlCt84Czsy53DjwePPekJ85++D1Q1VVWq0WrVaLs2fPEsdxWa1cunSJLMtm2mCu6z6yqdVPeSQfciiK8sCFfjwe8/rrr2MYBi+//PIHVticxKMkkiTN+L2vX6Q38o/99wmksmrL0t+1TcaFz8ha0+HsnMW7ez4C6TGSxjEn2hWe22iT5ym2qc8mqOn3znKudSN6qSDOfNbbVc60Ez51ssW5hSo7wxBVVVhrSH+NcRhhFBpVUZIW6KbDBLXWdKT1rgJCSIRUKjR0LePscp29bp/dnV1q9Rrzc/PloqSpinQp1DU0XUMRFEKFcmFTlVkF4LgATdRcG1OXhLQ8F0xv1nIhMDWJ7Bn5Ia5lEqcptmVwL82wCxHG3J+FjMvKDWqOJQUVp5JIkubkAuq2nDvcG4QgdFzbJEwyhn7I6Tl3RlDxbj/g6p7POEoxNIWzi3VOzFW4sTuUw9NM+sOcbDulfWyY5nzzWocwU5ivyQ2BF+nsRhmPuwrnqxFRKo3DKnrCYOzh2LbUv8py9PvWG02VhMO4aCmqikLVtogLFCAgrY2F5IlMUFVpKsEUS416oYUmEVz3+mHJyZhzDdabDjc7PnvDEN0wyDNZAT2+VCm/42v7HoMgoeWa5fGDTM4tPnu2yck5m1tJR7pZTiUrCV/PsEybKInLhXwCkZ6O2wdDfvvLX2dtZYlPPLbBfNXkdjfgRMvB0BQGYYofZ/zq081yVvTvL+3xnZs9Vuo2aw2NKM252w+ZN+A/e7xCY2GZpmPw5HL18HsFdkchlfuUijV5o9IPZkE9fiy16oIkZ71ps9GyZza+pmmyvLzM8vJy6bHe7XY5ODjg+vXrmKZZJoMkST4Qd2UikfKTEh/7RALHy6Ts7Ozw5ptvcuLECR577LEfCQf+MEvc40IIwR+/epmtTv/hrwOCOGfRMcnSQmNXQLfbYcPwWX+sxX4ge9grDYuTbZcsS2nWHPrj4IEH/c6NLm/vp0CGYZoc3OlxdUfll55cpFUxZvwuJiGRWimNmsvwvmNfWKmxOwzpejGKEEQiRSHlqfU2Sjhie3efhYUFavVZef2qpTNftdjqB5iaiqZriEwwLhjxC1WL2x2OEA9HXshjy3Uubg4ZRUnBnpf97DjLOTcFNfXjmJpjy2RUHGejZbMzkDIkjiFtZMdxiqUprDVt8lyCJUZhyjvbI7aHEULAXMXg1JwrbXC9BC8JMVSVE22Xp1cOP9vdfsCrdwZkOdiGSpwJLm72OT1f4RMrNgd+SsV1ma+aLNasshrYHsiWW8s10DQVVVFxRU6SCfqZwTOnlkiSBD/wy967pmu06nVcXWEQ5kyPkaJU7sonbZ4sz0mynK1BzLV+hulFLLcM6raUVnFNqZvmxxmuqXKibaOrGkKDi/cGXN3zCkVhKZNfMTWeWqkSJjlC0ahYGit1k0kTL8kEeyM525lmp1dMja4XM4ry0nbg/s5CwzG42wuJkxRN1UBAkkn74Glfn62+9IuJUsHb2yP+7NIm58+cYq7qcLcXkAuoWBqfe3yOzxbVgh9n/OB2n5ZjyESKnBGuN21u7vg07AqfPz9/5BkAWG3Y3O7OEkultL9sn03iyu6Y/+f377E9lMjAiqXz0qkm/8UnVo6VS1IUpeQnnThxgizL6Pf7bG1tkWUZ3/jGN6jVauVs5b24Kz9FbX3A+KC+7Xmec+XKFe7du8ezzz7L0tLSj3wOD7LEfVB89fWrvH1zW/JCilnIg8LQVLwgJgwhTgXj3j4GGesb65imydn7Xl93bfrjQGompRnxfQnuYBxzdd9DV8A2dTQNhKbiJdI46nPnF449D8lDsRmMAva9hFsdnyBOWKxZnJ6r8PknFnjzTkdKfldtzi3XMcI+u/sB58+dJhHyewrijN2hVMFdqls8v9FgHEkhxDyLUDWNimXwyZMNNE2ZqUj6vvTQaFQdGlnOJ9br/HBrRN8LUYpW3mrD5vxUz7xim1ze6nOj49MdQ3Ps8fhynceXKlw/8On5iZyHGBovbDRwdfCiGIHK9+8M2RsG5UK4NYjoByk/e7ZFLhTiXGCqMFc1qdimdKZE4eqeT55TQlIFkKFyt+vTnIMX1mpYTqWU359ElOZQ2BenSUKGBHCYuiRyooBhGjTMBo1GgzzP0cnZ7w6oCo+9CA5SDVtXEKjEOZxqOzSKxdK1bf708g5bg4g4ydB1la3xkNWmTc3WOfAk/He5YfHCiTYaOX4c40UZd/sJukoJeBBCJpN7/YgvPLnEqODjKEgQxjTUfDpM0yCKpPx/kmVUbBcExFnO3U7A9kAeZ65i0Kra7I9CHFMFFJJcoeHorBYS8nGac2l7LNV/ayZZlpPnKRffucLnnjvLf/ezjxGmgtWmxVrjsBrw44wozamas8uXVB0WhFOPjB9nfOtGjzc2B4BEcdmGyu1uwGLVJMkFO8OQk22HZwvk2DhK+Rffu8fuKOJEy5bCqWHKn77bYblm8fknjk9S06FpGnNzc+R5ThAEPPvss2Ub7O7du8Ahd2Vubm6mmzKpbn5S3BHhY5BI3k9MZFLCMOT1118nyzJefvnlDy1jf5DW1qtX7vDDd+/M8EJAwnqPHFdVCHOVb13u0Q1S0izHMHQeW3BZ049WDTXHKq1U/UjKtJdSFkVsFwKCtiYhmJOBu0bO9ig91t4XoFFxGHohP7zT5+2dkdR10nRu7Htc2/P4/BMLPLXksuGknNhY4O7mPdJcsL6xTiIUXMvk0lafH9zqyR0s8sF9Zq3OX3hulSs7Q0ZhimNonJxzWW5WGPpByd34/q0eNw98MjTyrEfV1vnUySY/f6ZBL6zjRTF1S2epZpb6VLZh8OZmnx/eHZDlApGl+An0ohHPr1X5hcfmSuTNcsOiZptl++zmwZj9Uch83SFPJ6q4Kj0/4WbH52fOLZStQyEE4yCiYlsM/ZhxlErF5CIMw4AkkTpliYIXxlRqUhI+mIK81mwd3TAJo7gYJsuWW5TmrC/WDmHlQmqK3Rsm9MYBTdfk9MoSrVbMtX2PMBWkcciiq7Jm6/iBz1yzwVubXbYGEVVLIyFB1wWqYbE9iHj5dINnVusIYK5qzyAHu16MF0YsNpwpKL0khw6TnM44KOdDAsHBMCBFRVNyFmuyzWQbGlaRRCbXp+0ajIIQTdP44eaInWFUfu5elFM3FU60HTkrAzaaBk+tNrENhSTN6HgJfpKxUHfKjoOqKji6wncv3eB8S+VXP3OBuisX2b6fcG8QYukqc67BziguKxKQrSnXUFisymcrSDL+yTdu88a9IWax+39ze8RSzcI1NA48iY57bq3Orz23XFZ+l7blZzk555Sfp+kYjKOMb93s8Yvn52Y4YvcGIVv9iIqp8fhSZaZimcxI3i93JQgCTp069Z+ktfWP/tE/4u/+3b/Lzs4Ozz33HP/wH/5DPv3pTz/SsX4iEommafT7fS5dusTCwgIXLlz4kUhC+6OI/+mbt/nKlX1MTeW5Vsp/u/JwcUWAd+/u8mdvXJ35WZikR0yRABBg6gbfuRcxiAUaktcghODdPZ+qbfKJjUOOS8U2DxnHRUxY6zXXwo9islwU3BCBomr3KZwKCbvMxZHkUy0S1IEX887OSArx2cX1s2w6XsylrRFPzOkgcm7fuYNhWKysLJYw1tsHI757oweqStWSIAIvSrm47dFwjBnCI8jhes2x0FSV6wcB7+55uJaBqwhyoTMKU757s8cXzs+x3jDQNQvT0KUsPpJ9HyQpl7ZHIGSrJAwzdF3BTxLePQj5/GM2dUfOIlzLnJkpjcJUzg7SrCSd5rlsFY0T5dj5kx8VHueWSRDFWIBuGCRJUrbLJsPeScIKM4U7B2PJ02hXaNk+e+PDdlCQSJ7IWl1KyAdRwjvbI97e9aUFq6aw2QvYG0V88kSDLzy5RJjmVG2DOAgYjMeM+j329/a4NtTJMwUNjQRZzevkpAL6Yc5CTcXSdcI4mbmPVFXOrOJEDszLVrGikheINJAJ//Kux62uT5zm6JrKYk26Jw7CHMIAkQsMXeH8UhXH1MjSjG0vZy+Jma85ZGmCUSScvp9wes4td/pSMicnzxRqjiQLarpOkiQznQlFkTOfO3s9/pf/+H1+7rnHeLcv+NOrXYZBgqGpVEyNMMm43Q2kplucMY4znprTS9XgH9wecPHeiPWGXYIYojRnsx/y1z69xmOLFQxNYalmzby/H+elSsF02LrKKEzJBNIGIc358g+3+M7NPuMoLWdmf/0zGyVn5bhhu6Io1Ov1Y7krv/3bv82f/MmfMD8/z5e//GVM0+TZZ5/90CVcvvzlL/Nbv/Vb/M7v/A4vvfQS/+Af/AO++MUvcuXKlUfir3w8dJYfEkJIH+9bt27x+OOP88wzz/xISWRvFPGX/sl3+Z+/c4c73YBr+x7/67sRf/Pf3pK6WA+Ie/t9fv+7l47VBZuYIlUdS0pzCEHNtbi6O2AQ5WgITENi8g1NRRGCt+4NsC15w9uF18SxHTIFRkGEpmo4pslq08I2LYIkK1tquRAkmeBU2yVHyOTjWKiKimMewny3+iFpLmZ229JHQ+HuMCIMQ7IspVKtsbS0VCYRkBDhOMtwNNneUBVpDBXFkjl/XIzDGAW4O0jQVQ2zeFtVUajbBl6cca9ohaRZjh/E1FxbymYUulBBkpeyKsXFxjU1hl5IkEhpl5prH0kM0iJXSr7IXXiObhrkqGjiaPXoRRk9LyFJM1ZrOjkqiVDKJDIMU5qOTstSi2sOP7w74Pff3ObitscPt0b80dt7zFUNzs67KEhb4vmqyYsnGsxX5UYhTnNudENURdB0dCqmRtM1pEDjzhiQny/Pc0zb5tT6ChsnTrC6tia5QXmO78sklCSJBBnkGVGSUnMt2YYTgjQTbA8iNnuFzL2pyUUwy0mSFEXVCZOMlcYsBPny7pg8h6qpoylwpzOm6pg8t1ZlrW5xdsHlpZNNThULpRCCUSy/mDxLsUyTvLAWVhTZitUKGZTJ9zcIEm7tj1hqVjBV2X4qv14h8GMJBrA0lShJ+R//4FX+6R+9RhTFrDVtGo7O/liKga42LOIsp+7o/OXnl/n5DaNcdK/sjkFhxgbY0qX4/tV9j42Ww3J9tmW2O4yYcw0MTW6Ups+rH6ScnqpSvnLlgK9cPpAyO/MuKw2b6wc+/+xbd8q15P3w3ybclfPnz/Ov//W/5qtf/SphGHLx4kU++9nPsrq6yj//5//8ocf4oPH3//7f5zd+4zf49V//dS5cuMDv/M7v4Lou/+yf/bNHOt6PvSJ52IwkjmPefPNNoijixIkTD5U6eb/xT79xi844LoX3QPbAr3Yi/j9vbPNXXjz6Hp2hx+99/Q3S7OFzFC+M0VWVdtXlYDjm7s6+3NloKsqUx4imKiRZzl7fZ7VVIcsF+TGL23RMdsBnllo82wv5wa0QP8lRC5mKuarJsxNxySL5uJY5zUGegQtPhxCCwA9IIwUUCXG8P/w4k+IcyoTToyMKD4npheD+yHLBOIrRDXPqTA6NlOJpBI8CQy+gUbWJY7kYqUxcGw/vk7zg52R5hqnbxwr6rTVtru57jELpn6EAQSAXtdPzhy3RIM54/d6QnYEcqlqGypk5l/WGyfYwxs8FIpc8mU+caJB6fQDudgNu7PtYhkpVV1A1Ey/OeXd3zM8/Ns9TKzXZgjS0GSHQ/XFEEGe0KqZspxbQa9eU4pLjOJuSSpdoM0PXcCyLE/M1BltDHFsnDAMUFLwwIkkFIhjS6cgWSi/I+f6tHqNItrFMXZI6s1wy14UQ6IZgsWbxzFoDkInnVifAUJUCzg2aKq9bZ5zw1FKFJ1fqRxK2VCWmtEqeaNUZho7wk8MEgoTwXrw3ZHcUkeVyE1AxFbxcggU0RSHNJYfk3GKlcOyEO/2I0E/obidUtDXq9Ton2irbg4hfeWqRxxYrOIaKoam89tq9MpEYmnLs/FLAfdDijH9/aY9vXOvhJ/L6u4bGZj8s2fUdT4JCfuFxOR9Jc8E3rvdwTK0c0lu6womWw91eyDs7Y17YaDySztaJEyfo9/t8+ctfplar8e1vf7vUCfswIo5jXn31Vf7W3/pb5c9UVeULX/gC3/72tx/pmD/2RPKgGAwGvP7661SrVRYXFz802ec/uXIwk0QmoQBffffgSCLxgojf/drrKKp8oJP04bMUxzLYPugx6B1QM3VUJSMXML0nSQv5joqlk+Y5cZIeaUcdF9JwyuNTZ+ZwlZjbvRDDcpivmpyZr8zwIFRFakbJnarkryzXbTR1SDwly5ELQRSnnG7pOLU6YjzCNg3ZHpmKdsXkdteXqB9NI88yyY/RdNoPsSNWVIWFqs1mP8Cp2KiqLPfTQiOrZmszSaDu2gw9eR1OzFdp3OnT8RIajuSN5ELgJxlLdYvlhnMI81U1ruzKuYita5xo2bywXufi1ohhmIIijbzOL7istxwsU8cLYr53q8/2UGpHmYZKmEoZlZdOtTg37zIMU1pVh4oh7Xn3Pfl2d/sBArA0Fd0wSJMUWxMMUyku2H7A/K7mWAiRE8VJKd+eZVmRHJlhZSuawfdudOh4EpG13q4wXzE58BLSVCo2q5rOmbbJk6sund6AwdYeb/UUMtXE1cE0JNdkdxhzYaVatLZ0DCVnuW6hCCkmut33iLP8CJem4ljsDQJGYULN0koHSz+WM440TakZCqNYIVNUKDY8fiThrssNCY0WRQW3NQhxDZVqRVoXH4wE6y0b13YZ+iFNx2CjZZezjywXhEmOocnq8MbNW8zPzbGyskwmZKU4TSIMk4wrBxE72YBTcy769d7Ma0ZhiqbCM6uHg+x/+cNt/uidfWq2Ts3SGAQJfpxxfqlCmOSEac4zqzW+8MQ8TyzLFm6c5oyjtOTbTMLUVTIhSi7Xo/BIfF9W+NVqFcMw+Lmf+7kP9PvvFQcHB2RZdgSotLS0xOXLlx/pmB+7RDLNUj979iynT5/mnXfe+dDMre7ve07H/bC+OEn53a+/wcCTcFlVke6BIz88tpJyLYut3QP29/dptVu8cGKey/1bdLwUJcslXySTA/Inl6vUXavw0oaxH1F1LYJiFjKJvWHEOzsjBlFORVc4v1xlvSV9wxfcCtVG8+i5CLCtQx7KRLZ9Xdc4t1Dh6p5HlEqeS5KmNFyDT55exFAyycqOE7mgTyF3zsxXuLYnd/i2CSLPCZOMiqXz1GoDy9ClkOD0aQiBY+qcsg32xxE9L5Q7dE3HC0OWahYrNbMEB1Rsi5v7Q/ZGCQLBci3mM2fn+fq1DgM/Jk0FqprTdE0+dbJFXCT1YZDy9etdhqF8aLM05FbH55m1Ol94Yp79UYyma9RNlYqlkeWyjeYnsO8lVC29nH1UVJUgU3h7e8QXn5wvodS2ac5opsWF5pVpmtKHBMmZybOYJM+PSOUIIedgWR7RsHV6QUJDUZAK+Tq+57PecspqIMlV/vitLUZRhqbKKux21+eZ9RZrrZzrWx1cR+fEXI3Hl+tEccLSso2375H2+1S0HEVAEPioikqaKWz1A371uVWCcHaGMvRDGo4pNxBRUrQFZcvFCyIMTdrkThwsb/cjLm2P8cNYbgJyWJl36IwCCYpAPmen5gxOtFx0TWWz57M/iqlZOq4tvVtcUycXKX0/4ZMnGjhmFU1TSzUCgGbVxtah7+dlS/ag06E7GGI3l1iY2sRcvDfkn74Z4uX7qHqfpqOzWDXZH0unSIS0Rvi5c3O8UDg27gwjvnOzR7ti0i4qi6qlsz0IGQQZf+fPnUNTJIl0+jlzDKkycHXPm4ENj6MUW1dZLpBpjyohb1lWqerxkxA/9jOd8RfIMi5dusTBwQGf+MQnynLuw7Tb/XNPL/GPv3aT+32mBPDFC4dDpjzP+Xfffovd3vDwZwW6p+ba+GFSMtZB7vzu3rvHcDhieWUZ13VJ0oyXVi3e2NPYGcWkmcBQVS4sVfm5J5bLJCIvBKW1qqmrBHHM7Y7Pn109IMnlMGtfCO72Al463WLZBj+MWVm28aPDc7lfbr7vJwzDlIoZM1+z+PyFFRZrXa7vjRh5PusLFZ7emMe1NIIgYELXGHoh40QwDGIcXaXlGvzC+Xne3B6z1ZOVyVrL4bn1BpYGcZJJePE44E4vkAgtRYUg4ZkTKq+cnePS1pC+n6CR8tRakwtLFQwNOcA1VL5zo8O7ex5JYcxlqArnFip8/vE5CVm+t0ezanN+dY6qY5SJ69LOiEGQ0HCkzLzhOgy8SGqFNSyeWGmUcvPT13tv6JMLBdvQS40t0zSJg4gwEcSZwC42HmEsCYGuaRBngoWqRTfIiQofEpCVpqIoNCxZ7VRdi+445PLOiHuDmDjNWKiYnJpzSfY8BmFS2BUkLDZdXjjRAAUsXed71zoMo5SWc+ja6MUZ72wN+NJTizRzA7dapdGoyk3WpFWYCVRVxbbk4mZigRCEXsjA87l27QaWLTXBMtVgaxBL9rypsVQ1uJkIxlGCaxl4UYwXZ6w27HKx3BvHvHanD8B83SUM5YLbGQU8tVKV3x0wVzGZr5ql0rSiaiR5TtO0ysQLcpYVZXkhRplBklGr2Gz3PJJcZW845GTboR+MSlRgmgt832dJbNHrLJItV+h4Cf+3b97hwBecXDBwHYf9sZTI/9WnF8treH6xwoWVWtly2x1FjKOMk+3ZqrrhGPQC+exMC42Wt4+i8IUn5rndCbjd8WlVJLl1EKS8dKrJuQUJAsmyDMuyjvz+w2I8HlOpVD4yR8f5+Xk0TWN3d3fm57u7uywvLz/SMX/siWQSnufx2muvoes6r7zyygyuWtd1omNMoR4l/ttXTvLHl/d5d1cONicIkRdXLL70lCz1hBB85dUr3Nw+OPYY4yDC0DVsTSKFFCG4c+cOSSL5IdNtONfUeGlFofHMGn0vomZpLDYrBWfhaExmIa5t8f1bW6SZ9AYRxa49SDJ+eKfPL52tSNhqwVq3dXkujUJuPk5zvnW9y91eQJoLNAWW6jY/e67NRlVBGfksn1qiVquVMiwTIUg/yvjG9U7Ry5YOeUsVjS89s8ZnXYMglmizyS4VZK986IW8ueNzcbMHqCAyojine73PFy4s80tPLhDEKZoiPTZUVcG1LcI44V4v5Mqeh6Yo1O1DhM27ex7zFYONlkN9xUHVTZpVq9ztp5lgZxBhT5Hm0jShYmsMo5xRAtX7k0gRjqmhkBOlKbZlkudSbiXJBI6hzhhsTbw77nVD2lWH88tV7g0i+kFcoPEkl2KpZrHatEGBgRfy3Vt96fynSkbNnV7AgRfz6ZNNgiQjSHIqlsZqw8bS1QJ9lrAzlEPy6cXENVX6QSoJoGnGgm2iKypBfrgwVy3ZLktzKVY4mZGphmRmt+d1giDg9k6PtzspUS4dN1GkYONSzWIYq3hRiqrknGg7PLNaL7/nzV5Akkk9sDRN0HUNV5Os/iDOeXrtGO6DgmS5Fwz+6bpfSvmrh61W4FtX97ndj4mSDEXIQfrpOYfdYYyfZGiqnEU8tVLl1Su32esOSZ0W++OYRUdg6VohXWNx68BnaxDxf/mF08feA3VbxzJUgiSb0ffy4wxbV6lZD14iP7nRIHtZ8EfvHLA7jDB1lV99epFffXpxCgn3wb3jJ4nkowrTNPnkJz/JV77yFX7t134NkOf5la98hd/8zd98pGN+LBLJ7u4ub775Juvr6zz++ONHLvyH6dtetXX+3//HT/G7r2/xZ+8eYGgqL8zDJxcOHf2+984tLt6499DjJIUMha4Ibt29g2HYrK+vzCCd4FC00VQFKw2bmmPTH/sPtPWdxGZnxDjJsczDJAJg6RpBktEJMprahIEsz6Vdd+kOPVAUvnerx40DT85iTLmLu9cP+OO3tni2lXHyxAbNRq1UFp4+129e73CvX3ifF94Y90bw1Su7/MzZ9iyKaip6fsJbmz0MXcM1NLJMQRMp4yjnrXsDfuZsu0DNKMV7Se2wumtzu9shy6HqHB7bNjSGYcLdfshqQxIGl9o2acGFgKNuvZMQRYslFzOi5zOxWJXtjP1xDEhfjSAVpHnOmflqyWeJ05zv35b9/TBO0Q9SVgaCz5xpcX1vzPYgQlXgsYVKCSkF2TbZ7su2kWFopEmCbWj0g4Q7vYBPn2rOnE9WmE8ZRQI51p55IgRafDAB+IngbtcHBG3XZK5ilqgmrTCBciyLswsOc00Hz3Z4fT8n12KathQPTbOUoZ9CFvP5JxYIcpVWxUFl9rmbLOQgN1yqKg3EdEPHvx/1KKSvfZTmVC2NpbrFnY5Po2Ih0pQoy0lzwal5tzzmzQOfd/c8bFOnbqtomklnFJDngp891ybJBIaq4FryPjF0ja3OgDe3NhnHNtWayTS6wTJU9scP3oSeajucX6ry2t0Bq3VKdFsvSPjShQUazoNns4qi8NKpFp880WQYyO/Wve/ZeNQZyUdZkQD81m/9Fn/9r/91XnzxRT796U/zD/7BP8DzPH7913/9kY73Y08kWZZx/fp1nn766QeWVR9mawvkzfJffXqD/+rT0rTq1q1b9Ho9AN6+tc1337lFxbZmW0/HxGAwZDzoMT83R73ewItTbuyO6XoxFVPj7EIVVVHLtpOp6ww8n3rFZuxHR5jR94eqKFJl1pRMaWXCIQE0RZ2BIju2QW8UYFsmXiiZ64amlsNTXVXQyOkE4J5dolqtMByHM66NKDBKBLujqETByGNb5EHIna7g5bNq6Yl+f+wMJby4oimkaYpuGKXz4VY/JM0kN0HhcCGakDCTHNQjeHv5sCaZYH9/H9fUEZqJH0rZlHEQoQFLNZNb3QBLV8uqJEzBVKBhKViGgSAniFI2+yF7owgFSWL89Kkmr90dcuAneFGKpas8t9HisbnDdsTFeyPudAMcU0U3QNF1tns+WZryF19YwwviIyq6IBOrqsuqJ03ygs8CppYVyWs26hWnrFTXmg7XOwF2gYwTCLxImn0t1kzCTMcLY97aCbiy55GhSg6HpnGybVOzXbYHEWkuWGlVON0yaTk6fpiQotEPUiqWLuchhhQANZKMMINb2we4Skpkmcw3Gyi6KatsBVqOwfZAKhtYpkkQynsnTVKWGg10VSXNc/w447W7A/ZGMZkQuJbFSk1jo2mzN44QioahaZydtzm3UOy+Bdw88NB16XkPkGcp7ZrNoBB73GjPtpl0TSVIE1xDZbC9Tz5WqdWqmKZZQIkzTs3N2mvP3mMK/81L6+S54N09j+2hJBZ+9mybv/Tc+2vz6KpCu3I84OTjarP7V/7KX2F/f5+/83f+Djs7Ozz//PP8wR/8wSMrhfzYE4mmabzyyisPfc2E2f5RnkOWZdze6fKH33tb8jKSbHaRnQohBHt7e4gkpj2/iO06dP2Y3397n84wQFXlbvvVOwM+s+HQ1AWmrpMUwoLDKXXg+9FRkzgxV6Nhd9gfpehqimYY5GlKmORUTI2FqoFfVBOGrpEkGQJBGCf0gxih6iVfQrZsJDQ5y0E1pQ3sITtfLiRxFBOmEiljFwqCqqaRZdIXJEozuqOQ00v1UpV3OlRFQSmY9YqikKWpTIaKCkrx71O/VCsSKsCcq3PrIEPVbLIsLRBa8tzN1Mc1XZpzcyhFAu37Uhbd0VWeXKrQ9RMGQVLKvZu6xlPLFaqWRpgk5Dl8/+6Y63uHM6+r+x6n5xx++akltvu+FFS0dVxTenCEcYofpdztySRl6SqZIkU4K5ZGx5d8iNWmg6aqMyx3gLprkSYjhC4dE7PCNkBoGvcXdWGm8Pq7e4wKhNFK3eJgHDKKIc8SmYB0hadWaszVbK7upoyUlHd2ZTuwZihojksQJdzsBLxypsUzqzV0XZ9N/AqM/RBFVYsFThQ/lsCBKIhZXFykaasEQUB/5OEHHYJcotPark3FlG1DK43I0pxxLFio6yxU5IdyLZM/e3ebnVGEa+pUTWnve21f8OxajadWq0Rp4SZZmfi+SDuFFA2VhGmco8gyqVBdQM4nO/Vpz5iVhkXT0dnte6RXrrG6ukakObRcg8899nDo7HzV5L//whmu7/v0g4SlmnVEoPFR41ESyX8q5d/f/M3ffORW1v3xY08kwANlPSbxYba2HvT+BwOP79y5eOjZPr3ICkFUVEQTj3LX0qkvraAXEilfv3pAdxRKkmEuF/U4zfnuHY9fOmUdkYSfqAPXHZthMDsvqTkygb18us0fX97HjzJEJH0NLNPg5TNNDC0veBxSKTfKD69P1dTRREauSGJbHMfouk6ONIYyyJl+UMMkkez8io2tSUnuOMuxTV22UIQUUzQ0haqtM/JDbMtA5IfXRQjBueU6r93tSxLhpD0jBH4Uc3bOYjQc4lZcDMM4RL8VieX0vMvNjk9nHGDp0g42ihMcNePxpQbzS/NkWU6YZrx+d8idXkAuBDVL55On2/z8uTa3ugFdL6bmWCxVdZbrZtkCutEJuLE/kmx7RSLn4jTnziDl2u6I9dascrQXxuiahqJpJVxb1w2iyENVpYnSBJoapxmIwrq4qCgc06DtZNiGxihKy157nGZkScb5E/Pl7n13lPCtG13COENVYbMnTaE+sdEgTnOGsbQEXqrqLDVskjRHINgZJqSZoObKY+eZlC6JctjshZxou6iKwv0dp4atUzEUhkHMXM0hSRNURWUYSiHHpmOgawq1ao39SOPSSOBHKaqaY4gBy45gLHSGhTr9oqvy0ukWrqmR5jlb+yN6kaBmGZi6ihA5FUtnHKXcOPA5t1ChasnvfRxGJePfMlQqBuyG+QysdgIV18mpOhZhLNWxR/7hZsbSVT59qsm3Lo+Jsow7d+9yYnmOX/+FTxxWPA8JVVF4bPHDrwLeDyHx/vhJ8yKBj0kiea/4qBNJEKd87dJd5paOlrKTRbbu2uwe9NjZ3WG+1aRSPzSxCeKMe/0QTQUKfxFV1TBESpjl7Ac5a8docQlgGEip9CTNSLIM17IYB/IBWaxb/IVnl0sp74qlc26+wonFOtu7BwghjpWbtwyVxxYrXNwcECNwLIs0y0lROF0zZtRXD89FMA5i2o7GKaPC1b0xJDmaIkiKXvaTy7USgjlBMdUcm6EflEP+Z9cavL45kNwNAFQW6ibnF2zyNGZnq4eh6+zFJpvjnHEsq4DzS1V+/rE5Lu+MJUAgzThRhSdXWpxYmSeMpXLs16912S70ljRFoecn/Ok7e3z+ySU+eXIOu2C9CyEKCfVcalt1fRACVUi3Pk3TcXToDAO2BuGRRALS1EkRORXHkryIqfZqlOaYhWcIAArs9D3u9CWbXFNgrWnx3FqNi1sjidBiAot1Wa8XsGLD4LVN6TDZcKQKsihmC+/sjPmlJxfKdl3VMskQJTw2yXPu3zQLITXJhCJlQbzitX6csdkLCYuq64mlKq9tDtkfBhiGTpbnGAo8tVotme7bw4jX7krZ/JptSJXlRKGDwadWdeI4JAgCDAWiUY9x5uA4DkGSE8cJ1aqUyEmK62ZqamE9PKtWINGKGqaucXbepeMlDIIUx1TLZL1Us1isSUi1Y0l03v0Vcc3SebwuWFhpg6pRMTWuXL3OvC04s/LeQosfRTwKIfEnTfkXfkISiV44BX4UEcYJf/iDq3hRzIMKYCEEd7d3GQ/6rC0tYjqVmZs4zibVwQTCJBBZJtnfWYofP/zcJwKNtmlybW+ApigsVKV4YdXWeb7AvE9i6AVYpmzBHKcZlec5a2ZIvyrYi3SiNMMyTc40LD51qnHk9ZNQFIUwyXjlbJuKZfLOdp84FRiayoXlCs/ddx5xmnPtTgc/UyEfc6LlcGGlRruic6cbEKU581UJd520yhYXFd7aGvDadpdcSDSZHyXsjyJe2KjziRMNTlUzhsMhS4tLrCzOlUTNnWHE3kj2sPVifmPqKqMw4bXbXc68uFH4m6jl9yYQ0sp48l0Wf4fCta5A7d0fYSIl2yuWzrk5i9fvJfiJtEXOspxcgTPzLvVCIdiPM/7saoeun2DoBgLY7gdstB0+//gce2PJD2q7BnMV6d2RZBn9MGMc51TNQwa8ohQyMKHkWLQLLouiypM1dSnL3nYN7g2lP/1kWJ0L+We5YcsF2zK5uT/iuzf75TBcQRpbfXKjwd44IsxUHE3wxEoDWzusmm92fNI8pzk1cJ6zbA6GPqFW58Ryg/F4zGAwQNd1hoMh+/v7BEJWgkmWk+cZhiG5NnGa45raoUf95DsRAkPXGPkR51caCAGXd8eMI1mhnZl3ubAswQ8KkkU/jiW82iu4LJPjoIBr6qianPENvJB/+803eeb0Kp997izmf2Juxse5tfVhxscikbxXL/KjqkiyLOfffetNecM/QP5E5HLQ6/kepzbWsR0HTdXwp+DINUunaukMw0Ra9xZZJhESgrngvkevVcCb94b84E6fJJdQybql89nH5lhpHG/WZRo6fpRyyrEZeIFECA1CEDl2OqbpaPziMydIc4UgyXEtjZotd3LTSsVxmnNtz2N7KHfRVqzwnGPy/FqVF081ORgGuKZ2hPEcxBlfubxPx0/LmchbW2M+daLGqTlH+nQcgaYJclXjre0xpmXh6DLp5Zkczr5+p4cV9TBUiXVfmm8xGAdomkrFNunvjMiFKJNIeS00lVGc0x8HaKoU0PQCmWAVFNDk8HpnGEuVAU0Or8MigUsPE/kZgiTn9c0h9/ohuZA+FC+caPHcapWr+x5BLtuGTyxVeWrKw+Ra4RnfrjrkWTGbMizuDSJOz6Wl8+V01F2Hg70heZqiWDqqppW/e39UHYvuOGCzF9L1UwJfZbUlFXg73iGJMM5yFuoOSxWNJMsI4pTX73n4SUaj8H3JckHHk8ixX7qwJK+VIr+fqm2XbpqjMEWf2k1r+gT0Ad1xwBOLFcJAzlpa7RYtWmRphuf7bIceWwMPWwNDj8hV2Vo9s+CWaLjyOkxABoqU9jm9UOX0YpXuOMJQFawpbbiqa5evnVQyExLjJKFMFJYN/bBaf/PmFnf2evzyp55gbb557DX+KOLjOmz/sONjkUjeKyaJ5H49pR8lhBD84fff5vZulyhKsAwNTVVnnAPTJGV7ZxsFhdOnTmLoBQlOpDODeFVVePFUi69e2SdOBaoiEKqOSBMem3ew1fioOvBU3O76fOdWjzyT7RI0Ocz843f2+UsvrFKxZm/Eqm2x3+2T5Tl9L+DbNwdc3R1KbaZczjheOFFnTdUwNIVGRXI1yrmMK5NPmOT80Tt7dAoEkXwMdfK3tvmZs3OkacpSw5EqtvdVVa/fHXDgxVRMvRyAe1HMDzZHLDcsXGP21pJCljY39qQ1qq2rKIqGrmvkSoarqozDmCBTqVcsvEGfiwcHpWe267i0qjaToaw6dR1ToVDVpDCggsLYj1A1ha1+Qncc4poaGy1plLQ3iuV7Zim5gNWGxVJFp+qY9MchX7/aZd9LsHQFXVUZJ/CNq/u8cqbFr1xYYHN7j3a9SrvVnJHL2RpGGIZJlh4q2ark5ELQj3LuV3Cb+J+0KwYVS2MUJtRtgWEaJLGU6Gi6sg1pGwadUcDXr3XZG8UIhLw3g4DHFhwWahb3evJePLdY47EFp/AAkSKlfS+k6ZolClBTFRxDZXcc0/OiGb7MOIzQNQk2aDh6oc2loWqqdMOkYOmbGn4ck+Y5rnU4BNd0jYW5Fj/jVPjh3QE7g5AozdCymEU7Z0GFXjfGcR0sy8K1zCOcqgmXaqXlMvIPN2wVxzoC8ojTQxJjbyT1axRFmZlXTWLgBfzrr77Oi0+c4DMXTqF9yIq6x8WjzkhWVlY+ojP6aOInJpGAzO4flmzAN9+8zju3dwB54wWRXAAm0haBH7CzsyO1vpYWpDz3ZCd/H9opStKSP/D63QG9IMfRBRdW2pxrm+zt7TLyw3KomN0HLLi855Ol2VTfWGBpEOUKV/fGM60txzLwwli2OYRUOL2yM0BX5EKqahqJUHhjc8hqw+bsUp3xtFQH8twrtsXrm/t0xjGOqaEq0tJ4OPa5uudxZqHCSsOeST6TBzPLBbe6AYauFRvZifCghKTujlKeWLaJppLPZNdpaFIWRAgphpgj0DSdMAhRFYXVlWXW2xXiJCUIQjzfo9/vs7+3j2pYuLoiW0GGhPpGmeSLnJl3ygpoGKZ87eqBNL3SdfI0peEYvHSqgZ+pXN8doio6602HM/MuhqYSRBm9UNANJMtbUxV0XcdIEkaJ4PKOVIt1DemmmWc5NVdClxVFwdR1Mj9Ambo/J3OaNJVaan4QkyPIhcLbW0OiJGOuYvDcWo3v35a+6GqUIhQNx9R5bq2OocnNzbu7HrujSAIpVIVApIgs49q+z68+s8zza3V5HoY2I1UzkSwRuWzH6bpBksSoqkImFOI0x7xvoUuzjDTNeGa9xfYwZhilVC2DLMvwClHJjZaE4eZZTpBkrBRDcFHY+tqGyiunW4yjCY9ER1cFQRCQJzGdg33yXFBxXUzLxnEctPu8hkd+hG0apTRNEB71np88jyM/xNI1TE3Ftc3S1+f+EAi+f/k2t7Y7fPHTTzLf+OhaSHkuW96PUpH8tLX1CPFeVcYkeXxYieSNa5t8951bh++vKsUDL+1o0yhge2eH+bl56vU6jmWWPhnTUaKdimrj1JzLEysN4iQt0V9RGJUl9zgoWOhFsprImXRG4ZFyX1FAZClRLvkncZpKCHEB852QB6/vexLxpsoF2bAs1ETuaLdGKUuN433f/SjmxoGPrhuoipwr5FmOrsiW3L1+WLbVJslnAgqIkxhF1SBNQFVLeLRSTECDovqpuRKZVXEshr5Uq20WM4LdYYSmKgiRE4QemaKzXLdZqkurXCHAtm1y1cBXXMxKTlVNuZCNeWM3ZhTJuZlrW5xp2zy5VCvOVfC9Wz06XkLF0iQAwjAZhAkXtwN+6XyLM62jLpKKotDx5HdlWZYk6aVS7NHQFPqBlJifWP6mec7Il4ijOEnZaFrsDIKSKwOFVa6qslq3SvmbzX7At2708KaG7xtth8+ea3O3F0r4r6Nzes5lrSVtgYNYtqH0KTl2RQHLUBjHGTf2Rrx0Zk5yTcKjYpuWLpnbrqmRpgmqphEmgrZ9qPR79IJAxYDPnGry9l5Abyy/v6W6xfPr9RJ0IXlN0uxLU1XqFfvQJlqRBODpJXGyQDZbc5iaYHu/x3A0ZP9gH9M0cR23rFYm8HhVVajZFqGXPHStCKMEoSjomlKe14NifzDmd7/+Bi88tsEnH9/4SMh/k3b8owzbf5pIPoJQFMmE/jDmJNfv7fOVH16Z+ZmqqAik8dH+/j5BEHDm5AlMy8YytEOF2WPi0IvELhjC+SGEmEO2+CQmLPR6xUYIaQDVdA283v2Ch/L/jqaQZhlV2yJO00M5E0UhFzljPyztXSV3I0HVVBRNKYbUD74h5XwiRTVtEMUiWeIFjk6gJ6CAxWaVlt1ha3CoFqsgF05dVVisWSAoF9ooSQsNJoGpqbx0qsWfXT2g78eFhIRGw9H59KkmNdemP5LM/9c3h1zeGROnEp3UcAxeOTPPX1rXuXMwkqiq2Megz95uhFtxSVWTvVEkWd2lB0aOa+p0vJj9UcRi7fi5k2NoZdtosmERQpAJqJkaWZoQhiG2ZTMKEm73QsZRStO1Odl22BoEbA0iRCGrr6sqjy9V5PUAel7It24OCFNB1ZZSJnGWc7Pj03IMXpgyOoMCFi9kYsryowvjZPHLhdwMxXGOYxozfJaKpfH4QoVLO2MGQYquKWQIDAVePL1IIfb1wHvk8eUGS3WTjDZBGFG3jdmXi8PzcC2D/iig5lp4RfX1oKg4FqMgZH11iTBOiZOEIAgIgoC93T0EAqfQBFucazIoqugJuvG4ECLH0DSGvnS7nDxrx4WqSJfGb7x5nVs7HX75xSeoV45qav0oMaE0/LQi+ZiEUrRdftREst0Z8LU3rh5ZJCeyJpv3NtFUjY2NDdA0bENDFPpT77VjCeMYyzAwNGZudEVVZlRj5Q9lyyHLcixd56mVGtuDsJTLFkBSQCTPLVbIc0GOwDR00kxCWtNEthHmXRUvLQ5aRC4UyBNOLtQeeu4n2y5vbg3JRY6CgqopkrBYDKePC8cy6I18Xjo7x3+4uM04LBanolt3brHCXIEy0jSVrZ7P92/32B2l5HnKasPm+fU6n17WuN0RGG6dRsVmo2kz33AZjAMqjsXFzT5v3huiKXLXnAtBz4/5s6sd/vwzSzx3epFxEKEqcxgq7B708MYee6MOcaJg6Rq5IhdjRVVRi2umGwaappAd4yWw3pRugOMkxxUJuqaS5JJceqplsru7S6PeIFItvn6lwzhK0XSDfN/nzXsqv3B+kVPtRFq4KgorDYulmlV+Nd1Q4AURNVuXbZxcYCmQZILrBz5PrhwuHtWp9oyuqpyar/LmZh8h1PL7jFOJ1tqYqzDyDt01p4l6AE+t1qhYGjc7PmGq0HRUzs27tGypZu2H8czmp/yuTYNx0XJUyak3XbIsL1WX4RAp5ViG3HAVA3NT149YEU+iMpmLKId8nbrroGmaXEAFRHFE4AdkccjbV65hmiaO41CtVGg2asd2CCq2yW7hb+NH8js4Tq1bCIEzpc68ud/nX/zHH/C558/x5MnlD606mUB/P+jxfppIHjHez4X+UWVSeiOf3/v6G/hRjGuZpFleDvWCQJbitmWzsLiAUvIj5M3+oNlGGQIs05A3t5gwtuXwcyJrMr3xc0ydIJIPr4LC0+tt/Djlh3cGBIncfbcrJp89N4djqNJPJJhisfsROztyvvOpc8scXNrDi7LClU4lyxPmKyYrVZ2KI1sv6TFJ+MJKje1RSqeoABAgVJ0zbfsIWqzrxWyPEqK4z0LVZLVh8cWnlnhnR6oBO4bK2YUKjy9VmUgFhqng9y/tMo5STE1B0wxudny2e2M+taTx4uNrGIV3vWyDycrPD2Mu74xRNY2JI7CmKFRNHS/K2BomheCiUoglwsbqEn6U0I4S3h3tECQZiImGli7bTJqGlPJScG2Dg2HAu3tjtgchuqZysmXz+SeX+erlXYZhihCS0X9+0aWaDJhbmKNWq/EHl/bw4pxWzSVPU4ShM44yvnn9gP/dc8ucW3Cl4KBy2GJxLZO+NwIKodAsAxQ03UCNMqI0L+8Ricg7lHpP85zTbYt7A4fuOEBTFOJUEvTOLVRpu/oMoXcUhDimQZbLRV9RJOHz3GK1ICge3gvjIELXVGzdmIGSa6pKms3WFEE04Q5ZDIvFWSDQVfXIzj9OpdXx/UNvXVPlrHHqkZ/MZMpKRpHtxVq1Qppm1JtzBEGAH/js7O6ytb3NXLOOqptYto2u67iWSac3mFUTL9S6JyTGyfNbd+0jXYY4TfmjH1zmxnaHX3zhcVz7wR477zcehUMCP0VtfaTxo8ikBFHM73799fJB8SMp/V21Le5u79DrSp2tVrtVDtwnpEA4nG1YhS+4F2Vc3Bxwq+ujAE+vt3h8oWjzFIO/ySB+cs6TysDUNJJMlDtAgWAUhLx4eoHzy3X2hhG6pjBXMVGKJFaiWgTs7R3Q7fU4tbHKrTubNByDLz21xMXNAZu9EF1XOdWu8OxaHUNX8cMIXVWp2LJPvzeKSLKc+arFaqvKLz+hcGXXZHsgB+FOOuZnzs9jGnqZaC9uDnh9c0RaDA9V4ETb4ecfm+dnTjeoPbU0g66ZWA3/2ZU9vCgtHAoVhMiwVEGYa4y1WplEXNsoPqNyeE3CBCXP0S0pmSKvn0zMXpgg8tlENw5idE26Uz693uCHdwYkuVQC8IukvWKndPa2CVwXoVt8+07AwSgohv+wM045OYr5lacW2R/H0rc8C0i8Aesbq9QqVXYGPl0/oWKbMhkoEmLsmhpenLE1CFmuW9Rci0GB0jN0jSCKaTlSFifNREH6E6RJQqZorNaMUkYGwZEKoWbr/NyZBje7FrujCG8U88RanafXW+X3NHPPx/ct+oWqwXG8ozTLSdO4NK0Sgge+NheCUbE4R3GKyAWWoR/vHjoBpZiHKgjyWhwjC3RfJRPFE5kcgaqpVKoVKtUKCOnw5wc+gTdm0O+iqjqO65Z6cffHpOpxbZM8Ew81kLt2b5+tgwFf+OR5zqz+aCTGR4H+CiHwPI9a7RgV5Y9x/MQkkkdtbSVpxu99/SK90ayveJplXLt5GyVPWV9fZ/PeJiIXD/RPL30VdJ3fe2OTUTHUVDSdb1zd490di7/w7ErJCp4M4hsVp2RYm6qOqirEx7DcvVBi4s8s1kuOStU+hDuKXLC7t8vYD0mdNlcOYkQuhe9arsLnHp/Hvq8/Xn7WPGd7f8i3bg7ojEP58FsGTy+5PL/R5PmNRokMu3FjTBQnqKpGzbG4vjvgtbsDUFQcXUUpWjG3uwGXd8c8tVKT6BrLIC/aHhIaHbE/juXij5znJElS2LcKhsUaZRoaYZwyvQLIobzO3jCWw2FVQ1Wl0RiqSsWc3eX1/Ji7PclmX6pbfOr0HKamcq0b0R8HtCoW55eqnJmzCYMAz/e4eHvA7hgqlo6ua2iaRhSn3Or4nJ13WW3YHBwc4AUeq2urGIZFmCQ4linvDZHPLFoFDQNFUQueUUq94hKnckEPo5SlqsFi1WBnFBfoNYWocKu8sFLDMXVUVZ0xxJqOiqXx9EqFp5cr7G55nFirlxI1x8X0oq8pCsOHOXAWC7ll6NimzsALH/xaDm2la64pZxIPeW0Yy2ehVXXojvyH22unMjnN1V26k6H9fedpWiamJSuGPMvQFdjv9Bj7Eniyu7srh/aOU0oYpVlGnudUHZM4KboEDwg/ivn6xeucWGqhf8BEMB2PkkhAwn9d98FCkx/H+Fgkkvfb2vqgiSTPc37/u5fY6vRnfp7ECds722iaxvLyCo5lYRtyJ5QLcWy/WJ4ofPvqPuNYtkkmBDKhquyNIq7ujXlyiqQ2kR2xDR1VUbFMg7EfcXXP4/q+R5LnrDedYhHRyhK/XpFS6V4Bd5zwWfYDuNRVCZN+sZgJ9sUuX3pmFU1VHrgAhYnkpIzjFNs0ZDKLU169O8C1dB5fOuzHKlM74lEQsT1KSYWCqx2qcxua1G+6ceCVpLwwSlBUaNRs+kMfRZES9EJAlmflAFvTNMhSdCWT7QMhiO8XgwKeXK7RGXfx4gxLF2S5IFE0GiYl9FQgePPeiDfuDcsdsaYqnN73+NLTKzy1muFFSckvATBqNWq1Gt/a3sLQUxQKD5I0hTwnyxQ2ux5q0CdNU9bWDttvCDCUjFbFpjuOqJpqmUwm+mLzhWPfBFJedy1yIEkFiqrws2fbvLUt1YSzHJZrJhdWZHtK1zTJS0J5uDJ0AZ/OcoGl6w9NJpPwo+SIa+NxoWkqQy8sLI+Ph9BOwjR1dvZCqo51BFRyf1QKder3GpiDbId1x8FMJfOgaFQrjIKQ1dVlxqMRe50ulmUx9sZ0Oh10Q8d1XGzHZqHVZOjPkhiPvQaqyq+8dOFHSiLwaBwS4KcVyUcZjyKTsnUw4MbWrDmV53ns7u5Sr9eZm5tDURTiNCUTAsvQZgaJx8Wdro/IM9SidcVE5lvA3V4wk0gAUCBKMhxLLqp/euWA6wceQsiFeXcoE9B/9uyKJB4qclHWdQ3T0BgMx2zvbKOaLm92Ium3bshdfRjnXN3zWN0c8okTzRnJ+um4eeDhxRmOoaEh2ziuZTIKQt7eHs0mEqYWBCGrD0UIOVSeYl0rimTFT4ep6wy9iKprE0YJZ+Ydbh6M8aMM15K77aDwszg9VwEEQZJQdSzevtfjRscnTHIWayaPLVZ46VSTi1tD/FjCvlddnZ97fAHXlB4pu8OINzYHAFQL0macCW50Al6/0+PxxQqtmstwHByvVKwoGIaOoqpkaYrQdUSQMBoOCRSoVWskSYKu6eVCWa84PLtS4Zs3IsapgCxDIGG8z63XS4Y5QL3qMPJCBJKM6UcRmqrxqZMtXthokGU5k5c7hk5/5KOoCpauY2jaEeviSViGTphkhEmKycPtny1dJ4wSMiFIg6OyItNhFFXZBO7t2AZpmh+76Bu6VvKEgiil3lAfuDibk3aWcoj8q9rmDL9pErahMy5UCSaVzPRMZjrcqaF9lKSESUrNsag3mjSbTfI8l0gwP8AbDtjb2yuRYK7j0mpUjzWY+7lnz7LY+tEX8keZkSRJQhRFPx22f1TxKBXJ+mKL//ILL/Ifvn2J7tCj2+vS7/VZXFykWpv6ooQccA68gIV2izTNiB/wXpqqgCIVTcknC6wcaD7ID77iGAzHITvjlJs9yZ+YvFYIGIQpb2wOeOVsW+6eVQU/ihmNRoz6PVqtFnc9lTgNpOd5wdfQFMg1nddud3h80ZlxSpyOUSQfeFVRQFWKnXeOoRuMovs+p0IJDnBtg5oh9aqSJMEwJXMbIMuZGchrmir5H7nAC2JUFWrC52RVsOnrBIkAMgxN5fn1Oo8vN8pe9dfe3eWtbb/gbcBWP+TanscvX1jkLz67TJRL86WJgm6W51Rdi9s3u6S5KJKIvJ6mrpDGOdf3PR5bqDDyJI8lSlKyqT7+yTmX1+/2EYqKyORgPEoyFARnF2vM123CIGR/b588z3Ech4V2k/4wY6Pl8Pnz81zd8xglAldXynbYJJxy7iOT88RV0zJVglD6hhjFblXXVOIsK0mmYZJAItFXXijl8ieLqKaqZMUQXClY/uNAwl3jNJ2ZVahygEM2pWhdyorcJ3uvFMeetsGdDNfvT1Tla9OJVfAsw3x6cVaK+y6eSlxZnjMukto0YkxVFHLBTNtJzhCjI5WMrqlyNjT1yAkhCJKMJdso0GVQqVRoNyW3K4ol0djzPLqdLju7Oo1arSBDGiiqwrm1BZ49u8aHEY+qswX8tCL5qOJRZyRLrTp/5Rdf4H/+vT/m9nDE+vp62V+FQ4/zzVQUNrPFjsmxjh3KPbZU4+BGV/IfFIU8S8mEgqrqnJ4/2imWiBE5pL7bD6XUtyk1r/JcJiAVKZD3ypk2lmngBRGdgw6j0Yjl5WXm202uXdmTg93pvryqooiMIFGK6kE+aPWKM7MLr9uFhIWqIabk5pM0ZbFuzXzWifueZWiM/JDT8xXe3fPYG8XEWYim6SSpZH9fKKsvgaGrXN4e8u7umGGY4igJJ2oqv/riOXYGodQBA1abNqutSjkA7gcJb22NEEDVNsrqYBRJY6QvPrWEVbScJpHngrEfoRRy84eriUBTdWnxO1Ut+WGMpilUHLPU4Hpyucq+l7Hd8xBIAqTIM87NWZxamS8qiFgin+IYkcTs7HeIokgS51yXT6y6WLaFocnq0Z+QDHVVtuvu2/QnBeG16kpUHygoikzCksiozwhNjoMI29RJ81zO51BwJujA6Y+N3OlLUMUh2dV1rKNe9VDK3tdcq0QvVe+DDJfXukQ+2YSFBldl6n6ZgZdPAU1yBHGSzrx2JpQpgq4u50Kuffz5Tj6frGSsMhn691U/k3Mp0WUFElAUoEnTNDFNk0azQZ7nhEGIH/j0h0MsTcFxHJ74xCmCIPhQZhSP6o4I/BS19SjxUcJ/x+Mxr732Gi+eW+azn36er75xfcZMqu46jIJwhu+R5TljP5JwxDAp20WKAp840eLWwZitgSQCTlA75xZcnt5o4015JDimXLgmzPlyucsl9FPV9HKHT6FF1R977O7skmZp6f/uhRFzVQNFlXLfE5gvIiUTsNSwZhaVoRfI4beQD/OZ+Qpv7fj0xgGmJv1L4ixHVeDCcq38rOMglq2tPJXSKAWr+wtPLvDWvRHXDzyyPOfkgstLZ+YxFZkgaxWbb1/b5we3+3L3m+f0UOhEUN8e8vhynYW6lExxbMk3mMws7vWlq6JragghBRw1Q8fIBJv9oODbHN97b5gqqqKCqkKel6KCuRCs1K2Z12YFWkfu8mPaVZvPnVO41THZ7IyJwoCzS3UeW22XFYSua9iGgaFrCOFgV2pkWYYf+Pi+X0KwXVeysZfm2gRJgq5phA/ov4PUArNMg7xAPE0vtIpSzHOK9ScpJGBqrg1CIvwm9+lEgmXy/KR5XravFCEYPczhsxiu24aBaWjvOQ/xCg2uZsWmPz587XEM8kOgiU1/FByxn56OCYilVZMcooeFrGQiWlWXgX/0tdPXIheCoRfSrLl4xyQyVVVxKy5uxZVKBVnK5y6sMRr0+e7tW9i2zdzcHHNzczSbzUeadTyqYKPjOI/0fj/O+FgkEjjKAL8/HiWRTLzgT5w4wWOPPYaiKGwszfMH373E3f1eWbJL2OV984UpFIui6IRxXEJof/WZZW7se9ztBaiK9Jc4OefiBWG5gAshCkfEQzmTE22HS1tD0lygq1ICRdF08izlybUWncGQ7e1tTNNkfWV9pr+60XRo2SrdELQ0R9UEUSYl3p9bPyoNP+0XIkTOL5xr8Y3rOV0vJs0Fti5/79xCpdhJSthxo17l8r0uXtKhWbE4tVCn4jq8eLLJiyebU+8gqDgWqgJ7A5/XNwfSm54ctRDA9JOMH9zps9FyClVeq+TaTF3m2fsAyAtpEk3TiZJZBdrpOD3v8u7emP1RhGWaZEFUtLp0nlg+2mOeJIiKLWXeDU1h0Uwx7IClk0tHdqFpmpFlWSmBA5IYW6vWqFUl2TOKolIPbG93j7lGDdO20UwL0zSPLLKTiGIpIYPycMLrJLFomiYlbHSd3Z3dEgAw4Y9M1B+kAkROlgscy3jgQHkSAtmKrFUOdcMeFKqqMJhssCbMdXH8RlAmp4iKc7Tldn/Yls5gHGAWCKsHzYYAKo5Jb+xj6Bq2PmujcP91rLs2g3FQwt8faJ2twOdeOM+L508A0ryu3+/T6XS4cuUKcRzTbDbLxOI4zvva/D7KsH08Hn/kfu0fRXxsEsl7ha7rRNFDdlhTIYTg2rVr3Lp1i2eeeWbGC75esfnPP/cCr165wzffulGuZJOWzv0xES1s1dwSQqypCo8tVXls6ehiFcaSEV2xLfpjv3y4c5Gz1qzw2GKVd/fGpNlE8jpnvuZwvq2xublJo9Fgrj13ZIXVNYUvPbXEd2522ezLKqlmwIunGkd8rCeRC0FWmB8t1m3+4rMrdP2YJJO+GMZEGl7Ia9YZRXz1TsKBr5MlCfQi3trd59l2Trvm4LouFbdyKB+CHLQOwpwoydAVgabrZQKUXiEpgyBlrmoQpxmWaczMK1abNroqYbB2cT65gEwonKjptKruA1WTTU3lC08s8M6ux7XdEbqhc7bl8NRyRUp5HBOKopDkgihOCEZD+v0+q6urWJZ15LVCCKqFp7xlSmOnaei2oijYti13r+05HFNj96DHcOxB1idMcyqViqxYHEdWT0U4U9yZimMRJ9mxpFEAoyAoZmnG/v4euiqYX11F1dSyKpFIuxxdVQnjhLy4l+uVo+S7SahFEsuE1A07bs4y/Vkn98k03+M4r3qlAJ8IDlvFFcc6vjJQFDlb4/BZq7n2sVbOEzAAyqzU0ESFezqRWFNDe1mpSbkeL4yOoDJPLbX55OMb5d91XWd+fp75+XnZ7vZ9ut0unU6H69evY5pmmVRardYDk8X/v5hawU9QInm/M5IkSXjjjTfwfZ/PfOYzxw6tVFXlU0+eYn2xxX/4ziW54KsProiqjk1v6OPa5ntCFxUkemngBSUjXi1k1hUFfv7xeTbaDjf2PZJccHKuwoIRs7O9xZmTG6iGyYMKM9dU+bUXNuiMfJJM4HV2qDaOMnCzXHCnGzCO5SzjRMvBNnUqjnW0BCgWIJELvn1nxN4wwNRVHKeAICcp1wOH1QWb8XhM56CDaZo06zXi2MYwTPY7HVA1NO0+gbqCIaYqYJuHwpcTfxEvjGk6Bs+s1njj3ggvKgh+qoarC57faJSijw9aaGu2yadPGrywLr9nVVFKufH7k48QgoojkT67u7ukScq5M6dQNe1YCHLpk4GsIBRFqhYMx0cTm2NJDk+9Xqder0vZmTxlMJDXLM1SHNvBrbg0arXi/eQxjpvhTEJuROR9vbO9g6ZpzC8t0qy6JXlw8tlykZcKC5OBdX/sl9yX5D5pE+c+OHC56N+3e58k1OkW3IQE6Vo6YuqmOu61WZ7jBRFV2yrJoQ86B4Gcs7iWWc78Jv9g6OrsXKQgPFqGXqINFUWRIANmh/aywxCWM5nJcaq2xS9/6smHVoSVSoVKpcLGxgZZltHr9eh2u1y9epUwDGeqFdd1y2NlWXbsBuVhMUkkP61IHjE+jNbWaDTitddeo1Kp8PLLL2MYx+9KJ7Ey1+Cv/vKn+dMfvivROcdAZyu2FJebhS4ePxQUQshBavEQlcPEwq9Bfk44u1Dh7EIFXVXZ2dlhPPZZX1tH0U2sYrcfHlPeT+Y5pq5i6tBJMxYsA13TykV2GKT84du79IO0JALWLJ0vPrVI2zWP7OAmfxI07nU9DE2KHeZ5iqZKZvj+OCY35lhbbZHlGVEYEgQ++92uJHGi4KgaUa5i6CqiYMDHmbRIXWtXyt0hSEOxcRZRL67V8xsN5qsWNzoyQc5VDB5frFAxC/fBBy60Al1XJYdlsngIGPvRsUiteuFZsbOzg6qorK6tkuagIFFg08lHQktlO+vw+6VEgU0nNl0rYONTt6+qqKCZzM3Psba6TG84xvd9PM9j1O8hFK30WrFtmyyT90vNtfHDiDyfLMomvaHH9vY2tm2zsCAlfEZ+hGloqKokOyqKQrPqMvIiNE0rB/YCQRDJ2VfVMRkFEaqiShmfYyqEctGfQlRN7rvjYhzGzLcrmLq8BsfJjxy+djJcly2pCXH1uPDjeMbKeTqp3x+TVphjSCkc1zEfyF6fVDK1ipT1/9JLT34gORRN08pqBeRwvNPp0Ol0uHHjRlmttNttkiT5wEP7n1YkH3G8l0TK9vY2b731FqdOneLcuXPvO6Nbhs6XXrqACAd8553NmX+zTYPgPijtZOB3nMLpcTd7kmXESU6raczobeVZxr2tLZI8Z2N9o/RiCIvyXlV1Xr11wCiSsNfnT7SPPMyKouCHMQ3TKnf4X7t6QNeLsS0TReTkQmUUpfzJ5X3+8ifWyh2cEKIcCFdsixt7I4SQc+tJyJaJQFF1opLwpzLfbjIYm/h+iGIo2JbN+cTj4kHCKEhRC4vhimXwi08uzwzXy3NndjHcaCmcmpc7sfQYLk85LC/cD/M8LzTNHrAQhfFM5VNxTDr9ETs7O1i2xeLCYnmPiAIFVnUtwki6XEoS3PH30Gxii8pkdlxkuWAcRrSbNSzLYH1liYHnS+0o32d3b7dAWMmkkmc5tmViGSq6pnHQG7C9s021WpW8p6lzihNZwdVcm1zkcsaBcmRgP6lWxmFMxTZRgMGEYa4czlemvpwSGWWb+hGDqJkQciG3spyG6zDw/Flo4X0xWcibVZvBw47LhBQb0qq6D1XgnoQXxsw1KscqR8xEMRN8+cIp1hda73nch8VkMzCpViazlWvXrhEEEmqsKArtdvt9VRo/iTa78BOUSB7U2srznKtXr3L37l2ee+45FhcXH+n451bnabkWt4Y59w76mLpOmmbHs9xnBvHSM6F6jHtb+XJVInWWFmsSTTIa0z+QRk1rKwtHbq7dYcQfXLpDmCmFFIfCG/cG/PKTi6w2D7kKk3J+gtZJUdkehlimTCIgWz2GptIPUvZGEUs1q9ihQtWVO+s4SWm6BrqmkOYCcwplk2Z54SFvY5tSTuSgN2BnZ4dKpcL83DyKojA/P8/JFZ8rO0NGQUxFVzjVhHDYQXUrWPZx1ruHi2HVscjyjCB68CIwcT80DQ3HshiMH74QTSqfRsXhoNdna2uHWr1Gu90+9ly8IJZDXFN/4E758NjSPqBdr7zneUzOu16xSdIcTdWoVqpUK1UEcmDv+z6D4YC9/T0sy6LdbGDqGltbO7RabZrN5vEHFxAlCZqiYhn6sS06RVHQlMIcTt5OZRIuZyxMIcaK5JLlgiBKqBWtquP6BRMwiaJI7lOl0OCa2B0cF5qm4oUJpi6l9I+rvidhaBrjIEJReE9mvq4pUo3azqk7NgP/+NkawPpCk089cfKBx3qU0DStbHEB/OAHP8BxHHq9Hjdu3MAwjJnZynHeSj+J8ijwE5ZI7m9txXHMG2+8QRiGfOYzn/mRMrmqqjimxn/xC8/z3bdv8dq1u0eY2/fHZDjYrDoSunjfPSsE3OsHbA4y2llMvZEwHg0JRn2sSo1Ws3Xs7/zZ1QOCJMfUFTlQRSWKEr767gH/hxfXShOsmXagAp1hgKLpKPc98qoizarCJJPzkIJWH0YJrm3iRwmOofHkUpWLW0OiREKMs0K+/snlGoYqSWDj0ZjtrS1a7TaNRmNmQV6ouyzU3eLcBFEYEobBDEzWrUjb3OlZisgnA1spcPggD4lJ6JrKYBxMCVo+eJenqyr7nR57e3usLC1gOQ9uG4hC3WDoh4ctmocolTQqLv1RUFRVD65KAGzLYOhHJcx7ct4KsqKzLZt2q02apcRRyGAwwA+k4CF5ytgbH7luUAzBFSnXrqjKkRbd/WEWWnJJltKsVxj7EVmeHQ7skSrECmCbk9fmM9yQ+68ZQr7WC2OSLJvhsxx/jQtBSLmHoOYUys/HzO8MTVr6AoWwpI0XREckZBR5cFAK6G8QlsKS9yc1xzT40qcvPJIy7weN+fl5lpaWymql2+1y/fp1giCQwJoisUyqlf/UEvK3bt3it3/7t/mTP/kTdnZ2WF1d5a/+1b/K3/7bfxvTfP8tv49NInk/LonTFclwOOS1116jXq/z8ssv/8jOiZqmFSZLKi8/fYaTy23+w3cuMfAejm03dbl7dSyTJE1JihbQZFbR9STCStlNeG3L56UlhcWFeRbbLYL4qDR9x4vp+wm6Nmk3KJClmJaUKt8dRSWjvJSoL2KtVcVglzjNcWyLLEkO1WZVhbZrlANJBQXTNBj5EVphT/riySamrvL2zogoybENlSeWazy3Xse1Te5u7dLv9zmxvobtVkgesJNUFDANAyEUDMtmdXmZTn/I2PPodXvsJXvYjl2iwNqNWtkSVFXlgQgfeb0n0hxKed2zPD92Jy6VVMds7+yzuLSI5VakV8d9s49JTFqTk7abVcxoovjo57Qto2w1yvdOiwRx9Lw1TZXtugJ8MCp4JOIYnTFd08gUhTCMWVpakgKQvk86HrG7syvlPYp2iqEbM3OjmRZdnBzh31Rdq2wFTqokQ9dwNAkTniZDTkAJk/DzXM5WXDmzKJ9XIaub6aQxqZBrrs14yiF0+hqX3xGyuj8yXIcjLPnJwPw4r5OKY7GdZFSsw+91Iix5f1L75U89SdX5YEPwR4lpHsl0tfLYY48RBAGdTodut8utW7fo9Xr8q3/1r6hWqx94QP+jxOXLl8nznH/yT/4J586d46233uI3fuM38DyPv/f3/t77Ps7HJpG8V0y3tra2trh06RJnzpzhzJkzHwrC4f7W2ep8k7/2xZf4yquX+fY7d/HjjJZrTPmqy3mBQM5NZhjxfsQfX96j48XSHlXI3X0vUnirb/DnT7rl4HEiTT+JtCCgKQhUVSfPM7kyZ/L/ytQuaroisQvZ9+fWG3z/Vg8/iDAMgzSVEuxPLddwTbWEcdYqh/4fWZbjZRGNqsPzGwrPrNYJ0wxbl97lpqFx++4mvh+wuraKZlikWXrs7vcQtSM/k+RuxNSqFRq1GmGckKQJvidJfd5gwPaOSqWoVmxL7jirjoUfyaHz9OdVVIUsPVyYguj4nbhAEHpDdjs9VlZXsC0bhEQEOYUfzXTlI6XsZxPMBGo64ZGUMiUziaE8uyMqyJMwj5FOn6DAps9bIIj8MTt7HVZWVrBtuWFwHAnvXlmF3mDEaDSm2+lSq9h0dMmyd+xDboNXSOq7tl6y7SeJ4f6W3oRtP0mCCgpuxcQLQnRNP6xgBWQioz/2qFgmSZ6TZjmmoeIFMY57HwS9XPQPBRJdy3hg+/f+4fq08vX9MfE6mfj0VG2rbNPdvxZMkzS9MOYTj21wemXu6EE/gngYIdFxHNbX11lfXyfPc95++20ajUZZGdy8eZNf+ZVf4Utf+hLPP//8R4bi+tKXvsSXvvSl8u9nzpzhypUr/ON//I//fzuRvPPOO2xtbfH888+zsHDUe/tHPf509PyUf/NuzPeuJUSDfVQEF1ZqvHymjabJBXZ6gZgw4r0U9scxmiqlwrM8Rysw/1vDiGGQUHeMcgc2jZufq5rYukokVNRpOZNMYGgKLUefWdiEEHIXm0vV4ufWGxiaylv3hnhxSsXSeG6jxfl5u6xEjuz0KIbfXih34QZo8eGCfHdzkyTNWFtfQ9cKDknOzIA6m/AWCqHC+0POQorP6gsajQYLc23iNGXseXLwvFsMnl2XkSthshNS3QS6ez88Vp6LKNn5fpSQZhmjXpeB58+q9xYRRNIHfLKIW6ZeIH+OeViL5OM6FkmakqbZsYlhEhMV5Jor+ScPAwRMI8zCOGHU73PQG7C6unpsWyHJoNFosLQwR5ZldHpDfN+f0QObVCugS7kc1ybJMvwCuXV8FEnQ1AvNsUQqJ0A5W5lG+PnF9XNNnSTJComZ40mVEw2uumsRxOmxl3gSk+F6vbBnfthrJ4mqapukueyRCSFmuDrTrx0HEesLTV55+vRDDvrhxvslJKqqytNPP83/8D/8D/yNv/E3qNfrPPvss/z+7/8+/+bf/Bt+8IMf/Cc428MYDAa02+0P9Dsfm0TyXhl3ssh3Oh1efvnlDzSQCuKMb17v4CcZn9host46SuBTVXUmkWS54P/85Ytc2R1jVmqYtoPX2eHNe0N0VeHzF1aO1wVS4GDoI/kTClmWSk0sQFEhzcCLM+rO4eI28g8Z8ZDys48v8sdv7xCJQmOxUAr+xEYDS1cLboUtvU8KfP1kYVMUaa16YblKnOVosoVOo+IwDmQr6EGtHZjdhXf6Q7qdfVA1VldXj31Ip3e/iqLIBPegFWCqIsjyYuqLcnTw7Pn0+3329/Yl5LXdoFKpHJtEpkNKvAj6B3uESc7a2hqaevyDPNHrqjkW6TEtpvsjCOXGoFmTc5GHhcglKqhZcx8IWZ0975BBt0OaJqytrT20TZtlOVEkpWaq1SqVSgWBkGZPvs9oNOLg4KDUA0uiCs16VSoGPwTIAJJM61imvEfuqzSnkV0yoeTsH3QwNBXLNA8Z9gVqbDKwn0SaCzRVld7y74GqSvOcXAg5v3vIcF1BVvBRklFzLPI8f+A6Yhk6/9/23jtMrrM8G79PnV52Zmereu9aNTdsg7DcLUt2AAMOGMdfcPhipxAScAoxIXyYOB/wgRMwEDAJ8S+ALRdsy7ItSzbu1mpXfdVXbWen7O70ctr7++PMOXumbtfu2ue+Ll8XSKOz75ydee/zPvfz3Pd165eAuQi6iIbRDiQuXboU9957L+69996aIxETgRMnTuCHP/zhiE4jwBQiklqIx+PYu3cvAGDt2rUjIpHXj0fxwNOHEc+KIES1xbhj3Qx89fqFumgNDGokGt7rHsDRcAocQ4Fl1JkAT9NMJAeiOBzJYF06p4dYlaLOzoEiCkSJgOd4ECKDKAoUok7Fe23l8y2apYnXYcM8QnDd0gYc6EkglhHhtrJY0erGfIMpZCaXB0DBaa1gg1GYKlYDGyl97sBh4wvT+0MckwkQivYjFeuD1e6Ex+ut8TRb6OxiaHBMrVcNIlvo7gEA4zZRJDz7fJAkCelMGulMBqFwBAzLgrNY4bA7YLVayzYNQRQQDoVgtViwcN6s6pYY2tssiLOSpMBuKXdNLoXNymMgkSmcfATUaEyChWeRSGdVTycrV3VDlBUZ4VAINEWhPtAIj9Ne1eZdA8cxhtZpVeS38BZYeAvqvHW6H1g6nUZ/NI2eYBB2ux0Nfi9kMFWfklUzSfWeVZrDMSKbSiCWSKG5uRk2Kw+GopApnBwVouhlP4qi1Hmh3GCpUytfVdr0jYmgklRwCC5ps9dgNIRUuygZsGzl93bt+iVwOyo7QEwECCGj9toyDlGPtqT1ta99Dd/5zndqvubIkSNYsmSJ/v8vXLiAG264AZ/85Cfxx3/8xyP6eVOeSM6fP48jR45gwYIFOHr06Ij+bTCew5efOIicKINn1VOBKBM8/v45zPbb8dlLZuivLS1tnenLgBQ2fg0URcHm8UPM20ExLIAKAq9CkE30o8lO0JOmIBPV1E4i6ia7tBBiVQkco3YMOW1WzAswmFNfmzBtFg7xdA5z/H6ksjl1ylmbVDeI6ur7Ux1p1VKapWa3UyKRQCYZg8NdB6/XDSvP1TwNMAwNWSHIC0JFK5FSaBsWAYHLVn1TZlkWDfV+CJIEd50fuWwWRBLQGyp0gRVmL+x2uzr5HepFwFcHu8uNdG7otXgcNn1GQpQkVQhOVz6tWS1coQ1V1Xw4loGFq5y/oQ50qo7Cmv5UqQtMkiQEg0E47VZ4fH7QFK3Ob9ToAjMK5rrI7yguJ2p+YC2NASRSWeTyOWQyGZwLhkARGTxv0QmZ4zlQoMo0lGpDoIQQJGJ9iKcyaGlpUXOCZAIJCjwuO5LprDrsqqjlLhvP6R2N2ucxkakccGW38sW6iD7PUi6uO628eh8Mv6pcoSmidGB49fxWLGgdvzL4cKA9lI7G/Xc82n//6q/+Cl/4whdqvmbevHn6/+7p6cHGjRtxxRVX4Cc/+cmIf96UIZJS5lUUBV1dXQgGg1i7di38fj9Onjw5Iiv53+3v1aNMtevzLIWcKOP/23O+JpG01tlUjZsArGFpskLgdDjwxzdfijf3H8fRcyH97yRJQm9Q3eSuXTEDh8J57DvXr1qE0xTWzfVjdXPl1j5NuFcIMUwAV39KdtosiIQl0LRa6rIUDO+yeaGMRABSVNdPZvKwWbWa/+AOTkDQ39cPIZeB1xeAzWbTBwG1KfTyB+Xia1cSkYvXPbhhaUI8xzLgufKNk2EKG7KiTorb7Q4ADqxoaEQ8mUIilUI8rs5eEEIQ8NWBsww+ddZai93KIWEo8Q1qROXkU0lc10Rqt8OmOuca7oeFLy7J6MOXPAsa6tyRIAoIBoOo97phd3mL1laNIBxaLkgR0anrLhX5rRZOzxCxWW2wWW3w+/yQJAnZXBaKmMe58+fAsiy8LieyWRssJac84xBoJpeHJCuIhiOQZQmtLa0lm6TaBWYtRDTkBUnV7oiie4IZ24tTmZzeLZjJqeXRfBUNRRPX3Q4rEplcUVCWEWrJTSUfbTLf73bgqlXzyy86wRgtkaRSqXHJIgkEAsPWkC9cuICNGzdi3bp1+MUvfjGqtugpQyRG5HI5dHZ2QlEUXHHFFXrXykhTEnsTOVWbKNnMaIpCKFFcuy4lksvn1mGO347uaAaEocDQlGrpTYDb17SgzmnFzZevwNxmP17dewzJlGpjYbPb0BBogNtpg82aw6oWB0J9MRAxh1ktrop98BQw2FtfQCUhXoNqT58f9AcjamkMhAymyWGwnq1ZxBuRLXniVIiCcCgMokgINDaBNQjURVPoFK3b8GsW8qVicjWbEhvPIZUrF30HO4eKW0N5lq34xJ/OCbBarXC7nOgJhSH0C2gO+JFI59AXOw+WYfWZFZvVVrYWYwtxKXRPLfugG251cZ1CIp2DlWchE0AUq7cAA4BQ2Cg5iuD0hQtoCvhhtbuqlC+KCUINOyt3CNCgi/w2C9J5oUJXmQqWZeFyugC40NTUjHgioQZ4RaJFfmBae7HWJszQQF8oBJqhUR9orrrZaGTgtPGFgUZZ16mM7cWEELUpIqV2aBGKqGI8qpRzqEJqI8+CoRmkpMoWRZo+kyq0FI9HZO5ooO0lU9208cKFC/jYxz6G2bNn41//9V8RiUT0vzOa3Q6FKUckAwMD6OzshN/vx/Lly4sYfaThVgsbnIWarRqHCwx2nyxsKD4ZaGK79mFkGRqP3LEKf73tELp6UxBlBRxDYXNbM/5so/qEQ1EUls9tASVl8d8vvAGvV4341J4cAdUB12vjkJCyeqeJcSK+1J+rFLoQrxAIkgSeZQv29Nr0sVw0nZwshBBpm2YtjyLtidPGsTjZfR4Mw2DGjBmo5vitdV657UP7HwGDNiV2K6+X1aoP+FEFIZ6DrCiwcLWny0VZRm8oDFnIYf6c2SA0A7tLLetp9iN6N5PdBofdAZfTCafNAlFRilqIS0EICpqSBXTBlaAWcoKk5tU7bRhIpit3Dmn3JK12p81sbYTd4RpS5FdjlynYOLU7rlbNnCjq58vjsFWMsS1bS06Ar84LD5f1PgAAgFFJREFUxaPA5fVCFES1JTuVRl+0DxzH6V5g/QP9cDusaGlpHbLpQbeWp9SQL+3UW826hWZpZPMCLByr+4JVEuwBlQhTmXzFeOHSzrGrVs2Hzz05vlWa0D4SjUOde7q4ee0vv/wyTpw4gRMnTmDGjBlFfzcSoX9KEcnZs2dx9OhRLFq0CLNmzSr7JYyUSG5e0YifvtGNSDIPmqYKw3lqsuE9Hym2R9AIy/hhnOmz4/+7Zz0OB5OIpgQsanQWxcsSQnDs2DH0nDuH+z99A473JnHg1IUyf65SQ0rdLtumeiRVIxENmhDvtFkgiIOTumoIVbHFBTC4gXsdVgzU6qICIOQFnD1zFm6XEzNbm5DK1s6vAFGfDL0OW9U0OyNkWUGmMKMSr9AWXIpsXoTDzuvkWOmLqBAF4XAYgiBgVusMWK0WKIQgL0igKRoOuwMOuwOkvtDNlM4gkUggHA7D61YJBSwPjuNq3huaUk9uQ1lzAIP6lstuRU6oLFInU0lEIhE0BhrgcLohSnKh1JevuuGok+CqdlBt0NAIl92KeLpQNrLxyNTY9HWbFBBVw6Eo1dnZ61XtarJZpFIpxEIx2HgW2byM3nAf6rxu0DRdlQTtNl4/FTOFAdNUhcx1iqLgstnUpghCIS9KqkFkJlcm2FMUpaY4Fk7npfHC2mlH+xnL5zRj6ezhP1GPN0aTRQJcfIuUL3zhC0NqKcPBlCGSRCKBkydPYt26dVV7mEcabuW2cfjpH67BN57rwr7zcSiEoMFlwZ99fD4+vri4fqj90ktb9iiKwvIWd9m1JUnCvn37kE6ndXuWpsZGzG6qw4vvHikyWKxkUa/q4urwodG9txq0sCy+IG4qilp7TsVSUBRFL0docx4sQyM+hNVHOp1WN1evFzNbGpHKCQUxt7btCM+xSGTzoICqsx36+yxYgsRTuZqT4hpsloKwT6DPhWjZGoD6+9EsV1pbW2G18nq9vHRwkAI12M1UV6fmhfQNoD+RgpjPgWVZsLylYl6I1cKqT/VEda2trhENGl1qefXG2r+GWDyGgf4BNDY2otFfp5caU4UJcLXhoPzixlPf4LUrd4E5DBu4LKsuvtXWbeO5wXjlChoOQzPgeR75fB4+rxcOhwOpgh9YJBKBxWpBfZ0HhGKLfNQ4lkHe4MYsKwTpbL7i75JlaXVmBerpg6EYZAUJdqtFHSgtnNhBVL0snc1BUQbLV0bb+2QhMZGiKPjcDny0bUH5L+oiYjQdW0B519Z0wZQhEo/Hg6uuuqpmD/1QDsCVMD/gwH/evQ4XYllkBRmz/XZwTHnpwUgkQ9nPp9Np7N27FzabrcyuflajH5+7/hK8vKcLx8+HARROJCWbhKZzEKCmN5EGlyFTm2UY8CwLl8sFq9Wqzg8kkohGorBYLHC51LkMiqH1DYLC4AZOQBCPxTEwMICGhgY0Bfz6ZpUq2I6UTn7r94mmABB9QzA68lY6ChutwgdnVCqn8XFssR17KiuAZRlYeBrZnAhRFNUESQuPQCAAj8M+eJorzKhUa1tVN/Y83C433C43CCHI5rKAJCISiUJWZL0LzO1yqsFjuo3ZoEbEUHRR9xAhBDaLpYhMizq1Mjn09fcjmUiiuaUZgTpPWcluMNa3OPGvkpW98dpGgtB0HOMJq9q6GZpST7Ulvy5Nw3HaLegbSCDYG4TL5UJjYyMEUYLP4AeWyWQwkEhBEVX3Ad5mg8PhQJ3brQ+nFr9Hoew9ckxl7UmQ1AFDr9OBZEbtAlP1MvXfGU8riqJAkmQ4rTxoCmBZBjdesgz8GC2TxorRzJAIggBRFE0iGQsoihrSL2ukpS0jWr21e8i14/NQ149Go9i3bx9aW1uxaNGiih8Wm4XH5itW4sCpHuzuOFZW2lKNCSX9e6x7Ezmsg228Bui99YX5EEEUkVcIPE4bkhlanx+QZAnZTAaikEf32TOq6OxQ/aysNqsePdrX14d0Jo3mluaCz1XxZpXNi2BoNb+iVKTneQ7Zko6kVJVN1m7V/JoMhGHQH4yZHhSl+myJQvH9lwpCPEcD3T0XdDt1dxVRu1LbKsexhQaB4lZuu00tISyur0cmm0U8kUQimUQiPgBQjH7veIsamVs8na/es2qT/FRBiI8N9EHIqdYyHpejatu1ZOgCS6azYFmmqpV9afNDXlRtYpQquk/puku7yopAgGh/HP3RMHx1dWhuDJSdOFmGLSJkQchDFvLIJOMI9YZ0HzW73Q6eG5zQlwx2LCh0V1WFYXiVodW2aIZhigV7DHaCxZIZ0BSNq1fNh989+e65o50hAWDayE80RpPbPtLrVyMSQgjOnDmD48ePY9myZWhtba15LYqisGp+K2YEvHji1fcR6lXbhGmKBk1RyCslP4eC3sZLYdBa226xDJKI0fKbLvd2YmgGzQ0BpLJ5eH1+VXROD2Ze2Gw20ET1SJrROgN2m7XQe1++WcmKGqlqPG2o8ydVOpJKNiu+wuZthHHDV8XT6g0HmXQG4XAYTY0BeDwesAxTcw5Gb1u1qQmVFIWKZSMNqqDNYUZzEyhKzerIZNT/euI9hdZjdWO0FWr46gZHVZ07UYiipjBKEpqbm+FzOZDOC1XXDBTb1LAMM6SoLYgyCCT49BjoGsJuYWN2O201XYoz2QxCvSH4fD60NjXU1KoA9XNusVhh97gBBJBMZ5BKqZY3/X39YFlWL7tqfmCKokZAW3i2ZpkTUDss07l8UQt3qWAvK6qz7uzGOiyd1aDvETRN6/9dbIyGSFKpFACYNvJjxXBSEkd7IhkOSqfbNWimapFIBBs2bKieDVEBPrcDn/zYGmQGQlBAwcqzNSeojbnVgighJwj6kKFRfNSgtX067Zaipzyj6FyPeqTTabW1r2C3koz3Q8jbwFmsZV5UGoynDSvPlcxLVIChvKQoQ9uOaBt+nduuDq1VQDweR39/PxoaGmCzO9RaOq1mgtdqiKEKXWAuh6ViBnkpFIWAgtrezXEMXC4XXC6XXgLTkvCksASbzQaPywm73QFnYdajeP5C1XEoikJLSwsYmoYgK6q+RVUuGRrBs6xKhFVifY1w220YSGZrliM12K2cej2arjhbk06nEQqHEKgPoN5fp5fOSv3UytbLMXpOvNVigdNuQzYvQlHKO+hcTjusNjusVhtYjq05HMuxTEEnge6llq2wjmgkCp4B7rn9OlgsFsiyDEVR9P8A6B1UFEVdFGIZjdiutf5OBvGNFVOKSIYCy7IQxSG6isaASkSVz+fR0dEBRVFw+eWX646sIwHPsVjWWofFq9rw4nuHh3w9gfrE7rBwkGUFEhlsS67UZUSUwTRDujBVbUQul0M0EoXL5YLf71fLaqKAbCaNUCgClufgsDtgd9hhsZQHUDEMrXck1fLp0lZPiEqItezgNThsFgwkM7BwrB4bW7gK+vr6kEqmdCdc7f0nK8yoVIKuz1AYcu1WnitYk6Boal0rgdltdhA/gSiKyBZaZHtDEfA8j/o6NxjeApbjIUsygsEgOJ5DQ0NDwXp98CRH1+hiAtRNWxPMtVjfau/TamF13azUiLK8bZZGvpATX8luPplMIhKNoLGhES6XQx/uA4x+apVEfqKfMoBSN+Gcnneu+YEpooD+WALhcET3A/PVecByXNFwLKA2jGQNxJgqWYd26iOKgns/fTPcLrUkpG3giqLopEIIGfQDK5DJRJLKaDSSVCo1LfPagWlGJAzDIJcbuoV0LNcvzTzZu3cv6urqsGLFilF1YQDq05CiKJjV6MPnrrsUL71/BCd7IlVfrw0oJjJ50DR0B9xqrao2Xv1iEYIicRqAvkHU++vhdqs1bb/bqWZi2Byob2hEJp3GQDyJYDAIiqJ0UrHZbLDynDrlXcOC3QijX1M1O3gNWsjSoP5Q2EhTWYQjYQh5QXXv5bgy91/jjErFDibrYAfTUGtnGNWhWds4S63VB38vFDiWg6+pAamsAJ8iq8mG6QyEvgF14xNEPVudpmg4DZ1UgHryqdbFZOFZddDU8HuuZlXC0JTaBmx4ZtCNKCs8uVcStjWCEHJpRKNRNDU1qVPwlvJOPElWIMpqqTNl6AIsHSLV7tRg5orqEkCBQn2dB8l0Dq0Ol+4HlslkcPrMWdAUBZ/XDdAc7A67mj9foYyqr8NmwfFTZ6AoCj51/ZWY0VDe6Wksa2lkohGL8Xs+ESWw0ZS2pms6IjDFiGQ4pa2J1EiMDsC9vb04cOAA5s+fj7lz547pKcH4hGS38thy5SrsO3kBr3UeKyu7aO2yiUxO/eBLBJJUyCev0MbLsjREWdY3QUmSIRU2we7zQSQScTQ1NenCsstRvDlKMgFvs2OBz4d4KqP7MkWjURBFhsvp1H2ZmMJmVC18ymkvt/BIZfMVLVDoQvdXUTcbUfWJWF8ElFJw7y3cO7ejXFyv5mPFcwwyQjnx6k/tRbMbBBaO03M7BjFora5NravrGNw4GVr1tHI5XcjmsggGg6hzOZDM5nGm+ww8LicSFgtshSlxI0o70uhCi3ilj39pXj0hSk3BfPDJXc0jMRohGkFAEOnrQ2wghgXzZkMGXQj+qvywppc6C12ALMOo5otVHnCMFjWKQoqcoTU/MJdTLR9qnzuSSyE+EEUvw+vNDpofmL5uheDYyW6wDIUr16/ChqVzKv58IzSSqHZa0faV8TqtjFYjMU8kFwGjaf8dCTSiOn78OM6cOTOmDHgjjE9FDMOAoii0LZiBGQEvXnj7ICLxlP5at92KRDpXNGSofYFL5zAoSvXoKhUsFUJw4vRZEFnEnFmzQBUsKuxWrvKMSOGJ3Wm3guc42G12+H1+cAyFSP9AUWux9uWWZZXcMjn1tKGbGlbYVMqf8AmsFTZCURQR7A2C53k0NzfDblPbaotOFyUoTTMUCxtCabu1fm8UUpjdUM0i7dbqeSHA4NS6y26BKMtF80Ea0pk0wqEw/H4/PG4PmngWoiAgkUohkUwhGu0Dx3N6IqQ2d6GRvtNmgaKgpnZWpFdZLEgMkROvPrnL8LnsiFUQ4gkI+vv7kUwm0dLaApnQqqX+ML5fgiCB51mAIjWLnIDqEpAXJPAsDY5hK17f6AfGMgwURUIum0FfLIGBgQEwDKM3O1gsFoRCIVCgMGf2LFy7fumoNt7S04rxv/E4rYxWI5mOHVvANCOSiRbbKYrC2bNnIcvymDPgjTB+YI2o9zjx2Ws34Pf7T2LvsbNwWPki0bn0C1JsQpiFw2atUIKQdKG3qbEZNMvAYbUgL4hVO7Q0GMsoNE0jmc6hzluntxZn0hmkM2kMDAzorcVetwsup7No/qMyBrvMOJYpa5nN5XPoDfbC6VLbewkopLJ5eJxWZHLVy3rGewMQeJ1qB9NQm0uq0G5dLS7YCKJALVlxLBiaLtIrEskEotEoGhoa4HQ4C2sRYbda4bDb4HC4VNuWjCo6l+bX22w2UBQNmUjgOXbIrA6WoZFIZcsMHSuB5zjE0jnwPFdY16D+FI1EkcmqDr48x4NhKGRFCZIsq6fWKt1ogPrHFIB0RhiWyM8yNNK56i3lgyCFbB0KnNWOhfN8SKazyGYHT8mSJIGhGfh8ddi0diFsluHnildDpRKYRiqjPa3Isjzi+O+L7bM1nphSRDLUl38iS1uZTAbxeBw8z+Oyyy4bUfD9UNDeVyUSZBkGG9cswqyGOrz0/mHd5qHaxql1sKgllOKNJC/k0dvbC5vVhkAgUBiEVG0+7MOw+VDXqLIBURRQFPRSC8uwcLvdcLvd+saYzqTR09MLhgbcbhcohoPdXrvrhGVopDK5ovKSNmFf56uD1+PVX8vQNHJ5tb5utXA121YBVVCPpbJw2HgIolLz6drCs+rMjkJqGi2qUFMoU4ap9XQuj1gshlgshuamZt1YVFuHdj1NLGecDJzOQnhXLq8Scv8A4qQPoYKnldOhhlBVEsuBwtR4IcmxkuOvERSlWrwQhQwOgjqsiCcziEQjyOfzaGlpKZTcVBsW7YSYTNfWwrQ4aWBokd9oe6+3lFeJDjDqLfop3MLDZrHAYrUgm8vCalVnVOb67TjddRChs6cQCATg9/vh9XrHrHNUK4Fp5DLc08po50hMIrkImKgTSV9fHzo7O2GxWNDU1DSuJAKoRFKttRhQdZHZjXX49MfXYmf7MXT39te8ntNuwUAqA5Zh9Dq4Vl7xer3w1nmLiIjnOSQz+TIhvhKsFrV7CQRlbr8aaIqGw+FQNz+bBX2xBNKZNORsAv19UbC8RRfsjdqAbstBBq1BguEootEoAg0B/Ym+cFeKyl+VxG8jjPYgmZxYUaDWoOeFKEA1LURfRUGz0tqqZVlBWsojl04gEVdjcS28peI6gMGmAM25gAIFq9UKq9WKpoYG5AUByWRKn7sIchx8Xjd4ixUsxxs2ZgKGoSHmBz//pbG+xgRDp63E8ZkA8VQG8YE+KJKoZokU7HQqCebVCMJZmPsxoprI77CW58QbowOMeS52K1exq04QJHVOJBoGx3JobGzE7CYfbr+6DZIkob+/H5FIBAcOHICiKPD7/aivr0d9ff24fI+rCfbGUwtQfloZLZGYpa2LgInQSDSjyCVLliCRSFTd7McKrXOrFMbarMtuw9arVqPzxHm8vu9ExSE6m0GLUMVmGYqQQzgcRiAQKPogEkKKRGqjEF9pQ2ZZWn0CLfxY3e3XoU7Elz5tasKztjECgCxLUEQB4f4B9PWp2oDD7oDH7YTI0Pq1CQjOXOhBJpXC3DmzAKr4S1e+RsMApqIUzajwHItMSVdbuUCt3cvyvBDAoIVoNvyF96oL+YZ7Go6Ekc/lMWf2bPA8p5eMOEMXmhGyrCBVZmtCwNAUaJqBx+OBx+OBoihqsmEmg/6BGFiGBs2pLbKN/jpkKpzItFhfYytv6ZoB9XPW29sLQghaW1t1oqlkwzL4b4oJgmWZmqdao8gvSgpyFRoeNGi6mdNuRS4v6q3JpZBkCcEeVTebM6sVFp7DDZcuA0VR4DiVWBobG9XArYRaZjx79iwOHToEj8ejk4rLVc2uf/gY7mmFoihIkjTin5dKpUwiuRgYzxOJoig4cuQIQqEQ1q9fj7q6OnR1dU0okRjXrk0MG3MLtA/emoUzMSNQhxfeOYT+RFr/N6VeVIQUZi3SKcyZORMWq7Woxl7aoaWifCIeqC7cgwCJdK6sXKQ+eZd37DAMC4ZhsXi+F8lMDql0WtcGJJno0+GpVApCXkBTczNA0WpoUaHmX/pUb4T6FD7YecUwNMq6v/R3Wm7fUutUo9qwD27KPMMiaXA4VhQFvaFeKLKCltYWEKiOtWreSx40BYhVRP4iWxOaAscwZeugabo4vz6XBxQRyWQKB8JhWK3WwZNeiXOx1srrdvBIlHW3yQj2BkHTNJqbmwFQSBYMHXNidfcBDXr4mJ7jUh2SrDonuJ3WoQdYQSFVmE8SJLlsVkaSJPQEe2C1qO3UeVHCTZcth8NqKb8SRemEPH/+fOTzeUSj6mm3u7sbDMOgvr4egUAAPp9vxPpFJVQ7raTTaaTTabAsC0EQhj0MmclkzNLWeGA4GokxM2S0EAQBHR0dkCQJl19+uV7fZhgG+fzQ1uijgbG0ZTweA4M+X0YEvE58dtN6vL7/BPafuACaLvaiUrO+w5AkCa2traAYtvCEZ9EH2Wq5+Bo35EQ6B5ejXLg3wlgukmSl7ARQilRWAM9xCPjqwDbUI5nOIZvLIp1SS3AEKqnkc3kwNKMHRDE0hUyF8CsjiKHzihAMqf1oJyuP04bYMIT4dFZQ18JQeqi8cTNuaWkZ3BAKROt12YalQQmiDJdNK7kQVPv9aCUwC++Ex1sHWZLQF4urJbCB/mIftcKwJiEE2bwIl82it0Nrcb4cz6GxobHIGVmSFYBQ+pxSNahW9oM2+ZXa0I1QZ4GG5/asldWoEvdmURIR7AnCalNJhAKF9UtmY3aTv+b91WCxWNDa2orW1lYoioJYLIZIJILjx48jm82irq5OP62Mx+atfR7y+TwOHDiAlpYW1NfX6w+MwxmGTKfTaGxsHPNaJgNTikiGgvYUMZqOCA3JZBJ79+6Fx+PBunXriq4zkV1hWmnLWFsdKviGYxlcs3Yx5jT58Mb+U/rpRJRE9AZ7wbIsWltb9Q+kJsS7HdaaPlcatA3Z73YinqlsUWKELKsblcPKD9ldpK5ThsWmGh5qpYhcLgeb3Ya6ujpkM9kiW3KX0wmXywmX3V4WWlQJFEUhJ0qwWbmaug+gDXhmYbcO3WWkXVvzGoslUugJBmHhLWhoaKhQ4lNt8ofuSlIn6FOF4dGhOp5oWt3EtWHNGU0NhawOoneB6T5qVhvqfV5QDAdRUsDzLCRJRE9Pjz4gaVy3UQQ3TqJX+sxoJcxqbehGGHURo9tzpWsby2rEYK+TzubQ09MDu92O+vp6UKDQUu/BFcvnVr2vtUDTNHw+H3w+HxYvXqx3gEWjURw/fly/P/X19airqxu1YJ/JZNDe3o7GxkYsWrRIv9/DHYY0xfaLBKPV+2iIRBsynDdvHubNm1e2IZSWn8YT2rW1D9NI0tPmtwTQWOfGjvcO49iZIHpDvXA61DbZsvAvWi23EIKClUTtDdZh49GfSoNj2SLxsxq05MJqQrwRdquWeUGBIjJCwSBsNjv89f5CJ5YVdXVqa3E6nYEk5nG6+wxYlkW91wOGt4DnLRXvk7H8VUv3ATA47KdUG0oshrapUqDQF0sgGg7D43LB7fWWnZRsVk7fJIfqSmLo4gn6Wh1PZfb0Bddkm4WHrCh6w0M96iHkBUAW0BuOQhAEWKwWWCwWpJIpBPx1sDvdRdcuF8GNk+jFHmkWnq3QHViZIDRvrKJ7ZFi3kTQZhlaz2EvuZyyZQqg3iPo6D+wuj/o54VnceNnycZs8t9vtmDVrFmbNmqUL9tFoFIcOHYIkSfD5fPppZbiWSNlsFu3t7WhoaCgiEaBYW9FOJpWGIXt6ekbtnjHZmFJEMtTGqm2+I93sCSE4efIkTp8+jVWrVlU9Pk70iUQQhBGTiAanzYIrFjUheqEbos8Hl6s8bAsotnnXMt+rlbisPIdMIdp0KCG+VLgfdPut/LTJc4OtqlpHmc/vQ0tjQH0SNrycZVjMaAogmSm4FmeySGXSEGJxMBTA8FbVQdZmB03TsBSML0s3wsqdV+XDj6VDicYN32Gz6NpPNptFb6gXXq8XHq+3UHoZ3PBZVksJrNyVVDzNX1nkNwraRssUj8OGRIUJ82yJRkRRFOrcLmTyecywuyBJEhKJBGKxGAAgOhCDjyiwWO3gOF53Za5UOiyeU8qBYSg9WKoMFQiCYeiqp6tiAs8VtRtrEAQBPcEeuJwu2J0euOxWZPMCrrtkKdz2kXvcDQcsy6KhoQENDarTcSqVQiQSQU9PD7q6uuB0OnVS8Xg8Fb+32WwWe/bsQSAQKCORUmikUjoM+fvf/x4dHR34+Mc/PiHvc6JBkZEE804wFEUZ0pRx586d2LBhA9zuyhtpKSRJwoEDB5BIJLB27dqaoTE9PT04d+4cLr300hGtuxa0GumRI0dw/vx5uN1uNDQ0IBAIDPsYSwjBqVOncPbsWaxYsQIKa8X2dw9hIJEpek0lGxFAfaosfdJkGLrQXVL+xa80n+ByWJBMV37it1l5iEXZIpRKJIK6qfX19RW19zptfNGmWclaBVA7u3K5HChZRGQgDlEQ4XDY4XI5wfGWiq7FFA04rYO1dqOIXwkcy6geWXkRFp6FIEkgCpBKpxAJR+Cv98NtIG0tf16SJVgt/BCzLYMzKtVsSoxgWQY8w4BQpPAwUPthw2HjIUoyZIXoQnU2l0Vvby/qvHVwe9y6+242kwFHA7xVdXw2pmlWgs3CqeWWIUw3AfXE57ZbhzUICgB1Ljvi6WxRV6JGIm6XG3W+Ov2zsHbRTHy0beGQ15wICIKAvr4+vQxGUZROKn6/Xy/V7tmzB36/H0uWLBmVdvv222/jtttuw3e+8x38yZ/8ybS0SJl2RLJ7926sXr0adXV1Q14vm81i7969YFkWa9asGbKvPBQK4eTJk7jiiitGtO5qKBXVBUFANBpFJBJBf38/bDZ1cLChoQFut7viB0iWZRw+fBixWAxtbW06EQqShNc7T+DAqR4AxTXvSqAo9VSjPlGr9flaZSyKpuCwqPMndlvhtTU+KQxDqfX/QitqKptXLTgSSTQ2NcJmLQ4WY1kGHEODQM2krz0Vr5KhIAjIZbPoG4gjl8up7rEl4VMaHDYeoFTNaKipeG3DzwkSREnWya+hoaEi2TMMBZdNHX4cDtxOK3I5seLgYCk4hoa1RktuKZw2HgohRbNEfr+/7EGLgIBnKKRSqcL9y6uWN4UJe54vvn/OQsuvlWeHzEVx2PhC/ku5EWUpVGFf0FM+M3kBeSGPYE8QHo+n6Hvd6HPhUxvXgp0C5R5FURCPx3VS0SJxM5kMfD4fVq5cOarS2/vvv48tW7bgn/7pn3D//fdPSxIBphiRqGlrtT+0v//977F06VLU19fXfF1/fz86OzvR2NiIpUuXDuuXHIlE0NXVhauuumpE664Eo7hWqUNDkiT09fUhEokgEomApmmdVHw+n14K27dvHwghWL16NSyW8rbH4+fDePPAKQwk0xjOxmO3cqApqqYgbITLYUEuLw0pTgPqZlXntCOWyiAUVmctmpqbilLyjGAZGjYLP+STuga33QIF6uS1QhQ1fCqdQSarpuMZ0yCtPA9CCDiWqZ4GaFi53WqBoiiIRPsQ7e/XnXArQSsraZ1utb5CPMdAlhUoIGq2eJWpdQ1aB5V6ikTNpgbt4YGAgJJFnDp7Hg2BhoqzCA6bBamseupjWQY0IYjGYoXTShY0TesBVD6PG/lCmzkBgctmLVjsl79PjlXr/toQIssyqs1JBW2OYajBbjEUyI0Gjp/qhsfrRZ13kER4jsGd126A1zk13XBjsRg6OzvBMAwEQVDjBAqnFZ/PNyyto6OjA7fccgv+7u/+Dn/1V381bUkEmGIayXAwHJuUc+fOoaurC4sXL8asWbNGdO3x0EiMJFJND2FZVh+m0toTw+Ewjhw5AlEU4fV6kUgk4PV6sXLlyqofzIUzGtDkc+PF9w7jfDg25NpYRt1YhyPEUxRVSOHDkC2igHri6Yun0N8XAU0IWlpbapRPCFhWTTq0WjjICqnpe+Ww8YgXyl/anAdjcI/N5tQ0yEg0AqIocDkd4C022Ow2eF2Omi2rLrsNiUwW0WgU2UwGixfMQ16sPE+k5ZZQVPWI4cEbqN5DbZPVM0CqhEQZT5WlekXpZ8hhGxTMk4kk+vr6MKu1FQ6no6ybSh3YHDyZSZIMAoLWpgYk01kQAv3+9ff1oS8SBm+x6UaJqaw2/0KXlPJImS5ijNM1anNqC3GxLpLP5dHdG0RjQO2WMq5707olU5ZE8vk8Dh06hEAggGXLlkFRFAwMDCAajaKrqwuCIBQJ9kb7HA0HDhzArbfeiq985SvTnkSAaXgieffddzFjxoyKUbeKoqCrqwvBYBBr1qyBz1eeUVAL8Xgce/bswTXXXDOif2fEcEhkqH9//vx5HD16FBzHQRRF1NXV6aeVal0kiqKg/dg5vHXwVNXSgt3GI1PooiKFck41IZ4QAqfd0DUEUiV7QoWapZFDsCcIllNJ0uOwVyzREEJUW3xj1geNqk/sFl41MzR+UhmGhoVjyshQIQo4mkK0P4Z0Jg0hr3Yx1XnccDgcUECVlcCS6ZyafyIIaG5uBsdycNh4fVJc/5m0erIsO51RKNivD77XSu9RA8vQ6uZu2FSdNh7JKu7JditfFG7FswwkRYGiEMRiMQzEBgZPUIW1aBoRRalEUm2Ww3jy0TJfYok00hl1kDSfyxeVEOvr3LoON1Q51dgmXBrTnM1l0Rvshc/vg8ftKbqHK+e1YtP6JVWvO5nI5/Nob2+H2+3G8uXLyz6rhBCk02m9BBaLxWC32xEIBJBIJLBixQqcPHkSN910E770pS/hwQcfnPYkAkwxIgEw5EBge3s7AoFA2UlDEAR0dnZCEASsXbt2VAExqVQKb7/9Nq699toR/9vSSfVKQ4bDwblz53Ds2DEsXboULS0tyGaziEQiCIfDiMVicDqduljvdDrLfkZvfwLb3zlUVr/nOVbNLSkhmWoeU+5CJkopKlmUMAwFURBx9vx5tSXVX6+vy2blIUpSUfpdrQ3IYeOLntgZhgJNVe4G0snQGLTksBa54kqShExGdS3OZbNw2a0Aw8PhdMDtdEAQJQSDqnVIU1NT0cmveMNXy1+1ymQ2C6d3MA0lrhuJXP3dKFWt79X7QKt6RU6ApdB5NdA/gEQigabmJlgtxQ8YdiuHvCDrljq1QFFq6YsiKLNWkWVZz6/PZFUxvc7jhtftggxm6JIxBXgKFjsayWazakNAJS2nNeDBbVe1gWMnXxcphSAI2LNnT1USqQRRFHU/sM9+9rPo7e2Fy+XCunXr8POf/3xcYiqmAqYdkXR2dsLj8WDu3MHhJG3I0O12Y+XKlaMeVsxms3jttddw/fXXj4gEKhm4jeYkcuzYMQSDwarNBKIo6ppKNKrmgwQCAQQCgSLnU0GSsLvjOA6dDgJQn6QZhq6aoU7RgNMy6DFV6+lYff2gEE9RFIgsovvsedTV1cHj9ZTbptCqe2+64O2UKeTQVwPL0AUhNl9IQBxitqXw5MvSNFK56uvWXIsVKY94IgkAEGUFLMuiubm5YhmOgMBtt6mtocPsYHLaeMTTlS1eSmHlOTA0kB7iPWrr97udiCUziBQE3+bm5qpNJC67BQohQ4rlgEqCoNS27mrxxVoJUcznkEqlwYBAYVg1TtfuqPi9Y2gKFE2DZ2kIooJEMolQKKT7XxnBsjQ+u2kD/O6pN5SnkYjL5cKKFStG9ZB47NgxfP7zn4fL5dIjvDds2ID/+I//wPLlyydg1RcPU04jGWlKYjgcxv79+zF79mwsWLBg3JIMhzsYNJSoPhxoLcrZbBaXXHJJ1dMUx3FoaWlBS0sLZFlGf38/wuEwDhw4AEKITip+vx/XbViKOU0+vNJ+DDRN6bMlFd+DwWNKURSk88O1KLEiFo/h7IUgAoEAXM7KrdWyom7CHocV2bw0ZIeWFqfqczmG1USQFyRYOAYUTdVyHdGH+AhRg7vOnjsHAtVI8uyZs7DZbHoJR9sUKVBQFAWSosDCVy8RaaAoIJOX4LJZCzMq1d8sIUS11c/li+xBqsHtsKE/kUZsoA+SkENLa0vFFmhAJahkNq+7F9dqCmAYCqIkQ5KVmq7Jan69DVavB26vAFEUQSQBA/Ek+qKDBp12hxpABQJYC7G9kiQjm80i1h9BfaC+4mdl45pFU5ZE2tvb4XQ6h30SKUV3dze2bNmCzZs34wc/+AFomkZvby+2b9+OlpaWCVj1xcWUO5EIQu0umCNHjoCiKCxevBinTp3CqVOnsHLlSjQ1NY35Z0uShFdeeQUf//jHh2VBPVY9BAByuRw6OjrA8zxWrVoFjqu8MQy1jng8jnA4jEgkglwuB7/fj0AgAN7uxK7Ok7gQiQ15HYZRnxwp0DXT+gD1ST2fSSEc7cPMGTNA0bWfSbRaPSEENE0hl6+9IWunIhvPVSy9GUHTAMeqm3ypnlAJHAMcP9kNp8uJOTNakM4JEAS1fTaTzhS1Fns9bjCMqiNoJaDqnVek6ARVq4MJKC/x1Vq7SmIiekMhiIKI5pZm1LmcFTUomqbAlGg5HMuAYUrFcm3NxSU7rexWiXwqlSUZhi6kacb0MhhFUQjUeUAYNXEzm80iFA6hIdCApoCvbBB0yexG3HDJsimnF2gkYrfbR93ie+HCBVx33XW47rrr8KMf/Whcs+GnCqYdkRw7dgz5fB6yLCMWi2Ht2rXDHk4cCoQQ7NixAx/72MeGtEYYDxKJx+Po7OxEIBDAkiVLxuUDpol9WgkskUjA5XajNyXjWChZs4tqcLakdtgTIQSJWD/iyRSamprB81xNIV59KjbkY1BaOFL1ifu8KOrieumQYem1i5sCCnoCx1Y0USSKiNNnzsNXVwev1wugPHdFVgZ1ATGfg6xAP6nYbDY9rKp0wy8VlLX7WuleWi1cxfkZbR7H+H5omgJNAWfPX4CiKGhuatZPzEZdptr9qLWWWlpOaaeWNi9S6bSqlgBVvUpRCKBI6I8l1Hsoiio5uVyoq6sDx3JFg6Belx2f3bQeFm5qFUhEUUR7eztsNtuoSSQYDOKGG27AlVdeiZ/97GfT1gJlKEw5IhFFsaaVe1dXFy5cuACn04m2traKsxVjwUsvvYSPfOQjVafOjW6eYyGRUCiEQ4cOYd68eZg9e/aEPYnlcjmdVE6c7cGBCwmA4fXyAwWqaodRpQl3WZHRF4lAlmUEGhuLiKmSEA9UF9dtFg6iLBcJ8QxDgaLoihP3lTqpqm2EmraRyuZ0QsoVLE/8/vL6vNo1NGj3opWEkpmc3hqbzqShyApsdhvcTifqvJ5CjobqX1VLn7HyLJSCuwDD0KAAfZ6i0trV2Q11U7ZZWJw8fVaNT25qKtvQaJqC3ap2n2kGi7Wg/V5ZhkEmr3bxVQeBy2FDNi8WPvO1twueY8DQFCSZQJRkJFNJRCIRuJwuiJKIXDYHjuN0Ym6s9+KWK1aiwVvdcWIyoJGI1WrFqlWrRkUioVAIN910E9auXYtf/vKX42JdP1UxrYhkYGAAe/bsAcdxuPrqqyfkiFjLgmW8RPXu7m6cPn0aK1asuKhdG2q+Qwjb396PQ909+hBfY70PMqlMiMa2XFmW0dvbC7uVh9dXX/H+UzQFp5XXPanUUk/1zcooxANDz6uwDF1oNRb0yNtaeg7Ps6AARKJ9SMRj8PkDNTv6tC4zWyFV0ggCtT1dI5V8Po86twsWqxUWW23LEaBQGrPykBUy5EwOoG7KHEPj6InTYFgGjY2NoKnqn3mPUz0RGIm2GjiOgZVji7zDqkMl1bwgDTmdrz2UAEBPbwR9fX1obGqE3abec1lRtZJMWj3xrZrtx6XL5xfZjkw2RFHE3r17wfM8Vq9ePap9JhqN4qabbsLSpUvx+OOPT4n3NZGYNkRy/vx5HDlyBA0NDcjn87jkkksm5Ofv2rULbW1tZV1TpXYno/lwaWFafX19aGtrG7eS3Ghw6HQPXnhrH3LZLKIDcRCiwG6z6xG6pe+PpQlOdZ+Bz+uBw+UdcvNx2iyQZBmCJA/5FKvV5Cu1n1Z7vcdhQzqbrzjYV/ra/r5+KEIWzjp/1Wl1IxxWDqCoIbudJElCNpuBLOaRSmWgUJQuNlst1or3yO2wQlYU5ITaOg4AsAyF091n4XU54PR4QdUgEe2UA4oCzzBDaFwENqsF2ZxQ8ZRXCu1EqZYYLTXJR3ttPBFHKhFHY2MjWK5y1WB+az2uWjZTtw3KZDJ6TkggUJvwJwqiKKKjowMcx42aRAYGBnDLLbdg9uzZ+M1vfjPu0d1TEVOOSCRJKpouVxQFR48eRU9PD9ra2iAIAs6cOYPLLrtsQn7+66+/jmXLlhVZsIyHHiKKIvbt2wdJktDW1jZse+qJRCyZwUt7unA+MoB8Pq8/aYuCWNTBJIgCQqEQZjQ1wOX2IDdE5xKgCuAWngMIhvX07bTxyIsyWLrKlLgBmikkgJo2IoQQRKIRULIIjz8Ar8tRlPJYCSxLgxBAKjgn1+p2Mua5K0QBTWSEowPIZFQzTc3HSnMtNpa/1IFKtupciiJL6OnpgcVqQ32gHvaa2SXFIv9Qw6al5UB1XqZ8uBOorItUIx8rzyEniojH4ugf6EdzUzPsdptedjN+b9wOK+68dgOs/OCTujYzFY1Gi7zo6uvri9rbJwqSJOnefKtXrx6VnhGPx7F582Y0NjZi27Zt4156n6qY0kQiiiI6OzuRz+f1IcNwOIxjx47hyiuvnJCf/+abb2LhwoV6ycmYFzDaIcN0Oo3Ozk44HI6adieTAUVR8M7hbrx3pFvXEkRR7WBKp9PI5dQNp77OA5vDDY7j4HHahohRNXYC1Z6IBwAbzyErinrrbi0hvlRMrtZJpRAF4VAYNBT4Ag162amSmG1cd6mjby0LlEraj83CQZQkpNJZvQtMFEW4nHZYbXbYbHa9Vq4J1MkS+5a8kEd/JAzeZofP59M3cYqm1CyRkvdaTSeq5NdltxYsXio4Lev6Chl875JcWRcpJR+aVu13wpE+DMQG0NzcXDQk6SwYf8qK2rX3qY1r0ez3lF1Xg+ZFp02IK4qiW47U19ePe6loPEgkmUxiy5YtcLvdePbZZ6fEw+LFwpQlklQqhb1798LhcGD16tX6l6+vrw8HDx7ERz/60Qn5+e+88w5mz56NpqamcRHV+/v7sX//frS2to55zmUicT4Sw4vvHtY3JAKCgYEBxGNx+H1e5PICUuk02MIAmq/OA57nIUrl5ZlKG1s1Ib6a8FzajaRfu2RyXYOxdVZWVC2HoSk0N7eg9BNuFLONf1e56woVLVCqdV0Bqu6jTpQXcmFEAZIgYCCeqOharD2V5wUJuVwO8f4IeLsT3gpBWkCxDf9QGpTR9ZnjGBCCmiW1QVsTUT1h1Dh9akSYyOTgsllwrieEeDyO5ubmik/iGvmsXTQLG5bMrnrdsp9DCBKJhN40kk6n4fF49Lkpu90+pu+VJEno6OgATdNoa2sbFYmk02ncfvvtYFkWzz333LRNOhwtphyRyLKMYDCIffv2YdasWVi4cGHRhyQej6O9vX3CAmDef/99NDc3o7m5eUyiOqD2j3d1dWHJkiUVvcGmGnKCiJ17j+LomRAikQiyuSxaW1pgt1khiLI+Ga49aVMU4K/zAAyn6ioUXbNFtNITdS1xvXRDVo0mq+d0MAwNmiI41X0WHMdh9sxW5IXqZSy1vVWdaRlqml9bqyQrUAip2XUFGMtL+aKTiyzLyGQzutisue46HA44rBwuXOiBw+WFx1P9aR1QZ1QsLIPcEDMzGuwWHhQ1dL49AIAC6ly2Qt7N0J97t8OCYG8Ekb5+NLc0w8JXL+fMafJhy5Wj64LSoHUiaiUwzeFhNFG5sixj7969YyKRbDaLT3ziE5AkCS+88ELNzKMPKqZcP9rZs2dx6NAhLF++vOLE50SmGAKqiG4U/EfzgSeE4MSJEzh//vyozCMnC1aew3XrFiPbH0KoV0JrSwvcTodex9cmwx0OB0g9QS6fQzqdhpLJIBoJw+1yIWWxwmazV/xCEj0NUJ36ViNfq4vrenSt3QpRlAtT5dU3tmxONY2sr/OgsaEBqSE2TS0L3eMsJB8OsWlqKX8uuwWxZO0pdC3f3G23QpCNvmQMXBVci8OhMCgQOO028BwLWZZrbmqSJINjaJVoq5QBjWBYGpmces+HIhOHlUd/IgO71VLmk1YKC8+i+1wPkskkFs2fC6EGqTlsFlx/ybIxax1WqxUzZ87EzJkzIcuyXgI7ePAgFEWB3+/XS2C1hG5ZltHR0QGKokZNIrlcDp/5zGeQzWaxY8eODyWJAFPwRBKPx5HP56s+kY3WD2s4IIToaYqtra013XarQZZlHDx4EMlkEmvWrJlWR1xtyt5isWDWvIV4ff9JnOntH/LfERDQIMhl04j0xSEIAqxWq/6kXcnGw223QpTlYQnxFKWWrhSZVBXic/kceoO9cLvdmNnaBFFSQFEY0tJEc/RlGbqGmD0I7XShlpfKc9mNsFpYtTREautEyaQ6a9Hc2ICcICKbzQCyBMKwehdYaaaLMbFyqOwSo8hvHBys9M03Ogtr98fYnm0ERQGxgQHE4gk0tzSD5/iqJUmKAv7go2sws6HcQ268QAjR72UkEkEqlYLb7dZLYA6HQ98zZFlGZ2cnFEXB2rVrR0Ui+Xwef/iHf4hQKISXX355WGF7H1RMOSIZKiVRFEXs3LkTmzZtGtcBH60zK5/PIxRSSzuxWAwul0vPdB6KFHK5nB52s3r16mnV9pdMJtHR0QG/368HgcmKgrcPncaerjMVNx0jtLKTy25FfzKNTLog1mdzqgdTwdiPt/CwWfiCvlB7gh4o7oyqpFUAQCaTQSgUgs/nQ2ODv7B5D9fSZNAepNamCZR3MBmns0tRyXLeZuEgl+hE8UQc/X39mDdnFgg1uJmJkghKkRAdiCGTyYJlB0nF7/WUzc9Ue6+lwVMaKjcREFh4rox8NU0pk8/rxKkQBdlUAtGBOFqaW4rEb5qmYDeYegLAZcvn4vLlc3ExkcvldLG+r68PPM8jEAjA5/Ph7NmzIIRgzZo1o9pHRFHE5z//eXR3d+PVV1+F3++fgHcwfTDtiERRFLz00kvYuHHjuLXWaYJ6qaguCIJu4a61I2oW7qXRuNpG7PP5sGzZ2I/vFxN9fX268eXcuXPLNt1z4QG8+N7hqtbvpd1LxqdS3W6koAlwLAuH0wGL1Qqb1QaKoqoK8UBlAdx4/WQyiUg0goZAAzweV8Wp+GoeVpWaAtRN01J22uA4FlIFG/7KXWnVLec15+REJod4PI5YLIYFc2dDJpU/L1qb80AsoearZLOQCYHNVtxaXPm9lnehFS+mmJirNhto96BAnJm8gEwihr5YEs0tzVWNI52F+9hS78EfXN02qd8JzeQ0EokgGAzqXWANDQ2or68f0V4iSRL+6I/+CF1dXXj11Vc/MFbwY8G0IxIA2LFjB6688soxl41GkiGitSNqxogcx+lhU5Ik4eDBg5g7dy7mzJkzZTuzKqGnpwdHjhzR80+qISeIeHlPF06cjxT9eTWRutJTKSEKiCyhLxZHOp0GIQR2u13XXVx2a9ETda2OJJqmkEuncKE3XJictulDdpVQOrcxlKWJ0eRwqHAooNhOZqgNmYAgm0oi2j+AWTNngKKZIU58Klmlsmp2STyRKmotLnUt1rzGKJqqGTylwWbhwDIUEsPItyeEIJOIYSCRRFNzy5BP8y6HFXdsXKvmwEwyFEXBvn37IAgCFi9ejP7+fkSjUcTj8aISWKWcHw2yLOPee+9FR0cHdu3aNS5msR8ETEsiqWVjMlyMZVJdURTdwr23txeyLKOurg6zZ88edl7zZIMQgtOnT+PMmTNYtWrVsI7mhBAcPB3E7s5jkCSleP6jCtSnUrUkYtxgCQjy+TzSacOGaLch4POCZnlYeB4KUSpOXGvT6olkAgvnzYFMCt1iQ2yamj4gSDLEYUzcAwROmxWEKMPKC6FowG23IZZMV51CJyCIRqLIZDOYM2sGnHZ7TdIxwuO0IpsXi05ugmiwbDGkGQbqvLBYLcjmxSHLkjzLQCEEVgtXM1OeEIJIJAxFkjBj5gzQdPWMGw1br1qNuc2TX/YxksjatWuLSnH5fL6oBMayrN4FZvw+y7KM+++/H2+++SZ27949LToxLxamHJEMJ2539+7dVcOfhvszFEWBLMujng/RYn3D4TAWLFiAdDqNcDgMURR1i4dAIDAljdqMVi1r1qwZcadJfyKNl97vQiSWrNkCq4FjGTgsHGI1hhiNG6IsiHA6bKA4Hg6Ho0hoVjcz1Sq/qbkJPMfDZbdAlBTdvbcWNL8rUVaGFOIBtfwlyXKZtlHtfSpEUecvKuSyE0IQDoeRF/JobmqG161mydeaQtfgtKuGkjRNF4WKGaGlGQr5LFKpNEDT8LhccLmcoBmuqk5k1EWMMyqla+8N9YKnAY8/AJZhh9Sg1i+ZhatWLah5zy4GFEXB/v379cHmWsOMWv66JtgLgoDHHnsMbW1tOHnyJF5//XXs2rULs2cPfw7mw4BpSSS///3vsWTJEgQCgVFdfzzsTvbv3w9BENDW1gabzaZfO5VKIRwOIxwOI51Ow+fz6brKVLBLkCRJ/1KtWbNm1NO3kizjrYOn0X707JCvtVo45PKCQZOoEZpFCGw8i3DfAIgsoD+WAMOqQ5B2mx0DsQHIsqwnGlp4FoKk5rlXEuJLr10q3NcKk7JZOFWMJtWnyg1XL9IjSie/FaIgFApBltS1e12OIl1F7bwiFclKf48Gzq624YOCGsWbF/XW4kwmDZ6h1Ijhgpea9pRdqQzHskyRXxchBKFQCBwDeH2BshN3JQ2qye/GpzauBTPJWqGiKHpo3Lp160Y0Ea91gT300EN44YUXcOLECSxfvhx/8Ad/gFtuuQVr1669qLrPgw8+iG984xtFf7Z48WJ0dXVdtDVUw9R7XB4GRjtLUk1UHwkymQw6Ozths9mwYcOGohMHRVFwuVxwuVyYP38+MpkMwuEwenp60NXVBY/Ho3eAaeRzMaF1lXEcV7b2kYJlGFy9egFmN/qw4/0jSFcxW2QZpiB+U0hm8rDV9IxSPZiSmbxetgw0NCKZSiEWSyAYU6ODnU4n8vk8WDuj6lyF/SuZydW8fpHFOlFfXy1bhGEKHVeFfXpwBsZScQMvFdzVlEfVryuRyqC3NwRCCJpbmuG0WZHMFp/O8oIEilLbehOpQbKiKAoEKCIRAEhlBbAsAytXbNCoWuHnC2mGqhhP4IcgCJDFvD4hbrFaEKjzok8QyroLJUmGKElwO2z62mkKqKuv7D6cyQlgGBp2G49MVoCFZ3HTZcunNYkA6r3X9JJ0Oo233noLx48fx3PPPYfvfe972L17N9asWTNBq6+M5cuX45VXXtH//1SpeEy5EwkwdG77e++9h9bW1mHXKEciqtdCLBZDZ2cnmpubsWjRohFdQ5vGDYfDGBgYgNPp1MX6WuLeeCGVSuldZVp773ghmxfw0vtdONUTLfmbyl1DNE3BZuHLyMdu4SvmY8iyhIFoGKJCwePxIJPNIJ1Kg2Mo0JzhKZtmql7feLooRaUgrFoT96Vtv1rZqZJQLcsy+qJh0DQNX30AHMsOORWvmiJKkCR58ARVBUaDRofNilS29mAlTVPgGBoD8TgSiSQymayaD1IwmLRarfq/V4iC/mgEiqKgpaUF0hD29JoGdfXqBVg0s7HmaycaiqLg4MGDSKfTWLdu3aha8Qkh+OY3v4nHHnsMu3btwtKlS/W/EwQBHFetXDgxePDBB/H000+js7Pzov3M4WJq0NkIMZITSamoPloSCQaDOHz4MBYtWoSZM2eO+N8bp3FFUUQ0GkU4HEZ3dzcsFot+UvF4POP+4ezv79ctZ+bNmzfu17dZeNz6kZU4cKoHuzuPQ5aV4jJSCRSFIJXNFbXZciyDvFQ+uS4IAoLBIOwOOxbMaUU2L8But2POzBb0xZJIp9OIx+KIhCOw2qz6rIWsKOoEfS4PmmLUHI0q+6AsK0jJeX1Qz2GrHMSlQSw8sbvsNgiihHQVaxVJkhAMBsHxHBoCDXDYLJAVUr0dt4B0Vn3Cr3M5EEtlar5Wm6B32C2QJXnIritFIcgTGU0N9XA6nZAkRbdsCfWGAKiuxTa7DYlEAgCwYO5ssAwzZHYJBQrzWgIfGBL5zne+g//4j//Aq6++WkQiACZtRuz48eNoaWmB1WrF5Zdfjm9/+9uYNWvWpKzFiCl5IhkqbrezsxMejwdz59YecBoPPYQQglOnTuHs2bNYuXJlkb38eECzeNDaimma1kllpL5BlaAR4FDtveOFvkQaL7xzCDlBHFbrKccyYGkKCsqn0LO5LHp7e+HxeFBXVwcKFDiWgc3CIl5iaSJKoi7W57KGzHW3B26XDanMMDymoJbW8qI0LCGeptVTlCDKZYFPoigiGAzCarMiUB9Qy552lUiGypQHClPxeRGuEkfeStDakwVRGmIAU4Wmi5SerAgIcrkc0qk0EskECCHwe92gCtqK22mvufaA14lPX7MO7CR2LRJCdGeJ9evXj5pEvve97+G73/0udu7cedHLV9Wwfft2pFIpLF68GMFgEN/4xjdw4cIFHDx4cNKtWaYlkRw8eBAWiwULFy6s+prxIBFZlnHo0CHE43GsWbMGTqdzxNcYCbSOEY1UZFnWu7/q6+tH1FY8mvbe8YIky3jjwCl0HDs35Gu1RD0KVJFQrnXB+f3+ojZvjmOhyLKacVGFqLQhyHQ6DSIJEGSCBp8XYDhYC0OQlcBzLER5ULivJcQb7eyNKZIURemnKIfDAX+9HxQo2G28fnJRZ1oq538A5VPxg4685eRWKSa52gAmUClfpNhdQFZU01SGZtDYGEAylUYqldJbi10uB3xeLySCIiLnWAZ3XrsBda6LH0algRCCQ4cOIZFIYN26daNqbiGE4JFHHsFDDz2EHTt2TFiA3nggFoth9uzZ+O53v4t77rlnUtcyLYnkyJEjoCgKS5Ysqfj34yGq5/N57Nu3DwDQ1tZ20Y+ymnW21gGWy+Xg9/v1DrChWhi7uroQjUZH1d47Xuju7cOL7x2pOiQIFE/FaxPrfQMDiEajqn7kGCRvLdBK21ArWY6UXjuRyurdS6KQg6Io4C3qAJ/mWKxdm2OL5yLsVq5qEFalbieHjUcsnsSFniDcHnfRKarUpqRS/geg/t4dtgpT8ZQqpJeWlyplogDlA5hArel8NVNelCScOXseDMugqakJVkNbsNZanM6kkclk4LRZQHMWtQxmteHGy5Zj6ezJG84jhODw4cOIxWJYv379qEnkJz/5CR588EFs374dV1xxxQSsdHyxYcMGbNq0Cd/+9rcndR1Tkkhq5bYDwLFjxyCKIpYvX1705+MlqmvCtNfrxbJlyyZ9wJAQoj+hh8NhpFIp1NXV6aRibOEdr/be8UI6l8dL73ehO9hX9nc2a0HQ1jqjQJCIx5FNJeHx1Rd1tpUGWmnQLEdK5yosvFrqMX66CQhEQYAs5BEZiEGSJHUq3G5HQ72vouV8pSAsm5UrkGPxZyubzSIaCSMQ8MNq0wiQ1Mz1KD1tVAup0mC3qqU0SZYrvkcjioKzoLYFVyvZybKM3t4g3A4bHO46eJy2qic+Qgiy2SyEfA7ZTBoNbiuu27BUPzlf7HxyI4msW7duVJ95Qggee+wxPPDAA3juuedw9dVXT8BKxxepVAqzZs3Cgw8+iD/7sz+b1LVMSyI5efIkUqkUVq9erf+ZMYQKGD2JRKNRHDhwYMKE6fFANpvVScVo7+D1enH06FFwHIdVq1Zd9C90NRBC0HniPH6//6RebtEibbX/T0DQF+1DKp1Cc1Mz/HXuopjboWxHjG68lQwTy19vQSyZRjKVBCQBA4k0LFZLRbddo2MuQzMgIGVlo3QmjXAoDH+9X20BL3RSDWVKCUA/bUi6G/IQlvAMBRvPQZDkIYckAYDnWVg5tmqqpSRLCPYEwfO8qs257EhkcsOY/Ad8bjtu3rAI8diA7rjr9Xp1Uplo92tCCI4cOYL+/n6sX79+1CTy3//93/irv/orPPPMMxOWdTRWfOUrX8HmzZsxe/Zs9PT04B//8R/R2dmJw4cPj2qmbjwxLYmku7sb/f39WLt2LYBiPYSiqFEL1OfOncOxY8ewbNkyNDc3j+oaFxuCICAcDiMYDCIWi4FlWcyYMQONjY1wuVxTiggjsRS2v3sIfYm0Pv0NGCa+8/kiE0DNoZaiUTPQSoPmj0VTVNUs9NLXWywcUuksJFlWxfp0GtlsoSW2YINvsVhAgQLPsbDwjG7friGVSiEcCaMh0FCko7kdVuQEcVibPcPQsPEscoJcM1MeGDydUaDKUh4rwWGzIJ3LF2ZMigdCJUlCT7AHVosVgYYALCwLUVFAU1RNHUdb82euWY+Ad/A9a23ukUgE/f39sNvtus433h2JhBB0dXWhr69vTCTy29/+Fvfddx+eeOIJ3HDDDeO2vvHGpz/9abz++uvo6+tDIBDAlVdeiW9961uYP3/+ZC9tahKJMbe9Es6fP49gMIgNGzaMW2fW0aNH0dvbi7a2Nni93jGs/uJDa++dMWMGnE6nnh7HcZzeAeb1eqcEqYiSjLcPnUL7UVWIVxQFvaFeKIqC5qbmsjIixzKw8ExBBxh6/U4bD4qmkUxXn3DXoHYXEdgsfJHQryhqS2w6reoBFEXB4XCg0V8HmWLgttv01ycSCfT19aGxsRF2+6DQrJWdQAFOa23hHiC64WTtTHkVxtNZrUx5oFwXsVl5PaxKlEQEewqdZYEAKKDILqVapryGTesXY+W86rNcmtGp9nkEoJOKz+cb0zCdkUTWrVs36gHfp556Cl/84hfx61//Grfccsuo1/Nhx7QkkmAwiO7ublx22WVjJhFJkvTp1zVr1kzKxPlYoLX3lsb5arbZWgcYAH0A0u/3T7rN/ameKF545yBOd58FzdBoamwqXxM1WNe3WTiIslwzrc/o6FstYMkI49BhtddrKYZEEhDpj4EoqmOxv86DTDaHvoEBNDU1wWYd/NzQtEpSxpOIOmQoVjShLNVFaoVPWXkOuVKjzCo5Lcb7ZwRDU2Ao4PjpbtjtdtTX14OqYSNfqWts0awG3HTp8mF/5wghiMVi+mkll8vB5/PpJbCRnCa0B79IJIL169eP+jv73HPP4e6778avfvUr3HbbbaO6hgkV05JIwuEwjh07hssuuwyEkFHrIdlsFp2dneB5fkppCsMBIQTd3d04ffo0Vq1aVXO+RfsSa7qKZiypZTFMhs1CJpPBm++8h8PBJGTWXvb7q9TWWit4qjTZD6hsZa/B5VAt642o9nqeYyDKqv4m5AWk04U5C0WB22kHa7HpFu7VmgIAzX+ruJPKbuXLQqqMP1fLlFfXV05QRpSSYTViEEQBPT09aPT7YHe5QUiltuASGLzJvC477rx2Ayzc6D836XRaJ5V4PA6XyzUsG3dCCI4dO4ZwODwmEnnxxRfxuc99Dj//+c9xxx13jPp9mFAxJYlElmVIUuXuEm1TfP/999HU1DTqJ+x4PI7Ozk40NDRg8eLFk/6EPhIoioKjR48iHA5jzZo1I7LT14zoNFLJZDJFbcUXo805mUxi7969aGxsxKJFi9Bx4jze2H+yiASqdS9pliBpw9P6UHkhRit7QNUMalmJGIV7iqLAcQwEQ7mnL9qHdDqNQCCgtqrLAmKJFDieR4O/DqA5cDxX8frqaUMtjXEsW9UqXwcF3a/LabfWLHkBBTK08iCKglROKFuDIAjoCfbA5XLB5/OBZ1nwHINsJQPISvfGbsHmy1egyV85Cns0EAQB0WgUkUgEfX19etZPIBAoGsolhOD48ePo7e3F+vXri0qJI8Grr76KT3/60/jxj3+MO++8c0qUfKc7phWRGO1OtGNyOByGJElFZZuh2nVDoRAOHTqE+fPnY9asWdPqgyTLMvbv3z9upTitrTgSiSCRSEy4saSm58yZM6coBCw0kMT2dw9hIJGp6YulQXtaz+ZEuOwWpIbYYDUhnhBS5qRb9fU0BZah9WsbLexLkwFpCpCEHMJ9MWSyGbAMq4v1Rv8qDRaOA8tSQxKDBq/ThnROGDJTHlDvDc+yReQJAHkhj2BPEG63G3W+usKa1PZkjmWGlYvy0baFWLto5BZBw4Usy0U27pIkob6+HvX19fpc1VhI5PXXX8cnP/lJ/L//9/9w9913T6vv/lTGtCESI4kYS1nGwb1QKARBEKqWbbRp7+7ubqxcuXLSW+ZGinw+X5QJP96luErGksa8+rF+6UKhEA4ePFim52gQJRmv7zuBw93BYeWcgALqnDYMJDMYjhDP0ICjUJ4ZzutdNgtAAclMXrVSD4cgCiKaW1QL+6JrMzQoSvUdiyczyGazeoohAD3B0Ga3gaboQvkrD2eFIcNSaAFiDFU7U167J5ouYrRAyefzCAaDut2MBuNAY63IYwCY11KPWz+y8qJtvsbT84ULFyAIAtxuN5qamhAIBEZMJm+99RZuv/12/Mu//Avuvfdek0TGEVOSSEpTEquRSCmMeSChUAjZbBY+nw+NjY3w+/04fvw4+vv7J3Xae7RIp9PYu3cvvF4vli9fPuGlOFEUdVLp6+uD1WrVSaU0r344OHfuHI4fPz4sAj9+PoxX9nRVHeLToJ1cbJbBTqRqMGoXwxHirRZODcoigIVncP78BeRFqWJnmZrRzuutssbra/5VWmuxJEvwe9xqaJfdAYZhalqalM7EVMuU1+C0WUqMMglYCjhxuhteb11RR2IlXaRa7orTbsEfXrsBNsvFd3g4efIkLly4gJUrV+raykhbi99//31s2bIF3/zmN3HfffeZJDLOmNJEok2qj9buRCvb9Pb2IpVKgWEYzJs3Dy0tLZPm3jkaDAwMoLOzEzNnzsT8+fMv+pdAlmW9hh2JRMAwjF5KHMpY0mh6uWbNmmG3ViczOex47wjOhQcq/j3LFA8GDtU2Wyqua1pCZXsRChQoSLICWZHRG+wFTVOYN2cWMjmxXLivoOeoVvbF6yEgoBQFsUQSqXQKQl5QhyAdDrhdTjjt9iIhvqpdCooz5TU4bTySJcSQy+UQ7A2iubEBLrcHoijp/77UtsUIh43XUx5pmsInPrYGrfXeiq+dSJw8eRLnz5/HunXrimZ0arUWl5a3Ozo6cMstt+Dv//7v8eUvf9kkkQnAlCUSQRDGZVI9nU6jo6MDdrsddXV1uhbg9Xr1J+zJthGphd7eXhw6dAiLFy/GjBkzJns5RcaS4XAYiqJU1ae0qeNoNIq1a9eO2PRSURS0HzuHtw6eKhGC1dmP0ryQam2zditXdaCxVIg3ni4kWbWBZ1kWjY1qqJNRiFevXb3rquz0UNKOK0mSXv7ShiAb/F6A5cHzPDx2GxI17FJUw0XVr0vtLJOLtJ9sLoveYC98fh88bg8oGnBa1VKazVqeE1MKLeWxbcFMXLpsTs3XTgS0B5D169fX/OwoioJ4PF7UWnzo0CGIoohVq1bhj/7oj/CVr3wFX/va10wSmSBMSSKRJAm5nPHpcXRlHOOg3oIFC/QPUS6X0zfCWCwGt9uNhoYGNDY2Tpk5EkIIzpw5g1OnTk1ZPYcQgng8rt/LfD6v61N1dXU4evQo0un0mJsCevsT2P7OIcRSWQBD26XwHAOaopETxDIrlkowPt27HVYk0jl1WC8YVLNiAg1FG5CmPUiyMnTXVeH1NK2aN1az1pcVGdlMFul0GqKQU9fEWWF3qKaINTUUCweaAtKGKfRMVs0X8df74XYVd/XVuVSCGmrdADCrsQ63XbX6onc1as7VQ5FIJaTTafzXf/0Xfv7zn+Pw4cNobm7Gn/zJn2DLli1YufLiaTyV8NBDD+GBBx7An//5n+P73//+pK1jvDElieSuu+7CyZMnsXXrVtx6661obW0d8S///PnzOHr0aFVhV4NmMRIOh9Hf368LzI2NjRPuE1QN2sBVKBQacXvvZKE0rz6VSoFlWcydOxfNzc1jzqsXJAm7O47jTKi/ahphESj16VuS5SG1lsI7gMdhRzydgVDIEjEO65VdnlLbeONV/KtK4bTyoGhqyMx6QJ0XyWVzehcYgToE6bCrSZClm7rTbkE6J8Bp5ZFI55DNZhEKhVBfX1+mBWonKI5hymZaSmGz8vjcdRvgsI7tdzdSaCSybt26UWuZR48exY033og77rgDa9aswe9+9zvs2LEDX/jCF/DII4+M84qHh/fffx+f+tSn4Ha7sXHjRpNIJhrnz5/HE088gW3btuGtt97C+vXrsWXLFmzZsgWzZ8+uSSpar3lPTw9WrVoFn8837J9bKjDbbDadVC5GHC6g6hEHDhxAJpOZlpP2+Xwee/fuBcdx8Pv9iEajurGkVkocbesmABw924ude48NK3jKZbdCVuSqVvBG8ByjJjsqMs6ePw+b3QGfz1eVsLRT0VCdTkCxE/HQQj+B3Tqoi9gsHJLpNBKJlHpaEUXYbDY1Xthhh9flKCZWRUT32XOor28oe5JXT2dEP4kYZ1pKyY2igNuvbsOsxuF/f8YD3d3d6O7uHhOJnDx5EjfccAM+/elP4+GHH9aJN5fLIRaLoanp4tvdp1IprF27Fv/+7/+Of/7nf0ZbW5tJJBcLhBAEg0E89dRT2LZtG15//XWsWrVKJxVjuQoY3ITT6TTa2trGdKKQJEmPw41Go+B5Ho2NjaPuWhoOBEFAR0fHhLX3TjS0zrK6ujosW7ZM/wLn83mdoPv7++FwOHRSGQ1BJzI5vPjuYVyIxKq+xig8D+lfVdAu4okUgr1B+Orq0NLUWJYpr6F0oLFapxNQeRpdE/orvb5S2c64fkEU9CRIRRTAcDxshdOKIAgIR8JobW6C1+tBtsRwsVoOfSULlA1LZ+PKlRfXDFAr5a5bt27Up/Du7m7ceOON2Lx5M37wgx9MmUHju+66Cz6fD9/73vfwsY99zCSSyQIhBNFoVCeVV199FUuWLNFJxWq14k/+5E/w13/91/jYxz42rptwaRwuwzD6SWW8zBC1pgC3240VK1ZMmS/AcBGPx9HR0YGWlhYsXLiw6j3R8uq1bhue53WxfiT3UlEUvN91Fu8cPl02kV0ti6SSEK9ZsYT7BhDqDenCNFBJiDekKFZpvVWFdaJfu5pdSqXr2y08MvnK5pSl66cogKEo9MfjqmNxJgsCAofDAa/HC4vFArdj0MJ+KF2JoqDH9LYGvPjkx9Zc1M/g2bNncfLkyTGRyPnz53H99dfjuuuuw49+9KMp8x36n//5H3zrW9/C+++/D6vVahLJVAEhBAMDA3j22Wfx5JNPYseOHbBarVi1ahX+z//5P1i7du2EfYgURdHNEMPhMCiKQiAQQGNj46gz1mOxGDo7O9Ha2lp2ypoO6Ovrw759+zB//nzMnj172P+u1FhSu5cNDQ3w+XzDupfBvji2v3sY8YIQTxem0auVmnieBYXBp2+n3YJQpB+hcAiBQAAuZ3E5xSjEV0pRLIVxCLBaemGl62ulrqGy3LWJfpYZFO6TySQi0Qi8Hi8kSUImkwEowGF3wOd1w+V0Ip0vt0uphDqXHbd/tA1u+8XrZNRIZO3atfB4Rme9EgwGccMNN+Cqq67CT3/600kPo9Nw7tw5rF+/Hi+//DJWrVoFACaRTEU8/fTT+NznPodbbrkFuVwOL730Epqbm7FlyxZs3boVa9ZM3JOVoii6GWIoFAIhZMQOu5pdy8KFCzFz5sRZT0wUtPbksWa4GO+l0RpDu5e1jCXzooRdHcdw+HSw6txFEQpBUqIkI9I/gGgkqk/vVwaB024FUZSizqjqIPA4bUikc0NmhWiv9zrtelfaUHDaeFAUjWQmi0Qyib5oHxqbGmG3qdoTIeoQZDqTRj6TgaIo8LhdAMPB4XSAoatvsrdeuRLzWy5eh+C5c+dw4sSJMZFIKBTCjTfeiPXr1+OXv/zllCERQN2fbrvttqI1ybKs5ybl8/kptd7RYloTyb59+3DllVfiP//zP3Ub6FQqhRdeeAFPPvkktm/fDp/Ph1tvvRVbt27Fhg0bJuyXprXChkIh3WFXI5X6+vqKP/fMmTM4efLklG3vHQpnz57FiRMnhnQfHik02xtNV9EcCoYyluw624ud7UeHFSRF0xTymTR6QmEEGhr0TbganHYLZFkZciIeUKfRKZoGy9BDCvEA9JbjoTLogeLSmpDLoDcUQqCx2MZ+EARWC494UhXqFVFAKp0Bb7HqYr3RL2zNopn4WNvCmmsdT5w/fx7Hjh3D2rVrR50BFI1GcdNNN2HZsmV4/PHHJ8XJuhaSySTOnDlT9Gd33303lixZgq9+9atYsWLFJK1sfDGtiQRQn2iqPclnMhns2LEDTz75JJ5//nk4HA5s3rwZW7duxeWXXz5hHzrNI0gjlVwupz9dBwIBMAyDY8eO6UFao30SmywQQnDixAlcuHABa9asmfD1G/Pqk8lkzWHSeCqL7e8dRjAar3o9hSgQsmkEw1HMaG2Fx+1EpoZ/ldEuRZ1Y56sK8aXT6NUy5TXYrRzSBpdeiqb0Nt7S1xtdjuPxOPoH+tHa0gKfx1XRtLKSLkIUGYKQQ99AHLlsDjzPw+6wY25rIz5/4xWFsK+Jh0Yia9asKfL+Ggn6+/tx8803Y968efj1r389bdwqzNLWNEYul8Mrr7yCbdu24ZlnngHLsti8eTNuu+02XHnllRPWIUUIQTqd1kklnU7rP2u6zIgYoSiKnpG9du3aiz5rUzpM6nK5dILW2l0VRcG7R87g3cOny0pLBAT5dBK90X51voW31EwCZBgKFEVDKjmFVBLigco5J4OvF4oaA0rbcWu93pjPEovFMBAbQHNzM6wWq8FafzDjfmjh3oZ4Ko10JgMhl8Mlc7yoc9mLGh8mqiR84cIFHD16dEwkEovFsHnzZjQ1NWHbtm1jnlO6mDCJ5AMCURSxa9cuPPnkk3j66achyzJuvvlmbN26FR/72Mcm7EMpCALa29shSRI4jkMqlUJdXZ3+dD3VvwyahX0ul8OaNWsm3VpGy7Ewzv1oG6Hb7UZPXxwvvnsYicLGTkCQisfQH0+gubkZPFf8BFveBls801GKUr+rWps3ALAsA64gxAPV23Ervd5p45HKChgYGEA8Hq845KkK8cMX7rX3u2ndYsxvqUd/f79uM6JZ32jeVeN1eu/p6UFXVxfa2tpGNONlRCKRwNatW+F2u/Hss89O+ufQxIeUSIyQJAlvvPEGfvvb3+Lpp59GOp3GzTffjC1btuCaa64Zt4HATCaDvXv3wu12Y/ny5WAYBtlsVn+6jsfj8Hg8aGxsRCAQmHKDiKIoorOzEwDQ1tY25WZcNBM/be5Ha9H21PnQfjKEY+fC6OuLIpfLoampufrGaEgCdDtsFcO1iqGeBrKCOKQVi/Z6t8MGohD1BDQkCDwOdYK+v78fiWRCP0lVe70q3A/PWn/FvBZcu35J8RUKep9GKppGpRHLaB94gsEgjhw5MiYSSaVSuP3228HzPJ577rkxDbeaGD986InECFmW8fbbb+OJJ57AU089hYGBAdxwww3YsmULrrvuulGXcbT23lozFvl8XieVgYEBvWTT2Ng46V+WXC6HvXv3wm63Y+XKlVO+y8TYoq09XZ8fyODI+QF46wNFAnM1uB1WZHJ5SMPwo9LIJCdIwwqecth4yAqBIisQhng9Raknn/6+fsTjcQQam2pqAZouMhyrfL/Hgc9csx4cW/v3qVm3h8NhJBIJ3aUgEAgM+zuhkcjq1avh9/uH9W9Kkclk8IlPfAKKouCFF14YsQeXiYmDSSRVoCgK3n//fZ1UgsEgrrvuOmzZsgU33njjsO0bwuEwDh48OKL2XkEQiqxatElwzf/rYs6ZpFIpdHR0wO/3Y8mSJVNmyGu4EEUR7e3tEAQB6byEd472IEdotWvJbq/YCsuxDBSi2vVahvCjAgY376GEeP3aBfv2WsI6MDjQeOZ8D9KpNFpaW1DndlaciAcAm5VD1uByXGuCnmVpfHbTBvjdI3s40lwKtEwQrZxYKxOkt7cXhw8fHhOJ5HI53HHHHUilUtixY8e00xY/6DCJZBhQFAWdnZ06qXR3d+Oaa67Bli1bcPPNN1f9AmntsStWrEBDQ8OofrY2Ca6VbKxWq27V4nK5JpRUtJPUjBkzJiUHZazQLGc4jsPq1aqDbTyRwMvvHsA7B09BEIQi3yo19VBtmdV0D03ITlUQ4gHAblOJQ+u6qh08VXxtDao1fXlmusPGo/vcBWQyGbQ0t+jlRGNWiAaGoUEBFZMlKzUGXHfJUiyfM/q5H6A4EyQSiYCm6bKBUi0Vc/Xq1aNuEc/n87jzzjsRiUTw0ksvjVqgNzFxMIlkhCCE4NChQ7qpZFdXFzZu3IitW7fi5ptvht/vh6Io+MUvfoEFCxaMa3usFjAVCoV0exFNqB8qIW6kiEQiOHDgABYsWIBZs2aN23UvFrRynMPhwMqVK8tOUufCA/jdG/sQivYjnU4jn8/DYrWgwVcHMFyZBlTJj6pWOFSl4KlqHV1AQVhnad0fy8KxON8TRDabLcuHL319rQAs43q0ifslsxtxwyXLxvXzouXUaKQiiiKcTicSiQSWL18+6mFVURTx+c9/HmfOnMHOnTtHfaIxMbEwiWQMIITg2LFjePLJJ/Hkk09i//79uOKKK5DNZnHhwgW88cYbaGxsnJCfrdmLhEKhIv8vLQtkLJtET08Pjhw5guXLl0+KU+pYoTU21NXVYenSpVXLcTlBxCt7unD8fASSLAGyiHDfAHLZHDieg8PhgMPhAM/zoEAV+VFRFCqeLopQmKBPZnJw2ixl6YXlUIX4ZDqH/v4okmn1JFK9Y0o9LRGFIDXUNH/h9c31Xtx21WpYuIkb3NOydI4fPw6r1Yp8Po+6ujr9tDLcLitJkvBHf/RH6Orqwq5du6bl0O6HBSaRjBMIIdizZw8++clPIpVKQRRFrF69Grfeeiu2bNmClpaWCSsNaU+DGqkQQnRSGa5nlYbu7m6cOnVqTPXsyUQqlUJ7ezuampqwaNGiIe85IQQHTwfx9qFTyOQFEEUNmcpk1Iz1TCYDlmF1UrFYLXBYLaApVBwCrASnzQJBkiGIQ1vfK4qCTCqGZCqDQGNTodxWHTYLp3aLEaLH6FYDw9D49DXr0OAdnT37cBGJRLB//36sXLkSDQ0NyGazuuYXi8X0zB9t9qfS70iWZdx7773o6OjArl27puUDzYcJJpGME06fPo3rr78eq1atwn/+538iGo3iySefxLZt2/D2229jw4YNulXLrFmzJoxUNENLrQNMluWqUbil/+748eMIBoPTclASGHQgnjlzJubNmzeie9yfSGP7u4cRHkgW/blCFD25UDNDrK/zgOOt8HrcNedAAOgW9aIkl2W4l4IQgmSsH/F0Bq0trXA7bVWFdWDQikWSZDVG12JBIlP99RvXLkLbgomNa9ZIZMWKFRVP49rsj+b+bLFYdLFeG4KUZRn3338/3nzzTezevbtmMJ2JqQGTSMYJPT09+I//+A/83d/9XdEJgBCCnp4e3f7+97//PVatWoWtW7diy5YtEypia55V2lS9IAi6VUt9fb1eMlEUBYcPH0YsFsPatWsnvd14NNBilefNmzciB2IjZEXBWwdPYU/X2Yp/TwiBIomIJRJIpdJQFAX1Pg9o1gKb3QaaKj/5GW1KNCE+XdA1Sq/dFw0jJ4hobmrWCb+SsK69vpIuUu31C2YEcMvlKya0YSIajWLfvn1VSaQUpe7P3/zmN/WHnX379uG1114b9e9yrPjRj36EH/3oR+ju7gYALF++HF//+tdx4403Tsp6pjpMIrmIIIQgHA7j6aefxrZt27Br1y4sWbJEJ5UlS5ZMKKmkUimdVLLZLPx+P+rr69Hb2wtJkrBmzZopP11fCVpjwOLFi8fl6fVsqB8vvnekrI3X6HVFQJDP59XUwlwOoiiCM5ghMjRTFK5lhDaBrukrClEQDoVAAahvaChrSS4V4gE1/bHasCTL0OA5BpnC690OK+68dgOs/MQNkUajUezfvx/Lli0bVRmKEIKXX34ZP/jBD/Duu+9ClmVcf/312LJlC2699dZxNQUdDn73u9+BYRgsXLgQhBD88pe/xMMPP4yOjg4sX778oq5lOsAkkkmCVoJ65pln8OSTT+KVV17BvHnzdPv75cuXT+jMRiqVQjAYxNmzZ6EoCnw+n95WPF3M74BBG/vhPgUPF9m8gJf3dOHkhSiAgteV3VJVFxFFAYokIBwdgCiKcLscsFhtsNnslcXywgR9PJVBsDcIG8/C6wvU+J2TAnnki0wkq0FrW87k8vjUxnVo9k+csaaWRzNaEgHUU/Hf//3f47e//S127doFSZLwzDPP4Omnn8YXv/hF3HPPPeO86pHD5/Ph4YcfnhJrmWowiWSKIB6P43e/+50e1NXa2qqTSltb27iTSjabxd69e+F0OjF//nx9ViWRSMDr9epWLVPZx0hzkB1vG3sNhBAcONWD1/Ydh43naiYManDYeKQzOWQzGQzEE8jlcuAt/GAHmMHfS1EUDETDYGkaLl/9sH7HdisHhaB2t5gBV62ej/WLJ6481N/fj87OTixdunTULb6EEPzTP/0TfvnLX2L37t1YsqTcsmUyZ5hkWcZvf/tb3HXXXejo6MCyZcsmbS1TFSaRTEEkk8miTJX6+nrdqXjDhg1jJpVkMomOjg4EAoGycprmrhsKhRCPx+F2u/WTylTy/+ru7sbp06fR1tY24QNq0VgKL75/GJGB1JCvJYTA7bBCVggyOQGyLCOdSetxuBynthXbbDb09ffBynNoaGiEzcrXFOK1azvt6rCjw2qpKcQDwOwmH267avWEbcIaiSxZsgQtLS2jugYhBA899BB+/OMfY9euXVMqn+PAgQO4/PLLkcvl4HQ68fjjj+Omm26a7GVNSZhEMsWRyWTw4osv6pkqTqdT7/66/PLLR+x7NTAwgM7OTsyePRtz586tuclodhihUAgDAwNwOp06qVxs+3gNhBCcPHkS58+fx9q1ay9ad5kky3jzwCnsPXau5us0cZ1AJRR1AFG9x4qiIJPJIJVWg6Zoikad1wOL1Qar1QqXvbIQP3jtYl2kmrCu/p0Ff3jtBtitE1OmHBgYQEdHx5hJ5Hvf+x6+973vYefOnWhraxvfRY4RgiDg7NmziMfjeOKJJ/Czn/0Mr732mnkiqQCTSKYRcrkcXn75ZT1Thed5/aTykY98ZEhHXs33a9GiRZgxY2RtoKIo6qRi9P9qaGioOgsw3iCE4OjRowiHw1i7du2kmPZ19/Zhx3tHKk6RW3gWgigVZaBYeBaEED31UJZlBINB0AyNloYAIv0xpNNpAIDdYYfX44bL4UC+JCXRaimI/CXfVpahwbMsMvnB9VAU8AcfXYOZDRNzUtNIZCzNDYQQPPLII/jOd76DHTt2YMOGDeO8yvHHpk2bMH/+fDz66KOTvZQpB5NIpikEQSjKVFEUBbfccoueqVIqmGt6wlh8vzRIklRk1WK1WnVScbvdE0IqxhbldevWTWqZLZMTsOP9I+gO9ul/RlEUOJauGJNLUepQ4kAijWBvEBzHYf6cWXopi6CQsZ5WS2CKrKC+zgOK5WC3O8CyNBiaqeHkOyjEA8Bly+fi8uVzx/19A6r/2t69e0f1MKKBEIKf/OQn+MY3voHt27fj8ssvH+dVTgw+/vGPY9asWXjssccmeylTDiaRfAAgSRJ+//vf65kq2WxWz1TZuHEj/umf/gmSJOHv/u7vxl1PkGUZfX19OqmwLKuTitfrHRdSURQF+/fvRzabxdq1a6dEizIhBJ0nzuP3+09CkuRBY8cqkGQJA9EwKJpFS3MTRFkpO10AKqkIeQHpdBqSmEcmk4XX7QLNWeBwOGqWMq08iya/G1s+smpCOv5isRg6OjqwYMGCYTtZl4IQgsceewwPPPAAnnvuOVx99dXjvMrxwQMPPIAbb7wRs2bNQjKZxOOPP66fnq699trJXt6Ug0kkHzDIsoy33npLdypOpVIghOBrX/sa7rnnngkdNlQURQ+XikQioCiqyP9rNJubLMvo7OyEJElYu3btlAvUisRS2N15DOfDsaqvkSQJPcEeWC1WtLY0w8KzSA2jAwwAeJZCKplCpD+mG0tqHWClRo42C4c/vO4SOG3jT7TxeBx79+4dM4n86le/wle+8hU8++yz2Lhx4zivcvxwzz33YOfOnQgGg/B4PFi1ahW++tWvmiRSBVOaSP7t3/4NDz/8MHp7e7F69Wr88Ic/xCWXXDLZy5oWyOfz+NznPod3330XN9xwA1555RWEQiFce+212Lp1K2644YZhZ6qMBpr/l2bVQggpsmoZDqmIooiOjg7QNI22trZxi3sdb4iSjN/vP4l9J85X+DsRwZ4gbDYb/PV+PRveZbcilRkU4ivBynPIiWJhhsWKeHJQqM9lc+D5wbZijudw+9VtmNM0/v5oGonMnz9/1E7QhBD85je/wf33348nn3wS119//Tiv0sRkYsoSya9//Wt8/vOfx49//GNceuml+P73v4/f/va3OHr06Jhr/B8G3H333Th8+DCee+45BAIBKIqCjo4O3f7+7Nmz2LRpE7Zs2YKbbrpp3G3ojSCEIBaL6aQiSRLq6+vR2NhY1f8rn89j7969sFqtWLVq1ZRPZQSAUz1RvPT+Ed1/SxRF9AR74LA7CiRSHN1r5VnIBBXNFmkaYBmmSHPhOQYMRSMriKqxZDqDdEb1AFs2sx6bNiyvGTA1GiQSCbS3t4/JegYAtm3bhnvvvRe//vWvccstt4zL2kxMHUxZIrn00kuxYcMGPPLIIwDUJ9yZM2fi/vvvx9e+9rVJXt3Ux+nTp3V31VIQQnDw4EGdVI4dO1aUqeLz+Sbc/0ubVcnn8zqpaP5f2rCklm8/nVIZ07k8drx3BMfP9SLYE4TD6YDf74eV58o6ugCAolE2E6KdQCpqLoWJ+GQmC+0001jnxMaVs9BXMENkGEY//Y22pAgMksjcuXMxZ86cUV0DAJ577jncfffd+NWvfoXbbrtt1NcxMXUxJYlEEATY7XY88cQT2Lp1q/7nd911F2KxGJ555pnJW9wHDFpLrZapcuDAAVx99dXYsmULNm/ejIaGhgn3/9JIJZvNwuPxIJVKIRAIYNmy8Q1fulhIJpP49Quv4lxMgqfOC5qiq3Z0aTDOhLgK2SW1oGWy0zSFO6/dAI9D7WIrLSkqijIs9+dK76G9vR1z5swZE4m8+OKL+NznPodf/OIX+NSnPjXq65iY2piSRNLT04PW1la89dZbRa2Bf/M3f4PXXnsN77777iSu7oMLbdhPs79vb2/HFVdcoRvnTWSmCqDOuRw4cAAsy0IURfh8Pl2sny7+X9oGPHPmTDh9AbzwziFIklKzo0sDyzKw8SxS2XzFjq5SMDSFGy9bgYUzKgc+EUIQj8f1LJBcLof6+nrdtr1a44L2HrSh1dFi586d+MxnPoNHH30Un/3sZ6flQ4GJ4cEkEhMVQQjB2bNndVJ55513sGHDBmzZsgVbtmwZ90wVrbV0zpw5mDt3LrLZrO5UrPl/aaQyVf2/EokE9u7dW7QBC5KE3+87if0nLwz57ymKAsfQsPDssHy9Vi+YgY+vXTSstRFCkE6n9ZNKKpVCXV2dHjCl3dNUKoU9e/Zg1qxZmDdv3rCuXQmvv/46PvnJT+IHP/gBvvCFL5gk8gHHlCQSs7Q1taBlqmzbtg3btm3DG2+8gdWrV+v29yMNkSqF5h67cOHCiq2lmv+XlrDndrt1Upkq2SlaZ1M1PeHEhQhefv8IckLlFMNSXcRq4aDICoQqQ4gBrxOfvmYd2FE2IWSzWf2eap5qHo8HwWAQM2fOxPz580d1XQB46623cPvtt+Nf//Vf8cd//McmiXwIMCWJBFDF9ksuuQQ//OEPAai131mzZuG+++4zxfZJBCEEoVBIz1TZvXs3li5dqpPK4sWLR7RxaOWsZcuWDcs9VhAEfQPs7+/XY1s1q5bJgHaaGqo9NpnJYcd7R3AuPFD2d067pWy2pJIQDwAcy+DOazegzjU+JCoIAs6fP49Tp06pgVkG+xuXyzWi3+d7772HrVu34p//+Z/xp3/6pyaJfEgwZYnk17/+Ne666y48+uijuOSSS/D9738fv/nNb9DV1TWuuRMmRg9CCPr7+4syVRYsWKDb3y9btqxmx1BPTw+6urpGbdui+X+Fw2H09fXBZrOhoaEBjY2NF83/S3PAHa5lCCEEe46exVsHT0EpmC3yHAtRKu/o0uC08cjkRf31N1y6DEtnj1+GeTqdxp49e9Da2orZs2frQ6XRaBQcxw3bqWDv3r3YvHkz/uEf/gF/+Zd/aZLIhwhTlkgA4JFHHtEHEtva2vCDH/wAl1566WQvy0QFaMKulqny0ksvYcaMGTqprF69uohUTp48iTNnzqCtrQ0+n2/MP1/z/9I2QJ7ndVKZKP8vrSQ3GvPCUH8CL7x7GPFURk9drAWWZcAxNOa11OO6DUvHsuwipNNptLe3o7m5GQsWLCi6T6VRuAB0TaV0qHT//v24+eab8dd//df46le/apLIhwxTmkhMTF8kk0k8//zzePLJJ/Hiiy+ivr4et956K7Zs2YKnnnoK77//Pp566il4POOf3Kf5f2kbIMMwRVYt47HJadGyYwl0EiQJb+w/VXEivhJ8bjs+c8068ONkE5PJZLBnzx40NTVh4cKFNe+LoiiIxWL6CVAURRw4cABOpxMrVqzApz71Kdx33334+te/Pmkk8u1vfxvbtm1DV1cXbDYbrrjiCnznO9/B4sWLJ2U9HyaYRDIEXn/9dTz88MNob29HMBjEU089VdQAYGJopNNpPVPl6aefBsuy+MQnPoHPfOYzuOyyyyZ0al1RFP2pOhwOg6IoBAIBNDY2jnpYT7PjH0u0rBHHzoXwSvvRmqcShqHxmWvWI+AdHx0ok8mgvb0dDQ0NWLRo0Yg2f0IIkskkHnnkEfzXf/0XLly4gLlz5+KrX/0qtmzZgkCgcjvyROOGG27Apz/9aWzYsAGSJOFv//ZvcfDgQRw+fHjS8nM+LDCJZAhs374db775JtatW4fbb7/dJJJRQpZlfOlLX8KOHTvwt3/7t3j77bfx7LPPwmKxYPPmzdi6deuwMlXGAu2pWhuA1Ib1Ghsb4fP5hkVooVAIBw8exMqVK8fVqieRyeHFdw/jQiRW8e83rV+MlfNGl/1Rimw2iz179oyKRIw4ceIEbrzxRtx4441YsGABnnrqKbS3t+Mv//Iv8fDDD4/LWseCSCSChoYGvPbaa1PWZfiDApNIRgCKokwiGSV+9rOf4f/+3/+Ll19+WRelBUHAq6++qp9UAOiZKh/96EcndAhR03S0WRVRFIusWiqRSjAYxJEjR7By5coJeepWFAXvd53FO4dP68I6ACya1YCbLl0+LiUjjUQCgcCIO+yM6O7uxg033ICtW7fi+9//vn6yu3DhAgYGBqZEZO6JEyewcOFCHDhwYEqs54MMk0hGAJNIRg9ZlpFIJKrmoUiShNdff13PVMnlcrjllluwZcsWfPzjH5/QIUStVKOdVLQJ8IaGBtTX14PjOL3DbPXq1fD7x99h14hgXxzb3z2MeCoLj9OGO6/dAAs3dufjXC6HPXv2wO/3Y8mSJaMmkXPnzuH666/HDTfcgH//93+fkl5oiqLg1ltvRSwWwxtvvDHZy/nAwySSEcAkkosDWZbx5ptv4oknnsDTTz+NeDyuP/1ee+21EzqEqE2AayeVdDoNu92OTCaDVatWXTTn6bwo4bXO41g9vxWNvrHn0msk4vP5sHTp0lGTSDAYxPXXX4+rr74aP/3pT6esK/OXvvQlbN++HW+88caokxxNDB8mkYwAJpFcfCiKgnfffVcP6gqHw7juuuuwdetWXH/99ROaqQKobcrd3d2wWq3IZrO6rUhDQ8OUSGocDnK5HNrb21FXVzcmEgmFQrjxxhuxYcMGPPbYY1OWRO677z4888wzeP3118fkFWZi+DCJZAQwiWRyoSgK9u7dq9vfnzt3Dps2bcLWrVtx0003jfu8yJkzZ3Dq1CmsWbMGXq+3zFbE4/HopDKZGfK1kM/nsWfPHni93jG5KUciEdx8881Yvnw5/vu//3tKhowRQnD//ffjqaeewu7du7Fw4cLJXtKHBiaRjAAmkUwdKIpSlKly/PhxfPzjH8eWLVvGJVPl9OnT6O7uxtq1ayvOuuTzeZ1UBgYG4HK5dFKZKq2m+Xwe7e3teq7LaO9Hf38/brrpJsyfPx+/+c1vplzcsYb//b//Nx5//HE888wzRbMjHo9nyhL9BwUmkQyBVCqFEydOAADWrFmD7373u9i4cSN8Pt+oY0dNjC8IIejq6tJJ5eDBg/joRz+qZ6oEAoERbaInT57EuXPnsG7dumGVzgRBKLJq0byqGhsb4XA4JmVATxAE7NmzZ8wkEovFsHnzZjQ3N2Pbtm1T2s6/2nv8xS9+gS984QsXdzEfMphEMgR2796NjRs3lv35XXfdhccee+ziL8hETWiZKhqpdHR0FGWqNDc3V91wtH974cIFrFu3blQmkKIoFlm1WK1WnVRGaoA4Wmgk4nK5sGLFilH/zEQiga1bt8Lj8eCZZ56Zsvb9JiYfJpGY+MCCEIIzZ87gySefxFNPPYV33nkHl1xyiZ6pMnPmTH2TVRQFR48eRTgcxvr168elPCXLMqLRKEKhUJEBYmNj47jmqhshCALa29vhcDiwYsWKUbfmplIp3H777eB5Hs8//7xZGjJREyaRmPhQgBCCCxcu6Jkqb775Jtra2rB161Zs3rwZ3/72t5HP5/GTn/xkQtqLjQaI4XC4yP/L6/WOyyyGRiJ2ux0rV64c9TUzmQw+8YlPgBCC559/ftLs+U1MH5hEMo1gmtKND7RMlaeeegpPPvkk3nzzTTgcDtx11134wz/8wzHZhgwHWq56KBRCJBIBIUQnFZ/PNyoCEEUR7e3tsNlsYyKRXC6HO+64Q/dHc7vHPsNi4oMPk0imEUxTuvGFLMv4X//rf2H37t340pe+hN27d2Pnzp1YuHAhbr31Vtx2221YunTphE5uE0IQi8X0AUhZlhEIBNDQ0AC/3z+sWQ2NRKxWK1atWjXq9ebzedx5552IRqN46aWX4PV6R3UdEx8+mEQyjWGa0o0N//Iv/4Kf//zn2LlzJ1pbW3X/rWeffVbPVJk1a5ZOKmPZpIcDQggSiYROKoIgFFm1VJrdEEURe/fuBc/zZZkvI4EgCPj85z+Pc+fOYefOneOSEWPiwwOTSKYxTFO6sSGVSiGdTldN3EwkEkWZKg0NDTqprFu3bsJJJZVK6aSSzWbh9/v1YCmO4yBJEvbu3QuO48ZEIqIo4p577sHRo0fx6quvTpoNvInpC5NIpilMU7qLi3Q6je3bt2Pbtm14/vnn4fF4cOutt2Lr1q249NJLJ9wuJJVK6UJ9KpVCXV0dstksrFYr1qxZM+qfL0kS7r33Xuzbtw+7du0yY6xNjAomkUxTmKZ0k4dsNouXXnoJ27Ztw+9+9ztYrdaiTJWJtg9JJpPo7OyEJEmQZRler1cX60cy6yHLMu677z68/fbb2L17N1paWiZw1SY+yDCJZBrCNKWbOhAEAa+88gq2bduGZ555BhRF4eabb8Ztt92Gq6++etwnwSVJQkdHB2iaRltbG0RR1O3v4/E43G63PqtSa/ZDURT8xV/8BXbt2oVdu3aZLg0mxgSTSKYRTFO6qQ1RFPVMlWeeeQb5fB4333wztm7dio0bN455MlyWZXR0dICiKLS1tZWVs/L5PCKRCEKhEAYGBuB0OtHY2Fjm/6UoCv7mb/4Gzz//PHbv3m0+jJgYM0wimUYwTemmD2RZxhtvvKFnqiQSCdx4443YunUrNm3aNOKhR41EAAxLExFFUSeVvr4+UBSF7du34w/+4A/wzDPPYNu2bdi1a9ekP4y8/vrrePjhh9He3o5gMGiaok5TmEQyjWCa0k1PKIqCd955RyeVSCRSlKky1OS4LMvo7OyEoihYu3btiIV1SZJw4MAB/MM//APeeustAMDnPvc5fPGLX8T69esnxVRSw/bt2/Hmm29i3bp1uP32200imaYwicSEiYsIRVHQ3t6OJ598Etu2bcP58+exadMmbNmypWKmiizL2LdvH2RZxpo1a0Yt5BNC8O1vfxs///nP8Td/8zfYs2cPfve738Hr9eKFF17A8uXLx+stjhpmTMP0hUkkJkxMEhRFwf79+3VSOXHiBK655hrceuutuOWWW8DzPL74xS/izjvvxPXXXz8mEvnud7+L73//+3j11VexevVqAKqmsnPnTmzcuHFKlEZNIpm+mLiJKhMfCvzoRz/CqlWr4Ha74Xa7cfnll2P79u2TvaxpAa3z6pvf/CYOHjyIjo4OXHbZZfjxj3+MuXPn4oorrsChQ4ewaNGiUc+JEELwwx/+EN/73vewY8cOnUQAwGKx4KabbpoSJGJiesMkEhNjwowZM/DQQw+hvb0de/bs0VMKDx06NNlLm1agKArLli3D17/+dbz77ru4+uqrkc/n4ff7sX79etx000149NFHEQwGMdwiAiEEjz76KB566CG88MILWL9+/QS/CxMfVphEYmJM2Lx5M2666SYsXLgQixYtwre+9S04nU688847k720aQlZlnHHHXcgHo/jwIEDePvtt3Hs2DFs3rwZTzzxBBYvXozrrrsOjzzyCM6dO1eVVAgh+MUvfoEHH3wQv/vd73DZZZdd5Hdi4sMEk0hMjBtkWcb//M//IJ1O4/LLL5/s5UxLMAyDzZs36+67FEVh7ty5+MpXvoI33ngDp0+fxqc+9Sk8//zzWL58OTZu3Ijvf//7OH36tE4qhBD813/9Fx544AE8++yzuOqqqyb5XZn4oMMU202MGQcOHMDll1+OXC4Hp9OJxx9/HDfddNNkL+sDDUIIent78dRTT2Hbtm147bXXsGLFCmzZsgUWiwXf+ta3sG3bNlx33XWTvdSaSKVSOHHiBAB1Pua73/0uNm7cCJ/PZ07bTyOYRGJizBAEAWfPnkU8HscTTzyBn/3sZ3jttdewbNmyyV7ahwKEEPT19eGZZ57B448/jldffRW/+tWvcOedd0720obE7t27sXHjxrI/v+uuu/DYY49d/AWZGBVMIjEx7ti0aRPmz5+PRx99dLKX8qGDFilsGnmauJgwNRIT4w5FUZDP5yd7GR9KUBRlkoiJi46J9bs28YHHAw88gBtvvBGzZs1CMpnE448/jt27d2PHjh2TvTQTJkxcJJhEYmJMCIfD+PznP49gMAiPx4NVq1Zhx44duPbaayd7aSZMmLhIMDUSEyZMmDAxJpgaiQkTJkyYGBNMIjFhwoQJE2OCSSQmPtB46KGHQFEU/uIv/mKyl2LCxAcWJpGY+MDi/fffx6OPPopVq1ZN9lJMmPhAwyQSEx9IpFIp3HnnnfjpT3+Kurq6yV6OCRMfaJhEYuIDiT/90z/FzTffjE2bNk32UkyY+MDDJBITHzj8z//8D/bu3Ytvf/vbk72UDyz+7d/+DXPmzIHVasWll16K9957b7KXZGISYRKJiQ8Uzp07hz//8z/Hf//3f8NqtU72cj6Q+PWvf40vf/nL+Md//Efs3bsXq1evxvXXX49wODzZSzMxSTAHEk18oPD000/jtttuK4qmlWUZFEWBpmnk8/lRx9aaUHHppZdiw4YNeOSRRwCo3mozZ87E/fffj6997WuTvDoTkwHTIsXEBwrXXHMNDhw4UPRnd999N5YsWYKvfvWrJomMEYIgoL29HQ888ID+ZzRNY9OmTXj77bcncWUmJhMmkZj4QMHlcmHFihVFf+ZwOOD3+8v+3MTIEY1GIcsyGhsbi/68sbERXV1dk7QqE5MNUyMxYcKECRNjgnkiMfGBx+7duyd7CR8Y1NfXg2EYhEKhoj8PhUJoamqapFWZmGyYJxITJkwMGzzPY926ddi5c6f+Z4qiYOfOnbj88ssncWUmJhMmkZgwcRHw4IMPgqKoov+WLFky2csaFb785S/jpz/9KX75y1/iyJEj+NKXvoR0Oo277757spdmYpJglrZMmLhIWL58OV555RX9/7Ps9Pz63XHHHYhEIvj617+O3t5etLW14cUXXywT4E18eDA9P8kmTExDsCz7gdER7rvvPtx3332TvQwTUwRmacuEiYuE48ePo6WlBfPmzcOdd96Js2fPTvaSTJgYF5iT7SZMXARs374dqVQKixcvRjAYxDe+8Q1cuHABBw8ehMvlmuzlmTAxJphEYsLEJCAWi2H27Nn47ne/i3vuuWeyl2PCxJhglrZMmJgEeL1eLFq0CCdOnJjspZgwMWaYRGLCxCQglUrh5MmTaG5unuylmDAxZphEYsLERcBXvvIVvPbaa+ju7sZbb72lOxR/5jOfmeylmTAxZpjtvyZMXAScP38en/nMZ9DX14dAIIArr7wS77zzDgKBwGQvzYSJMcMU202YMGHCxJhglrZMmDBhwsSYYBKJCRMmTJgYE0wiMWHChAkTY4JJJCZMmDBhYkwwicSECRMmTIwJJpGYMGHChIkxwSQSEyZMmDAxJphEYsKECRMmxgSTSEyYMGHCxJhgEokJEyZMmBgTTCIxYcKECRNjgkkkJkyYMGFiTPj/Adu3FhUzgbaSAAAAAElFTkSuQmCC"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# %% Fit first using a super-simple linear regression\n",
+ "\n",
+ "first_order_linear_estimator = LinearRegression()\n",
+ "first_order_linear_estimator.fit(X, y)\n",
+ "\n",
+ "show_results(estimator=first_order_linear_estimator, label=\"1st order linear\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "f67dbeeb",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but PolynomialFeatures was fitted with feature names\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAGlCAYAAADQ/XDvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5ykaV3vD7/vWLmqqzr3TE9PDjuzs4ndnZllF4QlKogKPKAcWUU5HMGDeI4/41F5jiCGc8RwRPRRVIIoCPo7Epa4LLts3unJoWemu6d7OlfOd3z+qL5rqjqH6uma2fv9eq041VVXXZWuz/3Ngm3bNi4uLi4uLmtE3OwNuLi4uLjc3LhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduEJyE/HII48gCAKCIHDo0KGGry8IAh/4wAcavm4j+Pu//3sEQWBoaKh625133ll9P37kR35k8zYH/O7v/i6CIGzac23fvp1HHnnkhjy/i8tcXCG5yWhra+PTn/40H/vYx+b97Qc/+AEvf/nL8fv9dHV18V//638ll8vNu8/v/u7vkkqlGr63xx9/nDe/+c309vbi9Xrp6uri9a9/PU8++WTDnwvgox/9KJ/+9Kdpa2vbkPVdXFxWhrzZG3BZHYFAgHe9613zbu/v7+fVr341Bw4c4H//7//N6Ogof/zHf8zAwABf+9rXqvf7wQ9+wIc//GEeeeQRWlpaGrq3ixcvIooi73vf++jq6iKZTPKZz3yGhx56iK985Su8/vWvb+jzvfGNbwTgt37rtxq67s3IhQsXEEX3utBlc3CF5BbhN37jN4hGozz22GOEw2Gg4u74+Z//eb7xjW/w2te+dsP38HM/93P83M/9XN1tv/ALv8DOnTv5+Mc/vqSQWJaFpml4vd6N3uaaMAwDy7JQVfWGPF+hUMDv96/4/h6PZwN3s37y+TyBQGCzt+GyQbiXMLcAmUyGb37zm7zrXe+qigjAT//0TxMMBvmXf/kXoOJb/5Vf+RUAduzYUY0v1MYdAP7t3/6NQ4cO4fF4OHjwIF//+tfXvDe/3097e/s8V5oTj/nsZz/LwYMH8Xg81ec5c+YMr3rVq/D5fGzdupXf+73fw7KsNe+hlqmpKd7znvfQ2dmJ1+vljjvu4B/+4R/q7jM0NIQgCPzxH/8xH//4x9m1axcej4ezZ88C8MQTT3Dvvffi9XrZtWsXn/zkJxd9vs985jPcc889+Hw+YrEY73jHOxgZGam7zytf+UoOHTrECy+8wEMPPYTf7+c3fuM3VvW65sZInJjSk08+yS//8i/T3t5OIBDgx37sx5ienp73+K997Ws8+OCDBAIBQqEQP/zDP8yZM2fq7nPy5EkeeeQRdu7cWXVd/uzP/izxeLzufk4M5+zZs/zkT/4k0WiUl7/85at6PS43F65Fcgtw6tQpDMPgZS97Wd3tqqpy5513cvz4cQB+/Md/nIsXL/JP//RP/Mmf/Ek1ttDe3l59zBNPPMGXvvQlfuEXfoFQKMSf/dmf8RM/8RNcvXqV1tbWFe0nk8mgaRozMzP84z/+I6dPn17wYPzOd77Dv/zLv/CBD3yAtrY2tm/fzsTEBD/0Qz+EYRj82q/9GoFAgL/+67/G5/Ot9e2pUiwWeeUrX8mlS5f4wAc+wI4dO/jCF77AI488QiqV4oMf/GDd/T/1qU9RKpV473vfi8fjIRaLcerUKV772tfS3t7O7/7u72IYBr/zO79DZ2fnvOf7yEc+wv/4H/+Dt7/97fzcz/0c09PT/Pmf/zkPPfQQx48fr3MtxuNx3vCGN/COd7yDd73rXQuutxZ+8Rd/kWg0yu/8zu8wNDTExz/+cT7wgQ/wz//8z9X7fPrTn+bd7343r3vd6/iDP/gDCoUCn/jEJ3j5y1/O8ePH2b59OwDf/OY3uXLlCj/zMz9DV1cXZ86c4a//+q85c+YMTz/99LwEgLe97W3s2bOHj370o7jTKm5xbJebhne/+912X1/fvNu/8IUv2ID9+OOPz/vb2972Nrurq6v67z/6oz+yAXtwcHDefQFbVVX70qVL1dtOnDhhA/af//mfr3ifr3vd62ygut5//s//2S4Wi/OeSxRF+8yZM3W3/9Iv/ZIN2M8880z1tqmpKTsSiSy6776+PvuHf/iHl93Xxz/+cRuwP/OZz1Rv0zTNPnr0qB0MBu1MJmPbtm0PDg7agB0Oh+2pqam6Nd7ylrfYXq/XHh4ert529uxZW5Iku/bnNDQ0ZEuSZH/kIx+pe/ypU6dsWZbrbn/FK15hA/Zf/dVfLfsabNu2f+d3fsee+9Pt6+uz3/3ud1f//alPfcoG7Icffti2LKt6+4c+9CFbkiQ7lUrZtm3b2WzWbmlpsX/+53++br2JiQk7EonU3V4oFObt5Z/+6Z/mffec/b3zne9c0etxuflxXVu3AMViEVjYT+71eqt/XwkPP/wwu3btqv778OHDhMNhrly5suI1Pvaxj/GNb3yDv/3bv+XIkSNomoZhGPPu94pXvILbbrut7ravfvWrHDlyhPvuu696W3t7Oz/1Uz+14udfjK9+9at0dXXxzne+s3qboijV7Lbvfe97dff/iZ/4iTprzTRNHn30Ud7ylrewbdu26u0HDhzgda97Xd1jv/SlL2FZFm9/+9uZmZmp/tfV1cWePXv47ne/W3d/j8fDz/zMz6z7Nc7lve99b52l8OCDD2KaJsPDw0DFykilUrzzne+s26ckSdx///11+6y1CkulEjMzMxw5cgSAF198cd5zv+9972v463FpTlzX1i2A8wMvl8vz/lYqlVblFqo9IB2i0SjJZBIATdNIJBJ1f29vb0eSpOq/77zzzur//653vYu7776bRx55hC9+8Yt1j9uxY8e85xoeHub++++fd/u+fftWtH/TNOfFAGKxGKqqMjw8zJ49e+ZlNx04cKD63Evtb3p6mmKxyJ49exbc31e/+tXqvwcGBrBte8H7QkXAatmyZcuGBPLnfp7RaBSg+nkODAwA8KpXvWrBx9fG3BKJBB/+8If5/Oc/z9TUVN390un0vMcu9Pm63Jq4QnIL0N3dDcD4+Pi8v42Pj9PT07PitWoFoRZ71sf9gx/8gB/6oR+q+9vg4GDVjz4XVVV585vfzMc+9jGKxWKdqDUi7jGXkZGReQfYd7/7XV75yleueq317M+yLARB4Gtf+9qC72kwGGzYcy3Fcp+nk8Tw6U9/mq6urnn3k+XrR8Tb3/52fvCDH/Arv/Ir3HnnnQSDQSzL4vWvf/2CyRAb9Zpcmg9XSG4BDh06hCzLPP/887z97W+v3q5pGv39/XW3rbf6+o477uCb3/xm3W0LHUC1FItFbNsmm80ue7j09fVVr5JruXDhwor219XVNW9/d9xxR3XtkydPYllWnVVy/vz56t+Xor29HZ/Pt6L97dq1C9u22bFjB3v37l3R3jcDx43Z0dHBww8/vOj9kskk3/72t/nwhz/Mb//2b1dvX+i9cHnp4cZIbgEikQgPP/wwn/nMZ8hms9XbP/3pT5PL5Xjb295Wvc3J5V9rZXs0GuXhhx+u+8+p/Zjr7nCe51//9V/p7e2lo6Nj2fXf+MY38vTTT/Pss89Wb5uenuazn/3sivbn9Xrn7c9x57zxjW9kYmKiLmPJMAz+/M//nGAwyCte8Yol15Ykide97nX827/9G1evXq3efu7cOR599NG6+/74j/84kiTx4Q9/eF7Gkm3b81JmN4vXve51hMNhPvrRj6Lr+ry/O25Cx7KZ+1o+/vGPb/geXZof1yK5RfjIRz7CsWPHeMUrXsF73/teRkdH+V//63/x2te+tq4Q8J577gHgN3/zN3nHO96Boii86U1vakix2Bve8Aa2bt3K/fffT0dHB1evXuVTn/oUY2NjdYf3Uvw//8//w6c//Wle//rX88EPfrCa/utYE+vhve99L5/85Cd55JFHeOGFF9i+fTtf/OIXefLJJ/n4xz9OKBRado0Pf/jDfP3rX+fBBx/kF37hF6pCdPDgwbr97dq1i9/7vd/j13/91xkaGuItb3kLoVCIwcFBvvzlL/Pe976X//7f//u6Xk8jCIfDfOITn+A//af/xN1338073vEO2tvbuXr1Kl/5yld44IEH+Iu/+AvC4TAPPfQQf/iHf4iu62zZsoVvfOMbDA4ObvZLcGkCXCG5Rbj77rv51re+xa/+6q/yoQ99iFAoxHve8x5+//d/v+5+9957L//zf/5P/uqv/oqvf/3rWJbF4OBgQ4TkZ3/2Z/n85z/Pn/zJn5BKpYhGoxw5coTPfe5zPPjggytao7u7m+9+97v84i/+Ih/72MdobW3lfe97Hz09PbznPe9Z1/58Ph+PPfYYv/Zrv8Y//MM/kMlk2LdvH5/61KdW3PDw8OHDPProo/zyL/8yv/3bv83WrVv58Ic/zPj4+Dyh+7Vf+zX27t3Ln/zJn/DhD38YgN7eXl772tfy5je/eV2vpZH85E/+JD09PXzsYx/jj/7ojyiXy2zZsoUHH3ywLpPsc5/7HL/4i7/I//k//wfbtnnta1/L1772tVXF4FxuTQR7rq3q0rQ88sgjfOc73+HFF19EluWG98q62UilUhiGwd13383hw4f5j//4j83ekovLSxI3RnKTMTIyQnt7u9tygkprkfb29nktR1xcXG4srkVyE3H27FnGxsaASvqoUwz2UuWZZ56pJhe0t7dXs7NcXFxuLK6QuLi4uLisC9e15eLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVduELi4uLi4rIuXCFxcXFxcVkXrpC4uLi4uKwLV0hcXFxcXNaFKyQuLi4uLuvCFRIXFxcXl3XhComLi4uLy7pwhcTFxcXFZV24QuLi4uLisi5cIXFxcXFxWReukLi4uLi4rAtXSFxcXFxc1oUrJC4uLi4u68IVEhcXFxeXdeEKiYuLi4vLunCFxMXFxcVlXbhC4uLi4uKyLlwhcXFxcXFZF66QuLi4uLisC1dIXFxcXFzWhSskLi4uLi7rwhUSFxcXF5d14QqJi4uLi8u6cIXExcXFxWVdyJu9AZeXFrZtY5om5XIZSZKq/4mie03j4nKz4gqJyw3Dtm10XccwDMrlcvV2URSRZRlZll1hcXG5CRFs27Y3exMutz6maaLrOpZlIQgCmqYhiiK2bWPbNpZlYds2giAgCIIrLC4uNxGukLhsKLZtYxgGhmEAIAhC1TIRBGHB+zui4uDcT1VVFEVBluUFH+vi4rI5uK4tlw3DsqyqFQJUrQ1HJBwLpBZBEJAkqfpvR1iefvpp9u3bR0tLC6IoIklSndXiCouLy+bhColLw3EOf13X69xVc++zksPfERbnfyVJqq6taRqCIFSFRVGU6n1cYXFxuXG4QuLSUBy31enTp+no6KCtra0hh7qzxmIWy1xhmRtjcYXFxWXjcIXEpWE4B7ppmmSzWaLRaMMO8FqX2NzbHWFx/m5ZFpqmUS6XXWFxcbkBuELism6c2hDDMLAsC1EUFz34NxJHHFxhcXG5sbhC4rIuHFeWaZoAVRFxUnsbxVqEaSFhcf4rl8tomlbdsyssLi5rxxUSlzXjXOnXWiG1LHbwb9YhXRv0lyRpnrDUWixOmrFTw+IKi4vL4rhC4rJqHFeWk5W10EG7nAWx2oN5I1xlSwlLqVSq3scVFheXpXGFxGVVWJaFYRjzXFlz2YwYyXpZibCUSiUMw6Ctrc0VFheXWVwhcVkRK6kNqaXRQrJZwfu5wpJMJkkmkwSDQaAipHNjLK6wuLzUcIXEZVkWanOy3EF5M1oky+G8bkEQUBSlrk9YuVymVCq5wuLyksQVEpclqa0NceIFK2GtQqIZFjbgkeufpxmFaa6gOsJimma1VX5tjMVp67ISIXZxuZlwhcRlQRarDVkpqz34kwWdJ68kOD+Rw7ZhT0eAYzujdIQ8dXtqZhyBcMS2VlgMw6j+faE+Ya6wuNzMuELiMo/FakNWw2qEJF82+JcXx7gyXSAWVBGApweTjCSLvOu+rUT9yk150C4mLIZhVLsfO8JS2yfMbZnvcrPhColLHcvVhqyU1QjJuckcg/Eiu9r9yFLlEI35FQam85way/LQ7hjQPBbJet4TV1hcbkVcIXEBVlYbshpWIySTGQ1RoCoiAKIo4FUkRpPF6nq3GssJC7jTI11uDlwhcWmIK2suSwmJbduMJItMZjX8ioQsgWXNv69mWoS9ct3jbmUWE5bazsbu9EiXZsQVkpc4pmkyMjKCz+cjEolseLfesm7yr8fHeGE4QVG3kESBiLeSyXQtVaI77AEBprMaPllkf1ewut5LjYWExcmi03WdfD5PsViku7u7Kizu9EiXzcAVkpcotbUho6OjdHZ20tLS0rD1FxOSJy7FefJygs6gwpaIhGnbDCdKqJKAIglcnikA0OKTec2Bdna3B+r2/FJm7iyWfD7PxMQEbW1tC1os7vRIlxuFKyQvQeaOwN0I14ggCNX1HQzT4tnhJCGPTNgnY9ugiAJ9MS9XkyV+aG8bAVXCsm16oz6ifqVuvWag2cTMEQ5YfMiXOz3SZaNxheQlRO1BU5uVJYrivEN/vSx0WOmmTVEz8Sj1wiWLApZlIwpwqCe06HrNdohvNnPHFbvTI102C1dIXiIsFVDfqM66c8XJq4hsafFxdjxL1Hf9wMuWTXyKRGdN8aHLyliu35k75MvlRuAKyUuA2jYni7V8vxEWiSAIPLSnjaF4gcvTBVr8CmXDJFc2ObojSm/Uu+R6rkVSz1yLZCnc6ZEuG4krJLcwK21z0uhphnBdnK4mCvSPpEkXdbZEfdzVG+Ftd7Tz788OkEgLtAT8vOJgOw/ubnUPrFWyns9sKWFxp0e6rBZXSG5RVlMbslGurTPTGi9cvEKqqCGJIqZl861TI9zlS/CWfa2UDJtcJo49OcW5UoRoNEosFiMYDM5LAHAtkvmsxiJZjlphWcn0SCfV2O1s7AKukNySOBXqK21zshHB9oJu8/hwEcWvsrejUgsyPRPn7Giezv2d/OjBfVVhKBQK1TkfV69eBaClpYVoNEo0GiUQCCz6PJtBMx2cG7UXd3qky2pwheQWorY2ZDVtTjbian80o5MsWdzR48U0DSYnpwDYs6Wda3mBbMkg6Km4SQKBAIFAgK1bt2LbNtlslmQySTwe5/Lly3VFdm1tbfh8vobu9WalkRbJcqxEWJLJJH6/n0gk4grLSwxXSG4RFqoNWU0gttEWiSNLhXyeZCJOMBgkFouRLOgYlo3NwgehIAiEw2HC4TB9fX1YlkU6nebChQtks1mefvppPB5P1VqJRqN4PC/NbK/NdPUtJCxjY2O0trZWP4+FWua7wnJr4grJTc5qR+AuhCiK1VhKo9gaVvAJBpfG4uzb2kYgEMCybaZzZe7rixLySCs6CEVRJBqNEgqFCAaDbNmyhXQ6XXWDnT17lkAgUBWVlpYWFEVZdt1bgRtpkSxHrai40yNferhCchMzN6C+1gFJjXBt5UoGP7iS4OS1NJZp4M2Nc3vMZtBq5VreRi0VKBkWW1t8vP5g55qe07ZtZFmmtbWV1tZWAHRdr8ZXLl++TKFQIBwOV4UlEonUFemtl2YL+DfTIWxZVl1tkjs98qWDKyQ3KcvVhqyG9Qbbc2WDv3z8CqevZbEtnWwmhyBJ7I+pvO9Vuzg1liFV0NkW9fGy7VHag2q1TfpKWez1KYpCR0cHHR0dAJRKpaqwnDt3Dk3TiESuZ4SFQqFbpltus4naUhaSOz3y1sYVkpuM9Y7AXYj1WiRPDyY4fS1DRNQoawW29sYolk0uJnLkygbveNnWea9hLazkcV6vl+7ubrq7u7Ftm2KxSDKZJJFIMDo6imVZdRlhwWDwpj2omsm1BVS/jythNUO+5rrCXJoPV0huIjZibgisP9h+YjhBPpshFBDp7u5CkRVsK4dlwaWpPPfviDVkj2t5jN/vx+/3s2XLFmzbJpfLVS2WwcHBagzG+c/n8zXV4bwUzSYk69nPaoTFnR7ZfLhCcpNgWRaTk5NMTk6yf//+hh4g67FIJiYmGBsdRZRVuro6ru9LELCxkcTG7XO9rhxBEAiFQoRCIbZt24ZlWWSzWRKJBJOTk1y8eBFVVauiEovFmj4jrNmEpFEH+3LCAu70yGbCFZImp3YEbrlcJplMNvzwWEuLFMuyOH/+PGNjY7zy8Ha+dDZDXjMJeipfqUzJQBYFblukm+9q2YgDUxRFIpEIkUiEHTt2YJom6XS66gY7d+4cfr+/zmJpJprNIqkNtjeaxYTF6WwMrrBsJq6QNDGWZWEYRtWVJUlSw+s9YPWurZPD03zxybPMFCwO7+7jgZ4OjpVlnr6S4FqqiG0LiLbFXR0Sh7rDCz7fag+cG9EiRZIkYrEYsVjFFafrOqlUquoGO336NKqqIssy8XiclpaWhmaErZZmE5JGWiTLsZCw1E6PBKqFueFw2J0eucG4QtKELFYbslFCshqL5NEXL/PJxwcxRIVoOMRjl1K8MJrjkSPbuLcvysXJLJIk0q5oiOlriA10bd1oFEWhvb2d9vZ2AMrlMgMDA2QyGS5cuEC5XK6mGsdiMcLh8A29Ar6RB/dK2EiLZDkWmsUyMTHB9PQ0t99+e/U+7vTIjcEVkiajts0J1F+9b0RPLOc5llvXsixOnTnHZ58aR/b6OdAVqVoJVxNF/v3EOP/zzQe4szcCwNTUFAPpxu5xs9NdPR5PNcvr4MGDFItFEokEyWSSa9euYZpmNSPMaT650QdVMx2EzWQh1RZIyrLsTo/cYFwhaSJqa0NqzXaHjTpMl7NICoUC/f39jOcsbF+Y3tD1zCZBEOgMe5jIlhlOFNnbGdzQvTYTPp+PLVu2VDPC8vl8NSNsaGgIQRDq4it+v7+hB1Wzvb/NaCE5+1nIYnGnRzYOV0iagNXMDdkoi2SxQ2liYoLTp0+zZcsWuvb08h/jF7Hm3NeybUSoy9BaTkiaMUayHgRBIBgMEgwG6e3trWaEJZNJpqenuXTpErIsV62VaDSK17v4IK+V0EwWAGyua2shnGLdhagVFnfI1/pxhWSTWU1tyI10bTlZWVdGxvB27qQQiLEl6KEv5uP8ZI6dbRKiIGDZNuOZMrvbg/TFfHVrNvPBv9HUZoRt3769mhHmuMHOnz+P1+uts1hUVV3VczSbkDSzRbIUtW4wcIVlLbhCsok4X9TNnBvirFt76DuurDNxk+dTUeJDM9hM0x708ODuVlJFncvTBQTAxqYz7OWn7tuKLF3/0S4nJKsVmY3oUHwjmZsRZhhGNSNseHiYM2fOEAwG65pPyvLyP89mOcicdNxm2Q+srtK+lqWExZ0euTCukGwCtbUhq5kb4hz4jf7B1h7SjiuLUAdPxHUKmklPixcBmMiU+frZKf7LQ9tJFXWms2Vagx7u2x6lI+SZt2ajLZJbycKRZZm2tjba2toA0DStGl8ZGBigVCoRCoWqbjAnhbWWZno/nL00m0XSiPTsWmFZaHpkrbC8VKdHukJyg1lPmxPnR9qoH0jtupZlcfbsWcbGxjh06BDfGtZIF8fY2Rao7m9Li5crMwVOj2V574Pbl1yz0UJyq/8gVVWls7OTzs5OgGqPsGQyydjYGIZhzGs+2UwWgPNZN8t+oPI72YiRArWZlO70yAqukNxAVjsCdy7O/Rt9JepcVaVSKY4dO4bf72fmzCWkOXsUBAFFEpjOlVe0V9ciWTs+nw+fz0dPTw+2bS84jti5AMjlcgQCgU09pByLtpkOyrW6tlaLKyyukNwQ5taGrPULVGuRNIqJiQlOnTqFIAgcOXKk+hy9MT+mFa9kZNUImG5abI/5l13XtUgahyAsPI743LlzFAoFnn/++WpGWG3zyRtJs7q2NmM/SwnL1atXyWaz7N69+5aaHukKyQYzdwTuWtqDODRSSEzT5MKFC4yNjbFnzx4uXbpU96N7+a4Y3zo3xeBMnvagBwSYyWl0hDw8tLdt2fVvZYtks3/sglAZR+zz+YhGo3VTI8fHx7lw4ULdOOJYLLbqjLDV0qyurc1sYeNQ+5t30vwda/JWmR7pCskGUVvw1Mi5IY3IXsrn85w4cQJBEDh27BiWZfHd4xf5i8euMJIo0tPi5eH97fzyw7v5p+dGGZjKY9s2h7eEecfLttIbXf5qdyPqSFzqcWIkta3woZIRttQ44mg0uqKMsNXg1JA00+e0WRbJUpimOa+Z5FLTI28WYXGFZAPYqLkhzlrrEZLaAsN9+/YhiiLfPTvGP18WkLwTeGSJ02MZnrqS4L+8Ygf/4437mMqWsW3oDHtW9TpuRYukGfZQy0Kfx2aMI26mwL9DMwtJLYt1Nq4Vlne+8528+93v5p3vfOdmbHtZXCFpMJZlMTExAUAsFmv4j2utQlLryrr99tur2UGaYfHPL05QNm1ui/kRxIolMZoq8dlnRrh/e5TO8OorsNfSmn4pmu2QagZWenjfiHHEzVbVDjePkMxlIWGZmJhouBXZSJp3ZzcZtW1OxsbG8Hg81SvCRrIWIZnryvL7rwfLhxMFJrMaYQWo6Z/VEVSZympcns5zsGd+K/iV0EjX1nLrvRRZ6/uxEeOIm62qHZpXSFYbrxIEgUKhUPe7bTZcIWkAc11ZkiRV//9Gs9og9vj4OGfOnKlzZdUiCgKCAJUVbaByYFiAKLDmCYe1qcoLHUJOyvFKfxzNdrXbDDTCnSQIjRlH3IyuraV6bW0Wa0kAcBqChkKNGRK3EbhCsk4Wqg2RJKma6ttoVmqRLObKmsv2Vj99MR8vpjL0WDayVOmfNZkps7MtwK72wJr2uZSQOCnHlmXh9Xqr1dvRaHTRArKXeu+uhdiIw1sQ5o8jzmQyJJPJeeOInc/N4/G4rq0VslZxy+fzBAJr+y3eCFwhWSO1tSFz25xsVE+sla69lCsLIJHXOD2WQRQEbt8S5meP9XF5dJLhRAFRELGxaQ96eM8DfSjS2n6ICxVPWpbFhQsXuHbtGocOHSIYDFZnpjsTCGsHRUUikaY7CJqNjT68RVGkpaWFlpaWeeOIR0ZGOHv2bNWicSzzjagmXwvNKiRrSWwoFAquRXKrMXcE7tysrI2aZOg811JrL+fK+r8nJ/jMMyMkixoCAjG/wruP9vKTuyyszi3EiyYdIQ8P7m6jp2Xtbc7nCkmpVKK/vx/TNDl27BiqqqLrel2/qXK5XB0UdebMGQzDoKWlhVgsVm1u6XKdzbDQFhtHPDY2hq7rfP/73ycUCtU1n9ysWo5bRUg0TUPXdYLB4Abtav24QrIKFhuBO5fNsEhM0+T8+fOMj48v6srqH0nz/3tyCMuy2RKp1IJMZct88vvD/Eg7/OQdnQ2riK4Vkng8zokTJ2hvb+e2225b1PXn8XjqgsDOoKhEIkEikQDgzJkzVYtlvfM8bnaaIS7hjCMWBIFyucwdd9xRja/UjiOubT55Iw5357fabEKylhhJLpcDcIXkVmBuQH2p4itRFDc02D5XSPL5PP39/YiiuKAry+E7F6YpaibbalqcdIU9jCSLnEltTLru4OAgw8PDHDhwgK1bt67q8bWDokZGRpiamsLn8zE2NsaFCxeqld3OIXWj0iM3+/CupVn24sRIPB4PXV1ddHV1VXtNOVamkxFWm2q8UeOIm7FlC6wtRpLL5apJEc2KKyQroHYE7kqKC2+ka2s5V1Yt07nyvCwsRxBzemPnfTgWx9jYGPfffz/h8NpSiB0EQUCWZXbu3MnOnTsxDKOuyK5YLFbbrsdisRt25buZNINF4rDQXgRB2LRxxM53udm+A2txbTmpv832WmpxhWQJVjoCdy4baZE4hX4rcWXNZXd7gOeHUnWNGC3LxrJtuvyNy4pKp9McP34cgHvuuachQcK577ssy7S3t9Pe3g5Qd+XrZIQ58ZVoNLrp3XE3gmbKYltJHclcK3OxccS1WXxrdV/eSkLSDN2dl8MVkkVYT5uTjbZISqUSTz/99LKurLm89rZOvnN+hpFEkWhAARsSBZ2eFi93tBXXvWfbthkdHeX8+fPs3LmTgYGBhrqbljo4vV4vPT091bbr+XyeRCJBPB7n8uXLdQdULBbD4/EsutZa93CjaSaLZC3pv6sZRxyLxWhpaVlxMV8zCokTt1mtkDR76i+4QrIgqx2BO5eNDLaXy2Wmp6fp7e1d1pUFFYujbFh4FZHeqI/feuM+/v6pq1ycyiEAR3ZEeffRbYyeeW5dh6Rpmpw5c4aZmRnuvvtuWltbGRgYaNjBu5rPoPbK16mFcFJWr127xrlz56pNDJ0DqpnbTyxFswhJIyrblxpHPDg4SD6fX/E44kY1Sm0kzpngWiS3OGsdgTuXjRASx5WVTqfp7OzkwIEDS95fNy3+rX+c/3tqglRBpyfi5a139/Dq/e187MduYyZXGQ/aFlQRBIFrZ9fu2nKC/ZIkcezYsao7YqkiwhvZImVud9zaJobOWFsns2itvaY2g5vdIlmOlYwjrm0+WTuOuBkztmq9G6uhUCi4FsnNwnK1Iauh0TGS2qyszs7OFbmy/vr7Q3zp+BiSKOBVRAamcvzRNwco6hZvOtxF+wIz1tcifpOTk5w6dYqtW7eyd+/euh9JI6vRG3lIzW1iuFCvqdpZHo0KADeal5qbbTXjiFVVbbrPbK1C4lgkzcxLXkhWWhuyGhoZI5mblXX+/Pll1x5Pl/j6mUl8qkTUX6kyjvgUJjJl/vn5UV57oB2PUm9er7Zbr2VZXLx4kdHRUQ4dOkRXV9e8+zS6rclGHZxzx9rmcjkSiQQzMzNcvnwZRVGqorJRSRRrodkskhttASw2jthJujBNk5MnT1YvCjbbPeQE2le7B8el18y8pIVk7gjcRg3maYRra7GsrJUc+ANTOXJlk55IvdUR8crM5DXG0iV2tNVf4azm0C+VSpw4cQJd1zl69OiiV0tLvZfNOtiqttdUX1/fvJYg2Wy2OmzIia9s5hS+ZhGSzRY1QagfRzwzM8OFCxeIRCJ1CRebOY54rRMbC4WCKyTNSm1tSG3v/0bgCMlaf1xLFRiKooiu60s+PuSVkSUB3bTwiNe/uJppoYgCQc/8j32l4pdIJOjv76etrY177rlnySB1o6ckNkNLkIGBAbLZbLUpZrlcXvcsj7Wy2Yd3Lc3WRt62bRRFoa+vj76+vmrCxWaOI75VGzbCS1BInID60NAQoijS09PT8B9jbcBvtVcg4+PjnD59mt7e3nkxB1jZgX+oJ8z2mJ+B6TxdYQFFEinrJpmSwSv3ts+Lj8Dyh75t2wwODnL58mX27dtHb2/vsu/bRsRI0kWd0WSJsmkR8sj0Rr14lRtnEUiShM/nY//+/QB17pSRkRGAusNpoZbrjaKZYiTN1v13rqttsXHEiUTiho0jXmvDxlwu19QNG+ElJiS1tSHZbHbD0gOdL/BqhMRxZU1MTHD48OFFCwwXEpLRZJF/6x/j+EiakFfh4QOVeesf/fpFrqWKlccJAod6wvzCK3YsuO5SwXZd1zl16hSZTIb77ruPSCSyotfUaCGZzJtcPD1FsqCDICAAW6NeXrGnlbD3xn2Va78zc2d5ON2Mp6enGRgYQFXVqkXjBIEbRbNZJM2yF1g+ZrMZ44jXKiT5fJ7u7u51PfdG85IRkrm1IRs5fMr5ApumuaKW2rWurKNHjy6ZlTVXSIbjBf7bF08znimhSAKmZfPi1RRvONTJX77zMM8OpYjnNLZGvdy7PbpoW/jFYi+ZTIb+/n78fn+1a+9KaaSQaKbFubhFpMNkR1sli8qwbIbjBU5dy/DArlhDnmc9CIJAOBwmHA5XC+ycOojh4WHOnDlDMBisikoj4ivNcng3m2trtcH/5cYR67peN+JgreOI1xojaeY+W/ASEJLFakMkSULTtA15TufHvZKYw3KurIXWrl3308+MMJ4p0RnyIM720cqVDb55doofPtTJq/e3r3jPcw/90dFRzp07V+1vtZYAeaOEJF4wSWsW+yLe6j5kUSAWUBlOFLlnm3lDXFyreT2SJNVd9Tp1EIlEgvPnz6Pr+rz4ymre42ayAtZ6SG4U680iW2gcsZMNNjIygm3bqx5HvB6LxA22byJLtTnZ6HG4y6UA17qy7rjjjuqV0HLUWiS2bfP0YAKfIlVFBCCgSuRKBi+OpDm8dWVuqNp1TdPk3LlzTE5Octddd1ULwlZLI4XEtsGyKuN/axEFMCywmidcsCi1dRC1h5PjpweqouLEV5aimWIkN7tFshS144i3bt265nHE6wm2u0KySSw0AreWjRQSWDooPjcrazVpiHNdULJYGY27EPIq5q07h36hUKC/v786XXE9KZKNEBLdtLBsaA0oBBSbmZxGx2yygG3bJPIaezuD+NXmuRpeCXMPJ6eBYSKRqI609Xg8dfGVuW7SZrNImmUvsLF1LWsdR7ye6YiukNxg5taGLBZQ38gOvUutPzY2xpkzZ1bsylpoXUegBEHgVfva+ecXrqGbFopUEZlU0cCnShzdufK4gSAIZDIZBgYGVtSSfqVrrrntStmgfzTDwHQey4KIpNHpr8SAhuIFVFmkqJm0BVUO9zR3RstKqG1guGPHjrqsImcMsdMm3wn+ghsjWYwb6WpbaByxExurHUcsiiIej2dV44idBqRu+u8NxKkNqT1oF/uhbbRFMte1tVZX1lzmWjo/dV8vJ0bTXJzKVy0Tryzyrvu3sat9ZV8+y7LI5XIUi0Vuv/32hmWIrFVINMPiWxdmGJjKE/UrSKLA+ekSVsHmx+9sIVnUyZUM2kMqu9oCtPibY0Z4I5mbVVQul6vxlbNnz2IYBrZtc+3aNTo7OzdsQNRKaSbrCDa319bc2JgzjvjKlStkMplVjyN2039vELVtTlba9XMjW71D/YG/HlfWQuuWdZNcySDgkWgNqvzp/+cw3zo/zdmxDEGPzEN72rhj68oGSZXLZU6cOEG5XKa3t7ehaYZrFZKrySJXZgr0xXyocuUwkKMejids0iWdl29yhtZmHJhzJw/m83meffZZstks165dq/roHYtlM6q2m01ImqWjszOOeHp6utrSZTXjiG9kjORjH/sYv/7rv84HP/hBPv7xj6/4cc3xTq+Dtc4NuRExEtM01+3KqmU6W+bPvj/Gdy+WUV98mgNdId7zQB93b2vhLXd085Y7VicCyWSS/v5+YrEYHR0dDf/hrVVIkgUdy6YqIlCpg/EqMJ4uN3KLNyW1Y1dvu+02FEWp+uidqm2v11s3IGqlrpS10oyurWbaD1zP2pp7UVDbfLJ2HPGFCxfYsmXLDev++9xzz/HJT36Sw4cPr/qxN7WQrHYEbi03QkiuXr1KNptdlyvLoaiZ/Pd/Pc258QyiDQrw/NUUFyZz/Mnbbuf2LSsfZWvbNkNDQ1y6dIm9e/eybds2zp492/AsoLUKiWdWQOa6S3QDgp6bK6i+0TjtfWp99M4cj9r4Sm0NRCQSafgh24wWSbMJyUJxm9qki7njiB999FG+8pWvIEkSH/rQh3jjG9/Iq1/9avbu3dvw9zqXy/FTP/VT/M3f/A2/93u/t+rHN9c7vUKcgLqmaWsSEdhY11Y+nyebzVIsFjl27Ni6RQTguxdnuDiZo8Un45ch6JFpD6pkSwaff250xesYhkF/fz/Dw8Pce++99PX1VWNJjX4/1iok26I+Yn6F0VQJ07Ir2VlFA1G02dPR3NkrNwrnfV3oe+/M8di7dy/3338/DzzwAFu2bKFUKnHmzBkef/xx+vv7uXr1KrlcriEXEG6MZHlWkrXlDGXr7e3l7/7u7zh+/DiCIHDPPffwr//6r9xxxx189KMfbfje3v/+9/PDP/zDPPzww2t6/E1nkaxnBG4tG5W15biyVFWlr6+vYb7qC5NZABRJxGnZKAgCHkXk1FhmRWtks1mOHz+Oz+ebV6W+2jbyK2GlQmLZNiPJEpOZMpIosC3q5ZV7W3niUoLhRBHbBtmGAy0CO1pvrO+/WVnNZ+XxeOqK65wrXsdiEUWxbgzxWuaku66t5VlLHYmmaei6zm//9m8jSRKlUolisdjQfX3+85/nxRdf5LnnnlvzGjeVkCxXG7IaHIukUVdStUV8d9xxB9euXWvowdziU7CpFOZRs65hWrT4lvd/X7t2jbNnz7J9+3Z279497zXfaIvEsiwKhQKq18d3L8Y5OZZFNyxsIOyVeXB3K2+9u5vxdBnTsvFYRUavxJvqqnczWcoiWYraMcS9vb11XXHHxsa4cOECPp+vLr6ykthZs7m21lr8t5GspY7ESf113luv17smoV+MkZERPvjBD/LNb35zXeveFEJSWxuynhG4tTgfqGma6w4y53I5Tpw4UZeVNTEx0dCD+VX72vnMMyOkigaKXXlPClrFovqR2+cPlXKoTTu+8847aW9fuGXKStrTr5bFhKRYLHL8+HEymQzXSgon0iq9sRBbYkFkWWYyU+b7l+JsiXjY2VYJKqfTBiNNUMndTNXksP4MstqK7J07d2IYRtVauXz5MsVisVq/EovF5mUUObgWyfKsRUg2el77Cy+8wNTUFHfffXf1NtM0efzxx/mLv/gLyuXyivbc9ELSyBG4tTRKSBbLymr03Pa+Vj//7TV7+N/fGiCRBS2noUgibzjYyY/dtXC21mqq1Bs9zXCxNePxOP39/XR2dnL48GE+/9wIvkIaLZ/mcmISj8dDwB9goiQxFM8v2PLeZeMETZZl2tvbqxccpVKp2mPq1KlTWJZFS0tL1WJxDrlms0iaUUjWUiS50cWIr371qzl16lTdbT/zMz/D/v37+dVf/dUV77dphWQjRuDW4qy11jjJXFfW3ID6RsRg3niokzt7AvztV55k174d3NUbZX/XwoVo09PTnDx5ku7ubvbv37/qZpCNoFZIajPF9u/fz5YtW9A0DUn10hoT6GnxYhomhUKBfD5PKpnmxf4ZlFTl0PJ4PBta93OzsVbX1mrxer309PTUjSFOJpN1UwdjsVhdN4lmoBmFZC3utrmurUYTCoU4dOhQ3W2BQIDW1tZ5ty9FUwqJbdtkMhmy2Sytra0NFxFYWWPFxVjIlTWX9aYXT2ZKfOXUJNdSRXpafLzhYCc9LV7aQx7ubbd5+O6eBS0p27a5dOkSQ0NDHDx4kJ6enhU930YG2w3D4PTp06RSKe69915KgpcLkzk8osWOmJfBeAHTspFkiVA4hOjxs00N8/L9LYTsAolEglQqhWVZnDt3bkNme9ys3EgrYKEeU04bF+czdoZDOWOIN6sosNmExLkwbjaLpFE0nZA4VkgymeTKlSs88MADG/ZcaznsV1pguJ6YQ/9Iml/50mlSBR3bBkGAf3pulI/92G3cNVuxvpAAaprGiRMnKBaLHDlyZFVtFTbKtVUul3n66adRFIU77rmP71xKcXZ8glzZxCPB1hYvnUGVy9MFQl4Jw7IpGzZ3bw2zf0srktjGtm3bSKfT9Pf3oyhKdbZHre9+I2ojmpkbZZEsRW18ZWxsjIMHD1ZjLAMDA5RKpWrF9o0eQ9xsbe2dc2atMZIbyWOPPbbqxzSNkDhzQwzDwLIsFEXZ0IJBWJ2QLOfKmstaXVumZfPRr18gWdCJ+hVEodLdN1nQ+ejXLvLPP/cyYL6QJJNJTpw4QSQS4dixY6u+Emx0TAcq7Vempqbo7e1l3759fP3sFM8OJekOe+iJeMkUygxMF9jfGeBV+1q5MlNAlUT2dQW5rSuIVNO92ImN7d69u7q204L99OnTWJY1rwX7Rh2yzRALaLa6Ddu2q9Mgnd9G7QwPp2K7to2L3+/fsNfQbBaJ89tai0XS7J1/oUmEZKHaEFmWm0ZIVuLKWmjttRzM5yeyjCSKBD0y4uyPTBQEQh6ZsXSJM+O5uniGbdsMDw8zMDDAnj17qgWGq6Wxs0NsLl++TCqVorOzkwMHDpAtGZwey9IeUIn4FCzbJuhV6EJgNFXitQfaObZEt+K5r2lubUQul6uOuD11foC8rRIIhdnaHmPP1na8nlvLDdZs2WMLBdt9Ph9btmypVmzXfkaXLl1CUZQ68W+kq7LZhMQ0zTW56G9Ue5T1sulCMncEbu3gqY0O3q3kKtxxZW3bto09e/as+Mu51it83bSx7IUHONl2ZT6Hs7bjl04mk7zsZS8jGo2u+vkcGhVs13WdkydPksvlaG9vr15NFTSDsm7SGqg/LPyKSDxvVVOZl2Kxw7PWd6+0dHKFBBOJDMXpIs9fHSLaf5F7tgbpbK90ZL2RLpaNohktkqX2U/sZ9fX1YZpmNb7itFoPBoN18ZW1uqaceEQzfcZr7cCRy+Vci2QpFhuB6+BYCxv5g1nKIlmtK2suaxWSfZ1BogGFRF6jxadUX3uubBLxyRzoDvHMZZFcLsfx48fxeDwcO3YMj2d9abKNCLY7lfPOfPcLFy5U14z4FEJemVRRrw6hcmanBFSJ6DKt4FfyHSjpJs8PpynqNge2tiEKAmXDZHgmT8lbKYAcHa20k1nNJMJmpVmExLbtVdeRSJJUff/h+hji2o64kUikriPuSl+v851rNiFZ65jd9Vwg3ig2RUhW0ubE8fFvZNBsMSHJ5XL09/cjy/Ka276vNUbiUyX+y0M7+INHB0gWdGRRwLBsFEngvQ9uJ+iRsW2bkydPsn37dvbs2dOQA2W9FsnExASnTp2qq5yvdZd5FYn7t0f5yulJRlNFQh6ZTFEjVzZ5xd5WIiuozl9O6KZzGomCxtYWX9Ut6JElokEvWUHkodt2IgrMm0TodMptbW3d1Eyj1dBMrq1GBP4XGkPsFEbWjiF2LgCWioE53+NbQUiKxSK9vb0bsKPGsim/GOcLsNzgKVj7B7ASFhKStbqyFlp7pQfzcLxA/2iagEfi6I4YP3pHN+1BlX954RpD8QLbYn7eencPL98Vqw412rt3Lzt37lzT3hZirRaJZVkMDAwwMjLC4cOH6ezsBCouuDPTGgOJPP6rl9jTEeCevihvvqObZweTpIsafkXigZ1R7t+x/BXXSg4pw7KxF3ALOmJs2TaSKBIOhwmHw2zfvr2uktvJNHKuhJ1Mo9rnbpYDvJlcW422ABbqiOuI/9TUFAMDA3g8nrrAfW18pRmFZK0XxLlcrjoyoJnZtEuv5Q4u50tgGMaG1QvUWg3rdWUttPZyQmKYFh97dID/9+Q4mmEjCBDzK/x/33yAB3a1cmxXa/W+xWKRZ555Btu28Xq91VGrjWItwXYn3bhUKnHkyJGqL9e2bf7fExN883IBWRJoV3S+dX6GcxNZ/tP927hza4RsSUfGxKtIq3ZZLEbUp+BXJTIlo2rh2LZNuqhzoCuIIs0/WOZWcjuZRs6VsCAIdW6wZqJZhKR2IulGIAhCnfjXjrJ1UsGDweC8oH2zvD+w9t5fbtbWOhEEYcMztxyroRGurLmsxLX1T8+N8qX+MWRRIOyVsGxIFHR+7ctn+df/fB8ds+1BZmZmOHHiRDUD6qmnntqQKvTVrJlOpzl+/DiRSISjR4/WuYOGE0VeuJoi6pMIqiIdES9dYZuLkzmeHkzwljt7iPoVNG3lwrXQoaCbFldmCgzFCxgWbIt62d7q48JknlzZRJVFsiWD1oDCno6VZb7UZhpZlkU2myUejzM2Nsb58+eRZRmv10s8Hl9XQHi9NKNFcqP2M3eUraZp1TTjc+fOoWkaAMPDwwtalZvBemIkrpCskxsxVz2dTjM0NLRuV9ZCay93MH/x+BjY4FMqXzBJqAxuypcNHj0zybvu7+Xy5csMDg5y4MABtm7dCmxMzcdqXFtOJ+Fdu3axY8eOeT/SsVSRom4S80rYjptBEGjxK1yYzK35EKzdn2nZPHk5ydmJHKokIIowGK+M5723L8JERqOomexq87Ozzb9sMH8hRFEkEokQiUTYuXMnuq5z9uxZSqVSNSDs9J2KxWI3dG56s7jYYPOD26qq1k0cnJmZ4cyZM2QyGYaHh+dZlZuRXLFWIXHTf5dhs8fhmqZJIpEgn89z5513NmT4VC0rOexnshryHIe+KAgIAkyki7zwwgsUCgXuv/9+wuHrExA3qi/WcmtalsX58+cZHx/nrrvuoq2tbcH7ybMuJMu2oea8M0wbj0+sutFWc+jOE6t0iQtTObrDKr7ZLDDDshmKF9nZ6ueH9rYutMy6UBQFv9+Pz+djz549dW6woaEhJEkiGo3S2tra8LqIuTSTRbLRrq3VIAgCqqoiyzKHDx+uWpW1yRUej6cqKjdiDDGsLUbizI5ZTYeKzaKpLRJZljeklsRxZRmGQXt7e8NFBFbm2trTGeDEaAZvzaFgWjaWZWMmryG2t3D06NF5X/TNsEhKpRL9/f1YlsXRo0eXDADubg8QC6hMzuRomx1xUNAM8prBa7at7b123h/nAJ3JaeimXRURqATVfYrISKrIwZ6N+/E5SSJOQHjr1q11fadq6yJqW7g00g3WTELSzC3ka63K2jHEyWSyOobYabUTjUYb/jk5uDGSTWQjLJLarCxFUchkVjZdcLWsZHDWI0f7+JV/PU22bOCVJSzbpqybxDwWP3r3Tvbv2bngY2/0NMNkMkl/fz+tra0cPHhw3g8tU9R5bjjFwFQOjyxy+5YIbzjYwT89mWI4rZERcsiSwD3botzX15iceFEU6qwdB9OyFwyqbzS1fad27dpVrYtIJBLVTLuWlpaqtbKR7UFuNDdTC3lnDLFjTZfL5XmfU23WXqPclW6MZIO40a6thbKyrl69umGuM+eLvJSQvHJvGx9+037+8nuDTGbKWJbJgRab33rTIQ5sX3jGiLP2Rlgkc9e0bZurV69y8eJF9u7dy7Zt2+a9llRB5+9+MMzAZA6PImFaFsdHUjy4u423HQpzaTLP1r5uusIedrcHqm6v1eI8r2ZUfpDdYQ8Bj0QirxGbrZbPl01M26YvtvkFhnPrIvL5PIlEotp+XVGUOvfKat1grkWyOKtxI3k8nrr4SqFQqAbuh4aGqhcIzue01viKaZqrdqE53xs3RrJOGtUmZbGsrI2MwTg/rOVaNbzxUBfHtgX49tPHCXk9PHTfXcuOvNwIIZlrkZimyZkzZ4jH40u2X3nqSpyLkzl2tQeqlkC6qPPUlQRtO2Vu71C4Y+/CsZTVMJ3TOBkXGHz2GoossqcjyMHuIGfGc1yeKYANqiRye0+Y7a3NlXdfO95227Ztde1B1trJuNmEpFn2AmvvsyUIAoFAgEAgUB1DnMlkSCQSjI+Pc+HChWrxqtPGZaXisJYYSaFQwLZtN0ayXhqR/rtUgeFGCsliExgr7SRmXTNcrwg/1LfyrLGNEhJnTWcUriiKHD16dElhOz2WJeiR69xJEZ/CRKbEtSxEW9bvgkvkNb55Ps6VLBy2oaRbPHE5wb6OAK870EY8r2Pa0B5U6Y54qlXti+GkDQ/GC+imzdYWLzvb/Cuqrm8Ec9uDrLWTcbMc3jeTa2s1iKJIS0sLLS0tANX4ytwxxM5ntdQFwFrntQOua2spNtq1tZICw42YYujgvD7ncJ7JlfnE9wb5+tkpNMPiyI4ob9gmoBam6irCV8JGBtudmpWuri4OHDiw7A9SFitt7muppoM2qKPw+ckcUzmNLh/EAkolgOpTuDxT4LbuELdvCS+/yCymZfPccIoLU3n8ioQkCBwfzTCeLvPg7hgh743/SSzVydip4p6bZdRMVkAzurY2Yj8LxVecC4AzZ85gGEZdG5fayYZrnY4oSdK6++jdCJraIlmrkKy0wHCtrd5XgiAIVaHKlQ1+7tP9DM7kEUQQEPjuhWmevgx/96476OxsX/XaG7Xv48eP19WsLMcdvREuTuUp6ZUqdYCZnEbIK7Mj5sHWtXXvaSxdJuCRydScmx5ZxLIhWVjd8LCpbJnLMwW6Q57qfmMBheFExUI5vIwobfQBvlCXXOcq+MqVK9WrYK/Xi2maTdHl9la1SJZj7gWAEwdzMsKcdPBYLIau62uejrjZn+9KaGohkWWZcrm8qsesplfWjSh4tCyLr5+aZHAmj0cREaiYyF4ZNEvkn/unub1vdULSaIvEMAzOnj0LwD333LNsK5DJTJl0UactqHJkR4xLU3lOXktjWZUW+EGPxGsOdNAdKBKPr98iCagSZeP6/JXq/9qgyqv7kaWKBoZpV0UEKpZTQJUZT5eWFZIbTW0V9549eyiVSiQSCcbGxigWizzxxBObXmzXbBbJWlNt18PcOJiTDp5MJrl27RrZbJbLly+TyWSqVstyzUFvlhbycAu5tmpdWXfeeWe1d1Kj1l8LzoHfP5quZKraFoZpIksyoihi6CbPDqXWtG6j0n/z+TzHjx+vBg1rCx/nkisZfOHFa5wYzVDUTQIeiSM7orzjZT3c09fCSKKAIons7wqxs83PyMjImvdl2zYlw0KVRPZ0BLgwmSWrz44fsGzG0yVa/Ap90dUdnE4B6FzLQp8jLs2K1+ulp6cHWZYZHh5m3759JBIJJiYmNq2TcTO52aA5hlrVpoPv3LmTp556is7OTnRdr8ZXwuFw9SIgHA7P2/PNkrEFTW6RrGaC4Vp6Zd0oIQmoArZtYRqV6mhh9jCzbIj4Vv8RrGcefC1TU1OcPHmSrVu3snPnTr7zne8saunYts0/v3CNJy7F6Qx7aAsqpIsGXz8zhSKJ/NidPdyzraXuMWt1wV2YzHF8JM1MXiegStzeE+Jl2yL831G4Ei8iSyKtAZWX74rRsoLWJ7ppEc9XXGyxgELYKzOV02gPqoiCQLZsYFoW25ogbXilOFbAejoZN4qXqmtrNViWVc30AqqWZTKZ5NSpU1iWVddux+fzUSgUNrTe6BOf+ASf+MQnGBoaAuDgwYP89m//Nm94wxtWvdamCslyHWdXkv67nrbvzpX9Rn3xRFEkm83SbUwgAqYgogiVQ8AwK91+33S4a03rrse1Zds2ly5dYmhoiEOHDtHd3V03unchxtNlTo6m6Qp7qod3W1DFsm2eupLgNfs7CM4JVC/3A1jo8z83keMrp6cwLYuITyFV1Hn03AxHd0R4oNNm521teD0qPRFvdUDWUlxNFHn+aop4TgNBoDWg0BPxMJ4pM5wsIlCJtxzqCbNtldbNZrLQ57RUJ+Ph4eG6mohYLLZsmvlq9tJMB3czCsncrC3Hsuzp6akmWCSTSeLxOCdOnOCDH/wg+/fvx7ZtxsfH6e5evK5srWzdupWPfexj7NmzB9u2+Yd/+Ad+9Ed/lOPHj3Pw4MFVrdXUFslS6b9rcWXNxflgN+KL50yAvHDhAq84uAu9ReSTTwxR0q8LwA/tbeMdL1tZULuW9QiJMwo3n89z5MiRao56bQuShUgVNQq6SWe4PoMk6JGJ5zXSJX1BIVnNPk3L5vmrKWzsai1IlMq0yFNjWXYAe9r9K85imclpfP9ygqJu0hWpHJqTmTJF3eKh3bHZscY2LT6F1oCy4iu/Zrj6Xok7ablOxoFAoK4mYq2tQZrRIrkR/bNWw1J1JLUJFtu2bWP//v386Z/+KZ/97Gc5deoUW7du5cCBA7zmNa/hN3/zNxftcbda3vSmN9X9+yMf+Qif+MQnePrpp28tIdnICYbO+jC/1mO9OMV85XKZHTt2sGvXLnbtglftb+db56bRTIv7d1TahYhzpzCtgLUKiTMKNxAIzOvhNTddeS4xv0pAlciUdKL+61XYmZJO0CMvWIOx1OFSLpe5fPkyPp+P1tZWfD4fubJBIq8TnbNW1K9wabpAbpVeyKvJIumCzs72637mrVEfV2YKxHMad/Y2dqbLjWY1h/dCnYwdN9j58+fRNG3NnYxdi2RpHK/HSoXa6/XyIz/yI1y6dAmPx8Pf/M3f8J3vfIdvf/vbGzbkyjRNvvCFL5DP5zl69OiqH9/0rq25QuK0MG9E23en+V4j4yT5fJ7+/n4kSSISidR98Hs6guzpWH8WxlpiD+Pj45w+fboqbKvt4dUZ9nBXbwuPXZzBtCqZWemiQaZk8pY72gl65n+VFtunM8skEAiQzWYZGBjA5/MRiEQxyhZFPHX1HCXDQpVFFHt17dNzZRNlgawuWRTIlTcuNnYjWG+yhaIodHR00NHRUR1t67RwWW0n42a0SJpJSGpHiq8GJ9gei8V461vfylvf+taG7+3UqVMcPXqUUqlEMBjky1/+Mrfddtuq12l6i8SJkZimydmzZ5mamlqzK2sutbUejWBycpJTp06xZcsW9u3bx/Hjxzek3mM1FollWVy8eJHR0dFlJz/WHvyGaXF6LMuFySwCAvu6gvzYnd0oksALV1NMZssEPTJvPtzF6w8uXEy50OHixLR27dpVHaM6nioyEU+iFTMEynFOXDNJtfhojwSRVR/jeZM9HQGiqRW95CotPhndsLBsu1rtbtk2umUtG6Q3LZuxdInpbCVI3x6qxGWahUZmSq23k7GbtbU0zvmyljqSjU7/3bdvH/39/aTTab74xS/y7ne/m+9973urFpOmFhInRpLNZjlx4kRDJxg6NKIo0TmsR0ZGOHjoEN8bNfnVv3qW0USevmiR97/Ky8MHGteqfqXpv+VymRMnTqBpGkePHl02ldBZ1zAtPv3MCI9fiqPN1m+oZ0Ue2t3Kf7q/l9cf7CRTMmgNqEtWgtdanLZtV9+jO++8k7a2NqbSBb5+Zoor8QJlwybs9XJ47z5iPUXOjCY5P57B0KfpCkps726lILBs8kUirxHP68iSQFfYQ3tIZThRpD2oYtswk9foDKpLZmiZls0LV1Ocn8zXTf/b3xkgZNs0wxG1kYf3Yp2M4/H4gp2MN6NuYymaUUici9bVkMvlGhYPWQxVVdm9ezdQqSF77rnn+NM//VM++clPrmqdTXdtLYWj4E8//XTDJxjWPsd6LJJSqcSJEyfQdZ2jR4/yl0+O8Y/PzNZP2DYDMyV++Yun+Z0f2c9P3NXTkD2vxCJx3EctLS3cfffdK4oBOQf/iyNpvjcwQ2tAJeytXLlnijrfG5jh9i1hXtYXrXbcXcl6uq5z4sQJisViVdB0w+T/nprk/ESOLS1evLJIsqDz/UtJ3nR7By/f20mqoOORIEiZdCpBIQHPPfcckUikeog5vnzTsnl2KMWpsSy5soEoCHSEVA52B4lkNSYylcLWXW1+7u6NEF5CAMfSJS5M5mkLqNXMsIJmcmEyT59i0hNujnqTG2UFLNfJ2BkmNTk5SSwW2/RAd7MJyVoaNkKlaeONLki0LGvVReDQxBaJaZqcP38eqOQ39/Q05hCey3qEJJFI0N/fT1tbG/fccw/TeYPPPTeKQKXi2jItbGx0y+bPvnOZN93etepK7IVYTkhGR0c5d+4cu3fvZvv27avKRrIsi5OjaUzTrooIQNinMJUrc3I0w8tWOFPEiT899dRTBAIBjhw5Uj1kriaLDM4U6I158SuVr2F7yEPZtHlhJMPd21pqXEkhOjvaGBsb4/DhwxSLxTpffiwWI0mAZ8Z0YkEPO0M+TMvmWqrMyWtZfuyOTiwq70HIIy37fkxmy9hQl17sVyVm8jBTMOgJb9zkw5WyWe6khToZnz9/nlwut+ZOxo1mrQf3RrFWi22jx+z++q//Om94wxvYtm0b2WyWz33uczz22GM8+uijq16rKYWkNisLqBbxbARrERLbthkcHOTy5cvs27eP3t5eBEHg+MgMumnjkWd/4EKlr5YiCSQKOldm8uzvWn9L6MWExLIszp07x8TEBHfffTetrasbN1t1bVn2gtlkgiCgr8INmE6nKRQK7Ny5kz179tQdfLmSgW7Z1Xn1DkGPRK5koBkW8gJ1Ik4DQyelNZ1OE4/HefbUNcbSZcSoDyMYJBgIsKXFy3CiyGiqzP6ulV/ZNdE49EVplpntTlNBWZbZt2/fmjsZN5Jms0jWOtRqo1ukTE1N8dM//dOMj48TiUQ4fPgwjz76KK95zWtWvVbTCcncrKzvfOc7N6T6fKXous6pU6fIZDLcd999RCLXU0h9ioQwO7iv9qdi25V/r6SAbiUslA1VKpU4fvw4tm2vOY7krHugO8STl+J1jRhLuoltw23dy/eism2bK1eucOXKFVRVZe/evfPuE/EpeGSRXNkg5Llu+WSKBl0RD54FLLe5B1CtL78t7sUX0/ChkZt1vQCkLC9jk7Ajqqy4/qQz5OHcRI6iblaFrqhXvoOtvua40m2mAHftXtbSybjR3CpCstGurb/9279t2FpNEyNZLCvrRjRWXOn6mUyG/v5+/H4/x44dm5cSeXRnjKhfIVnQcTTDtmwsBG7fEmJbrDE54HPFz3Gxtbe3c9ttt63ZrHcskvv6Yjw/lOT4SLo6Z8QwLe7a1sLL5rRBmYthGJw+fZpUKsWBAwe4cuVK3d+LWuW97o362NsRoH80TUew0ucqWdCxbJt7+1qQFqmvWexKfGvUy4sjGl1tEVqiLdiWTSpXoDidoZCa4cknhwgGg9XYylyXS7qoE8/riAK0BlX2dgS4OJkD5ztq2+ztDBIu5VbyVm44zSYkCx3ci3UyjsfjdZ2Mnc8kFAo1RABuFSFxe22tklpX1gMPPFDXuqFRUxIXY6VC4sQdlqrD8CoSv/+Wg3zoC6co6SZQ6YbbHlL48JsONGzPzoFv2zbDw8MMDAzUudhWSzyn8cxQkmevmlwVkjx8OMz7HtrBU4MJ+kfSANzZG+HYzlZ8S1hVhUKh2gDy2LFj5PPXs54mMyUeuzDDhanKQby/M8h921vwKyLnJ/PECxpRn8L9O1q4Y8vC7r+lXtuBrhCDM0UGZ4pEAwqGaZMqCbxszxZed1s7lqHPc7k4V8VjZZWLcY1c2ai0UfEr1RjNRKYEQFfYS0+Ll8sDU01zgDcLK41J1HYyhuv9ppw0Y6AhnYybTUjWsh8nqeFmmI4ITSAkyxUYNmJK4lIsJyS1rVjuuuuuZdPxXr67lf94/xH+/cQEF0enaPeYvO8NL2vo9D2n9uXUqVPLjsJdjsvTef7isSuMJovkcgb9yWmeGinyC6/YycP7O3h4/8rSluPxOP39/XR3d7N//35EUayOCk0VdD7zzCjDiQJtwYoV98SlOMPxPO++bwuv2NtGUTNp8SsLurRqcYRpJFnk9FiWyUyZaEDhtq4Qr7utjZNjWcZTZTyyyMt3Rblja7jS8VdV62Zz53K5Sl+jK+M8OZwj5FXpjgXxB4JkivDsUIo3HmxnW2z597VsWIgCdVMiN5pms0jWspe5/aacFi61nYwda2U1nYybTUjWY5G4beRXwPj4OOfPn1+ywPBGdOhdbP1CoUB/fz+CIKwq7tAZ9vLeB7czPCwwMzPT8BGumqZhGAbFYpFjx46teYKaZdl89tkRrqWK7GwLkBAK+AMqEzmNzzw7wod/ZD/yMoejbdtcvXqVixcvsn//fnp7e6t/c9J/T1xLM5wosKcjUHVZRX0KF6eynBrP8uDu1iXTcWvXg4r4ffXMFLmySdAjMZnVuDRd4FV7W3nDbR2UdBNJFBY92GtdLkNakD6yxFSTXC7HxPg4hmFwFR/dcoH79vYsGiCeyWmcn8wxmS0jItAX87G/K9iwWNhSNJOQNOLgFgSh2sl4x44d6+pkfKsIyUZnbTWSTRWSrq6u6rS3xdgs15bTYr2np6d6hb2WtRtd2T49Pc2JEycAuPfee9f1g7mWKnJlpkBnyDt7wAsIQHfYy8jsxMClWrpYllWNay1kFTlCMpooospCXdxDEgUE2+KJEwNsC1hs6Yghr+DHZpgWzw5V5qHsar8ec5rIlHl2OMW+ztUd5HnNxOtRCIeDhCMRsG3KZY2z1+JMJ1I888wIHo+n6pJxPs9kQeeJywlSRZ0Wn4Jp2xwfTZMq6jy4O3ZDrJNmEZKNELW1djLeyG7ea2UtQmJZlmuRrBRRFJdtZX0jgu21sz0sy+LSpUsMDw9XW6yvlUZOMqzNhNqzZw/nz59f94/XsCrdb50DXhAqGWayCKZdqfBejFKpRH9/P5ZlcezYsQU/R0dIwj4Zw6xfq1gscen8WQoBgS99N4EsSfR2trK9p53t3W20hOZfiQmCQLZsMpXTqi4yh/ZgpYJ9OqfRt4q5Il1hD8OJ0vU2KoKAICvEWlq490A7vS2euivjYrGI1+vlQtxgoiCxp+t60D7okRlJFpnIlOnd4Jb0zWSR3IimjSvtZOyUCjSTkKylriWfzwO4MZKVsJIfwo2IkZRKlYCq01KkXC5z9OjRZa8Gnh9O8pePDXLiWpqIT+Gtd/fwcw9srxYdNqqPl2EY1ZTj+++/H4/Hw/nz59d9mGxp8VWsj2Rx9vAVAJupTJmOkIe+RbLMUqkUx48fp7W1lYMHDy7ZHtu2bQ72hHl6MMm1VInusIdkKsWz/WewdZ22YCWd2DBNBsemGBybAqCrtYXO1gg7etrZ2tGKIleeQxIq1sxcYdJNC1kUqxMQFyNTMrg0lWMyq+FTJdoCCm0BmaHZIL1p2aSLOrvbK3UokiTS1tZWjY2dOXMGXdc5PZ5hJpXHTI0TDoUIhUMEA0FMG7KljbOgHZqljgRufNPGpToZX7x4EYDTp0/P636wWZimueo0Z0dIXNdWg7hR6b/JZJL+/n6i0eiKWoo8eTnO+z7bj1UZHU5BK/EXjw1y+lqW//POwwiC0BDXVi6X4/jx43i9Xo4ePYqqqlULar0mvCqL/MTdPfz194e4PJPHKFmYJY3WsJ8fv6tnwQwtJzliz5499PX1LfkDdYRkZ1uANx3u4tEzkzx7bpDxkat4ZYG9nUFa5kyItG2bcNDPRDzFRDzFiYvDSJJESzhMIh6nbUuBXW1+XhxJE/BIKJI422CxTF/UN29eSi3Jgs6jZ6cZS5fwKiKaWRnle1tXkJ4WH6OpEooocP/2Fg50hRZ0T0mShNfr5bZgC56ZPDHFIpvLMTk5yXDpKmnby7S3SCZgb9hEQud9aiaLZDP3UtvJuFQq8YMf/IC2tjaSyWRd9wPnv6U6GW8EpmmueohYoVBAUVZe+7TZ3BRCspExEkEQyOVyPP/88+zdu5dt27at6Efxv791CdMGUWC2s6yAZdk8NjDDiyNp7tnWsm7XltNNuLe3l71791b35YjHatc2TIvnr6Y4OZoB4FBPiHu3R/nvr9nN9wfiHL80Qm/Mz5vv3c3BnvrCQ8uyuHDhAmNjY8tmr83kyrwwnOLKVIapSdg1nefebS2MXx0mZ6fo6o3QHQ3gkQSKpTKG8zpsCAf8ZPPF6lol3eLKRI7ExWnSmRzfv/wdDvZ1IqheTqX9BEIhJEmmO+zhlXtbl7RITlzLcC1dYmerv+rOm8lpXJop8La7url/ewuCICy4Rr5sMBgv8vy1En7VpK9XRBQENMlDZ1eQ9s5ORuJ5IkYJH6VqkoZzeLW2tjb8AGsWIWmmmIQjatu2bWPbtm2r7mS8EawlRpLL5QgEAk3zGS/HTeHaWksTsZVgGAbXrl2jWCxy3333rbgVS65kcH6iUg9R+xoEoeIcemYwsS4hsW2bgYEBhoeHuf322+nqqh/HuxYh0U2Lv3p8kMcH4uhm5XGPnp3kgV2tfOCVO9nfFaI/lCIcDrNzjohomlZ1+R05cmRJc3skUeDvn7rKtVQJWbQZj8NffPsircYMXrtUtRhMQydbtrAsC69HwaMqCECmRkQsGwam80xly4Q8MgFVQJRkTgxNsbs9gFdJkkvBlvYY+7ZswYOx6NWxbloMx4vE/Epd0L81oHAlXmAiU2Zf58KuzEzJ4DsXZriWKpHJmtiCTVrI0BZUMW2bkWQRAYGOsI97tnXRHfFiWRaZTIZEIlGtQXJ6ULW2thIOh9d1+G62FVBLM+1lrqgt1MnYCdo7nYxrg/YbMSN9LTESR0huFm4Ki2QjXFvOtEBJkggEAqvq56VIlQwkY4FgtG2DX628rWuJkWiaxsmTJykUCovGaZyBXKsRkueGknzvYpxYQKm2fs+XDZ68HOfubS28cm/bgu3ps9ksL774IqFQiCNHjizp8rNtm2+cnWIsVWJPZwDbtChPl7h47gyYOsd2xebViQiz/chKZR3dMCqzMTweRBEmUkUSeZ2IV8HrUSgXBVTRwhQFJrNl7uqNIApglnI8c/ICL567TMjvZWtHK9u72+jtbEWdbQhZec9g7ltmz/4fcYnD4/xEjpFkkZ1tfiY0CVmWUL0ymZLJq/e1YlN5fHtQrYuPtbS04A+GESJdiNkihVyWqXSWsbExbNuuGxy1WtdHM00lbKa9LGcdqXPqieZ2MlYUpc4N1ogWLmtp2ui0R2kWgV6OTReSlUxJbLRry/Hzb9++nUgkUg3QrRSPIvGaA+18/cxU9WrMtm1My0YWRV5/W0d176s57DOZDMePHycUCs0bhTuX1Vo7x0fSGJZVNz8k4JGZzGq8eDXFK/e2zROnyclJTp48yfbt29m9e/eyX+psyeDSdJ72sIooCEzF4wwNDxNrbSWRF8mWzTohEQTweTyUNL1ubkl+NvkhV9IQRJFQwIdlW1izlpQqi5QNC9OyEaXKnvxelbJmkEjnSKRznByopIhu7YjR193Gjp52drX5eHooTYtPrsY/JjNlon6F7sjCvmjbthmMF2iZY8m0+GQG40XymrmoJVPQTJ4aTDKcKGDbYNkiYW8r9x7YSZtqEo/HGR8f58KFC/j9/qq10tLSsqKDp1kOmWaakLgaN9tCnYwdN1gjOxmvxbWVz+c3bKzuRrDpQrIcjbRIarvjOkWQ8Xh8Tev/6uv2cnosy0iigPPdkgSB//HGfXTNtj9fzWHvTA7cuXMnO3fuXPaHuVohsey5rSRn1xGoWlaOINq2zeXLlxkcHFzQtbYkQqXQ8erVEYaHhzFNE62sYegGpmnh9agosoSumwiCTTZfXPS1emQRVZHJ5osoUsUKUxWZgikSUKge7CG/l2yhNO/xmm7ywqUxnjo/SiTgI+RTKNge+hM+IpEIgiQR8coc3RldcFTw9fdo7sVO5Xlte+nD/OJUjivTeXpjvqpwTWTKHB/J8IaDHezYUSm+c7KO4vE4586dQ9f1OmtloQOlmdxJN5NFshS1QXmgYZ2M1xojuVlqSOAmEJJGpf86VeoAR48erf4415pZ1RHy8OX33c9XT09wYjRDzK/wpsNd7K4p4HNcRUt9uWuD2KsZIbycJTeXQz1hvnthhqJmVrOxnI6+d26NVPdrmib9/f1kMhmOHDmyqjz2kFdmV6uff3v8BVS9kr6IDdmyQcAjEfUrlMoapTIEfT5yhSIBnxdRFCiWdUzTxLIrLjcE6I4FGU2VmMzqBFUZw7JJ5EogSvR1BPCpMj6Ph3JNHZBDQTO5NJ0nXTRQPR6uzMQJeWV2tPqwTJvx6at0tUbp29VNTG1Z9GAWBIHd7X6evJIk6r/+PZnOaUR8Ml2LZImZls1QvEjYp9Rlf3WEVK4mSkxly2xvrXwH585Pd9wtTsdcr9dbtVai0SiSJL2k03+XopGB/0Z1Ml5rHYkbI1kFK3FtrVdIpqenOXnyJF1dXRw4cKDui7ae9f2qxFvv3sJb796y4N+dL89iX+5yuUx/f391uuJqTNnVWiTHdsZ46kqC54dT1aQA07a5q7eFl++uNNEzDIPp6WnC4XA11XglVKwYyBaKGPGreG2NmYKOgE3OgJggsLcjiCqLlVoPRSZXLGJaFvliafY7AEUTrsRLxHNlBAH8E3m2Rr3IkkA8p1MyISIK9LUF6GnxIUkSqVxFsCqxFbUqSlcTOdJFk86IH93QsSSFVEFnNFXmtq5gpamvWeT0wCBDI2MgwPbudvpmYys5zSZdMvAqIrvbA0xkygzFC0xnDUTJptcH925vWbK1i2XZzE0Am7VlWKzWc667xTCMasfcixcvUi6XaWlpwTCM6oXKZh/izbAHh43KIFuok7FTu+J0Mg6Hw3UtXJx9rNW15QpJA1nPQW/bNpcuXWJoaGjRKYsbWaeyVHaVU9QXi8W45557VtyQrnbt1QiJR5H40Kt38/ilGV4YTmHbcHdfCw/tbq1M/5uZYWJigkAgwD333LOiH2NZN/n+pTg/uJJgciZJfuoqW8IKd/T4mQxKlAxIJcoc2tlKQBXxqpWCv1JZm7dWUTc5PpKhbEFQlQCbvCEwnNI53O2nLwaj1/J0tvppiwZBgELpejZfJbZS+XdBM8kbAq1h32y1voAo2AQ9MpmSTkEzCXgkJElClSVyxYpb7PTlEfoHrjKaLKGJXvyhMK2xKPu3tPLArhh7OgIcP5cm4FW590AH7aH51kimZJAu6nhlkS1RLyevZWnxK9VgfqpoEPTItAZWFsSVZbmuILJQKJBIJBgaGmJsbIyZmZk6a2Uzxtw2k2vrRs2PlySp7nNZqpOxI/qr4WZqjwI3gZDIsrymYLuTslosFpd00Thugo24kllMSEZGRjh//vyKivqWWnsxIbFtm2eHkjx6dorRZJGtUR+vP9jJvX0tvO62Tl53W2fdfYeGhhgYGKC1tRWPx7Oi98GybD733CjfvxSnlE4wM36VYtlgLCHxsr4o21v9lVhLVscrQSTgxwYky8YwTGzqL8mnsholSyDqvW6hBhWbeL7EWErk4NYIpaBKOOjFtCzMJURUVRQMI4eGiS0JiIKAoqrIsk05X8aybVRVxragOEfUJjJlxtIlAqqOYJQYjk9y+qzNmQudvPXIbva2iISCnnkiYlg2L15Nc3YiS75sosoirQGFiFdmKF7Ep4iVqY+iyD3bwvMaeWZKBrmygUcWifmVRb8Tfr8fv99POp3G5/PR0tJCPB5ncHCQM2fOEA6H6+Z73AhL4VZ1ba2GpToZA9WR3CvtZOxaJKtkuS+gYzGsxnxOpVL09/cTiUQ4duzYkh9a7WHf6C+gIAh1KcBOS/qpqak1jcKtZSkh+ca5Kf7m+8OUDBO/KjGWLnHyWob3vnw7r73telt40zQ5c+YM8Xice++9l+np6Wq7mOW4MpPnucEEZnqC/PQUfkXEJ6vE8xqD8TyxQAtQEYWg30s6X+T6xyfg93oQsCmWNcqaji0p2GYe264/YCWxYmGUyjo2kC+WCYcUgn4vtg2lcrmuJ1jA5yFbKOOVBfKaScQnY2OjaRqZUuWg7mwJIooVMdRrLlIMy2Ymp+GRRYI+T+Vzsy18os2ZK6PYhRRaLk1XWwv3FW36utvoiIYRBIFz41meHU4R9Sv0taqUdIvRVIktES/3b48wk9PxKSK9MR9bItdTfXXTon80w8BUnrxWyWrrjXq5r6+FwBIJALZtzwsOl0ol4vF4XWNDx1rZyIruZrJImqE4sraTcW9vL48//jg7d+4knU6vuJNxoVCgo2NlIxyagU0XkuWojTMs52esbWm+0qt9Z03TNBcVHMO0+Ma5Kb5xdhrLtnnl3jZ+5Pauas3AUjgHfrFYrAb7F2tyuBoWqyMpaCb/8sI1LNuuBnMBxlIlvvDCNR7cXRlO5YzmhUrygdfrJR6PrziIe3kqw6WBC/jtEqIooszWa/h1i0Rew7JsJFHEpyqVrCul9r21KZTKmKaFbVuEQ378xQKiPN8tY1rgU0WCfi/XyjoeH5imRa4mS8vnUcmWTWbyOqmJGUJehY6Qh+FEpQ5FlUV000ISBfZ2t1CoEUsntiKIItlCCcOyCfq86LrBbJUJkihgWna1yeVUMsPxC0P84ORFfB6V3q42LqXAGwwR9Vdeg1+V2NriZTqncSwY5fCWCAtxfiLH8ZE00YDCtqCXom5xYTKPbcMP7W1d9Pu70IWV1+uta2yYyWSIx+PVim5nGmFra2vDphGCa5EshXMR2dHRUc1+XKqTcTQaxefzkcvl2Llz54bs6fd///f50pe+xPnz5/H5fBw7dow/+IM/YN++fWtes+mFxDncDcNYUkicEa/JZHJVg55EUUQQhEXjJIZp8f7Pn+R7F2eqV9TfODvFF164xt/99N1LTgx01k8mk1y6dImOjg5uu+22hnzRF7NIhuJ5EjmdtmD9oRwLKMzkNIbiBbq8RtXUPnjwYHU/Ky1ynEllePzpFyjmMnj9KiIWmlZxERmWRcjvIRL0ISBQ1K4fyHPRyiVEAdIZm6BsowomyYJFLFRJq0zmy/hUiR3t4VnhEBZc6/JUhtGMQb5QRpJFpksQ88nsaguQKmrkNZMWn8z2jggq9Z9zbWzFMi1iQR/pkkGLV6Gs6YBN2bBQZRGvLJID/F5PNT5TKJU5fXmUM+NZFElkuDVCe2uM9tYoLeEQmmFR1Bd+T3XT4uJUnqBXpmXW1RVQJXoiHkaSReJ5fV6X41qWOrydgsiWlpZqRbdjrZw8eRLbtuvat6ynp9NLIdi+VkzTrHomHOZ2MnY6IIyNjfGJT3yCf//3f6erq4toNEqhUGh4Pcn3vvc93v/+93PvvfdiGAa/8Ru/wWtf+1rOnj27ZnfapgvJcl9Ap4p7qYC409jQ4/GsadDTUgH3/zg1wfcuzsy7vX80zeeeG+U9D/Qtuq4Tezl//jwHDhyoG/q0XhaqQgdQJbFadV/7LphWpV18Mj7F6PiVBfuKLbZmLZdGJvjKE8fxiRYBVSZd1In4FEQBNMNCMyz6Yn4Ks+m8siwR8HlQFZVCWcOyrEqGVyZNMpnERMA0DHxeD70BD+MFkVSuCAiEfSr7u4JE/GrlqneBOhjdshnLGOiaTmxWPG3bZjJVQBW8HO6NIklitf3K3O9brmwwk9Mp6hatIS+qUBHFKU3Dq0gIooSBQFdExqdKWF6VfLGMx3f9xy2LAl5ZJK+ZJJJpiqUyFy4PIYgy/lCIyQ6R7mA3Pm+9KJQNi5Jh4VfrDz6vUim4LOqLf+dXe3irqlqXylrbht0piKydRrjSw9ipO2qWw7sZhWSpC+Bawd+5cyfbt29nz549fPKTn+RLX/oS//iP/8iDDz7I2972Nt773vc2ZE9f//rX6/7993//93R0dPDCCy/w0EMPrWnNTReS5XC66C520I+Pj3P69Gn6+vrYvXv3mgdQLbb+V09PMvf36szt+OrpiUWFxDAMzpw5g2ma1XnqjWQxi2RnW4CdbX7OjGfZpkhVUZnKavQGLPITg4vGZ5aySGzb5vv9F/n2ixfwqQrRoI9DW8KcvpYhWahYI5IosLsrQk9Yqb6flmWTK5RQ1cq6HkVhemqSsUSBlB0gr9tIIsQMiMo6nWKJsiIQCYaIhGS8sk2uUOm/JYjg96iE/D5KZQ1BEkikymSL5apLqfI6Ku6weF6nrBsolkRZ15FlGZ9auV+hpDGdK3NpOk/ZsPGoMlNjaXyqSGfIQ0EzKeomsm3TE1LpCnkI+nwUsml83uvPZc027mwPecjFC+hI6PkShmVR0nQUweKp42d45sRZOmOR2Sr7DjpjYbyKRMgjkS4ZdQWRubKJX5WXLJJcTx3J3GmEuq7X9Z8yTbPqamltbV1yMqizj2aySDa6CeNqWO1+2tra+Omf/mn+/u//nj/90z/l3nvv5Rvf+AbZbHbD9phOpwGqsba10PRCAgu3SXGu9MfGxrjjjjvWFZhaqieWZlizFcz1t9tUrigXolAo8OKLL6IoSjXLptEsJiSiKPDeB7fzh98YYCRZOYBt2yYolHl1j8wDx44tup/Fano03eBPvvQE3+6/TEEzEQWBaEDhzq0tvO72HiYzZXKlMp0RPx7BQqwpnnBEFyqZdNOTE0zlDcbKKoZtE/Sq6JbF1ayG3eLntm0dyILNTCJFIh5H1w28Xi9+v68yNa5URpCL+D0qllXJ0FostiXLcuVzmi1YNE2TXHE28cGyGc8aiJJCd0ihVCoRCCgkCzrZksHBniCmVREJVZFQ5ErtS76kI8s2JXRSZZuCbiIDrQGZ/d0Rrs7kKBuVeMzWqJfOsGf2PbCZiKfIFUo8c/oSPo/Ktq42PN4g+YLABBD2yhR1k3TR4HBPqE4cHQzLRhIa605SFIXOzk46OzurBZHxeJypqalqQaQTW2lpaak7GJ3vS7NYATebRbIYTvrv3r172bt37wbsrIJlWfzSL/0SDzzwAIcOHVrzOpsuJCv5Mcy1GJzAtW3bHFviYFwpS1W3v3JvG88MJevExLYrV9+v2je/Ct0Zhbtlyxb27dvHM888syF1Ko6QlHWTJ68kODmaQRbhZduj3NsX5Q9//BBPDSYYnU6Tnb7GvdvCHL3njmUz2OY1bcwX+bMvP86j/VcBCHplLMtmKlvm2aEED+5upSMgsy3mxbJBkSUMw6xJq63ENYrFIql4HEn1UBA96JZG1CdjYyKLIKoSMwUTUVaRRZtoLEpMiKHrBsVigUKhiKZpzMzEkbAp5CW8Ph8yNrJgUdAgFvIDNppuoNvQ7hWxF/lc85pJXjPwyQLlchlJllBlmZgkkymUKekWflXCoyhYtlVX+5IsmUyn81iWjUcWydsCWc1kT4fC3dtbSeeLSIKALNW4DQURj6ownswxk9MoaFlOjaZoDShYNmiCij8Ypqs9xr27u7h9TnB+KF7gwmSOZEEn7FWwsgYrbIKwKmoLIvv6+upmp1+4cAFN02hpaalaK07dSjNZJKutydpI1lLX4oj5jZiO+P73v5/Tp0/zxBNPrGud5nnHl6C2TcrMzAwnTpygs7OTAwcONMSMXcq19dZ7tvCFF8cYnMnjDOWTRIGOkIefPnLdXVXbn6q2+HEj5rZD5Ydb0Aw+8rWLPDuUxLQrE7a+dmaK193WwftfuZO7Wm3ksWF23r2y/l1zXVvXphJ8+9lT9A9OY1oW0cCsj18UiIoKqaLOTN5ge5uHQqly0Do1gpIk4feo+DwypVKBbDpDKFLphns6OYNPkeosII8sktbgWiLLlhYvqqLMFjBaKKpCOBxmbGycaCREoVSmUChUBwa1eVTGcxbjyRwCNpLiIeIR2dsdwSuLFIrleW3Ggj4vppHFEiVEUcAyLUqmhmZagI1XVYkEPWi6QalkVN87y7aZzpsIskSLX0GRK8KaKWpcnkzjlyouK99slb2mGdhUrIfxZI7BeAHNtFGlSnpyqqCzLeajKwSSkCc7nuLZ5CgTo21s725ne3c7Y1mDxy8lsOxKUeVYpsS1CYNgpMyWhZsqNIza2em2XbkgcIL2V65cqQpJPB6ntbV10w/xW8Uicbr/biQf+MAH+I//+A8ef/xxtm7duq61bgohcVxbly5dYnBwkAMHDqz7hc9dfzEhCXpkPveel/F3Tw7z1TOTWJbNaw508J4H+mgLVsLZuq5z6tQpstks999/P+Hw9XkejZzbXosoijw5nOeZoQJtQQ8+pfJlzZR0Hj07xVa1QLg0uSq3X61FcvryCN94+mRlMFChjNejoqoeLMtC13VEUUCSFHKajrZAryvTNMnkixiGSSqZZlvvVsKhEEVNRxIENEeVbRtRlrFtMI0SilSxLnXDqNZ4CIKA3+cl5FOxEClJARKCgimYBEyLAGVahTIFS8TrDxJQLXqiQSxDp2CAJIn4PBURLJQ1Al4PqVyBgEciWzRomXUh2VTiE60BhbBPIZ0rAKDIMt7Z2Mo1S6Bk2ER9Ep7ZaZWWbeNTRDJlg6JuokhCNavLoyqIVOJ8yXIlhbjWZZUrG0zndboiPizTQBYFSprOxeFxLg6PV1xwBQF/KMz+bZ1EvF6ifoWpcZuLM2WO6CZe5cbEBARBqLpqe3t7MU2T6elpzp49y+DgIGfPnq3WR7S2tm5KG/RbRUg2siDRtm1+8Rd/kS9/+cs89thj7NixY91r3hRCIggCg4ODWJY176BuBMvNDYn4FD708G4+9PDueX/L5XK8+OKL+P3+BftTNWpu+0J77h+vDFTy1RwkIY/MRCLHM5dL/I+fOLKqqxpBEDBMk+8+f4YXzl25vqZXZjxdwpmKKwgCkqIiaCUCixxipmmRScXRDJOOjk4ESSY7GzTvawtwcbqEJYhIkoBpWSTzGiGvvGBcQJEkdMMgU9QYS1hkLRlFlrBtiXjRpD0Y4NDOLkTbIJHKUChkmBhL4vX68Pt9+Hz+SiW8IBDwqOiGSTTkZ58tcmo0STyvIQoClg0BVeS2LTGyhVLVlWnUxFbAwqPKFVE1bczZGgpzdqaJVHNw+r0eimUN27Yp6WUS2WLFXaYqCIKIYRhE/BLJvEaqUF6wb5dmWCQyxcoI2akJFFmmvTVKsZAnqXhJFQ26bpCQzEWSJCKRigvuyJEj1fqIeDzO8PDwpoy4bTYhWUvw3zRNisXihlkk73//+/nc5z7Hv//7vxMKharV95FIZMnEiqXYdCFZ7oolnU6TSqWqB/VG9BJaq/tpYmKCU6dO0dfXx549exZ8LRtpkRiWXTeQyTRNMpk0NtCzpXfVX0TNMHj85BXUYEvd7dtb/UznNNJFA78qIcsyU8ksUb9Ce1DF5/GgyBKarlMsa+i6TjoRRzNtRLEyCKqkW+imhU+R2BrxkinozBRNCsUyiqrQGvZzoNPP3BpPn1dF0wxMyyJdtpkpGMRCCopYsWh8kkJSg5wh0O730tamYNut6LpGsVicDRwnUFUZTQoQL1nYQsUt1R32cnhrhLwOJcNCtA22xoIYur5Qx/1KDEiEmE9hKpMj4lXwKDKiJJHTNVp8Cv7ZuqKg31fNNoPrI5lNy56tTwFVVdA0E4+qEPR6QLCuZybM4veqiBQp6zoeuSKoY5PTTMcTiNdmaLHSHNrRw7auVnraKqnON5La1N+59RHObI+rV69y9uzZalNDZ0LkRlgrN6rX1kpZy35yucr01Y2KkXziE58A4JWvfGXd7Z/61Kd45JFH1rTmpgvJYti2zcjICBcuXCAYDNLe3r5hDelW27jRtm0uXrzIyMgIhw8fprOzc9H7blSMRBRFbmtTGcpq6KaFbRqVFEFZJeCTubNvZQWZDvF0ji9/7ziTySwHOrrAFiiWy5iWRVfYyx1bwgxMFygZUNJLdEW83N4TRpVFiuUyxdnYiK5rJGdmCIWCdIQiDFwZ4txEgZliFsOy8SkSfTEfR/d0cHU6TbZYsS5aAyqKJKDKMh6PUqkbsSvDrZwixJxemami1GSFeT0K2XSJ0XiWiBrC61FQZRnTqtSuRCIRZEnk9GiSwakclmkgAFNJifGEwuGtLcQCHiRJRZV92IDP78MwzVlrAqayZSazGmXDRLZEgqpOW8BLsqiTKRuIQNgn0xvz4feqqIpMadYSsWzQTRtFEmjxyUxmyyiSSMDnoVAsky4ZRHwy2OasC8+DIFQ6GCMIGIZJyCMxmS0jiSLybJV90bDpCoqYusaL5wd59swlBFHCFwjRGouya2sH+3ta6qzVjWCxqva5I26d2R7xeJzR0VGAuvYt6ymInLufZhOS1VokhULFpbpRFslGjCBoSiExDIOzZ88yMzPDPffcw8TExIYcxg6rERKnGWSpVOLIkeVdRxvp2jqyRWWo6OHkSALT0FFVD7Ilc2RnlKM7Vp4TPnhtiv944kXSuQKmaXF6JMFwvEBBM+mI+DnQHebAlih9bUGS+TKSIBDyyvNSovO5HMlEnFAkij8UxrZhtCiRsUwCqoQsWpR0k4szZSQxwZaIh5DqLGJhWQJlXaes64QDPrLFcuWKXBQpaxX3U+1PQPV40MplLNtCnB2lW9b06hW/KImEfF5SJZ140SYaCuBVREzDRNM14jmN04Pj7Gn34vP6UFQPXq+H0uwLkySRqZzBYErHMi28qsJ0Ik9SEjnUG6Yr4kUzLBRJIOyVkSQRSRRJ5wpYNsQLJjMFg5JuIdomUZ9M2CtTtkTSiVwlQ0qV6G3xIc6m9GYLZaazZVJlKGo6fo9K1KcSMy3SJQNrNnswIAv0tQbQzcrc+4JmMhjPkS/HgSEAulsjPHzndg71dbGlfWOslZWmIc+d7eG0b7l27Rrnzp0jGAxWhWWtkwjh1hCSfD6Px+PZ9MSF1bDpO51XaZzL0d/fj6Io1Z5U09PTDR+3W8tKD/t0Os3x48eJRCIcPXp0RR/0Rrq2fJLN23datJsWM2Ibfq+HY7tiPLy/fUV9wGzb5vmzV3j8+LnqgTCctZhJpACQJYErUxkmMhov6w2yJeqnty2MbVd6ZdWOx82mU6TSGdo7Oqp+1uRsVlfYL+ORZBTFQ0gUSeQrrVq6w+qsxWZXK6SxwedTZwPdQt28kqhfJm1J6LZA0KtSKpfRZmt5FmrL7veqpPMFJtJlSrpBV8RfuWhQLCRZIiapKLJMMChRKORJptKAjc9XiatIiodLk3lkSSLgr2RhEfKQKdtcSxW5Y2ukOm9EEgVURam2pB9LlxiOF2etLJGSYTFhCuzuDOERIVMQUWWJsFdGqUkTnkiXmMhbmEaleWSmUCSesdjW6qOvPYRhgW1b5BMlBNusdgoYTZXIl41qlwHLhul0nq8/e4Hzl4bxqDK9na3s6Gmnr7udcGBtvvCFvkOrPbgFQSASiRCJRNi5c2e1IDIej1eLeGsnRK7Gb9+MQrJaayuXyxEIBJompXolbLqQ1OLEHHp7e9m7d2/1CyHLMuVyeZlHrx1Jkqq9ohbDmfO+a9cuduzYseIPWZIk9AWymtaCbducn8iRKupY6RLF+AzBYJBf+YkHVv1lNUyTbz97mqGx6aorJq9ZTORtfD4Bv0fGtm1agn6mUjnOTdh0hDwYpuP3r3TwBZux0WtkiyW6e3rq3I8FzcS0QZGEagq3rutItklRt1FVdVYQNDTDRBaFymCqUsWlpJsmM3mNXNmsTBm0TDp8IikTxpJ5JFlGFiW2tda3dbdtm3DAP9sSpXLIC4KAphsIsxckoigiqzKqVHEhBAJ+bBs0rUyhUCSbzZDIaaQ0lRafTMmqFD6WNR1FECiblUI+nyKh6wY211vS66bNZKaMKgsE1MpPzCNLlC0YnExzeEuYba0BvKqKZdkUyhVR1k2bjC5gmzqh2cC7KkNBgKmMRkfQg08SCAV8DExbBHwefF4PM5kiudnqeEfYfF4V0yqTKmiUwiqCYHB5dJLLo5MAxCJBdm/tpLezlZ72KPIa0+gb0bBxbkFkLpcjHo8zOTnJxYsX8fl8dfPsl7rCbzYhWct+HCG5mWgKIbFtm/Pnz3Pt2rUFYw4bOXzKWX8xq8GpoB8fH+euu+6qDrJZKY2ySK6livzhowNcmMxR0g0Eo8yd7SK//66X4VFX9zHmCiX+/XvPMz6TrN6mKgo6MoYg41clBEDxeNA1Db8qkS7qFHWzGkwGm2Q6SyYZR7dsdmzvw+fxYFrW9dRXWUQUQJBkTNOoWh2aaeGVKwdwxjQBm1Cg0uTRME0kw6KkG5wazzOTK1MxVGwwTfZ3eukOeEiXKvuI+BRifgXfbGxENwwkUSRbuN62PuKT8SsSmdl4hG3bCKJMNpOjsyOAbVt4PUolO8yjoKoq0WgLbRbMXJxC0wxKxdk2LYKAiYRPNimWyiiiB9O2UGSZkOpDNw0yqQKaYVVbnEhSpTGoZBoUDYuyUUkR1o3rohz0eikYFoVyHo9cfzB7ZJFc2aSkG8TCYbL5IoZpkS+WsYXKEDBFUfD5FGzLRJFkSuVK7YzlWHpzKJY0Xjg3yLNnLqPItdZKG5Hgygt8G92wsXYS4fbt26sFkfF4nPPnz6PrOi0tLXXz7Gufv9mEZK0xEtciWSWWZfHss89iGAZHjx5dUIkXapHSSBYTqlKpxIkTJ6p7W0sFfSNE0DAtfu+rFzg/kSOk2IiU0WWZZ6csPv/8NR45tnjjyLlMxFP822PP12UUQaVuQ9M0bNPAFkRUVQF7VgjtSlsUqSbIXSwWSSVmUDw+ulvbMEyrmt4rCgI+jwe/10OrXyGeLRINeCs1EoaFbtrsafdV1wv6vOQK111loigwmbdIlW1ag15s26JYKJAzYDhtcH+LSNTvtOGvrFEqaximWWllUtJIlWAqV0bXdKJ+me2tPgbjBRJ5HVlVsIp5OsMeemZng5TKOiUqlqMkSYQDXsqaSVvYTzxfpiUUxDJN0tkcec3AQ4Z8yqCQU/H5fKiqpypcfo+Kz+dBFARkWcC2LAzDRLcsZElAnnPQSZKIYVsUSyWwTGxJwuvxVERX0zHMykCsSMBPNu98bnb1tXtkERGLeDpPZzQ421bGQzGvEVCZV2fi9aik82UksWKt6YbBlWuTXLlWsVai4SC7t3bQ29nKlo7YktbKRh/ccwsinQmR8Xicy5cvo6pqVVSi0egtISQ321AraAIhEUWR7du309bWtugbXlvZvhHMPewvTuY4e3Wa3MQgh/sqrdbXWkHfCIukfzTNpak8QcnE1nUi4RCWaaFninztzBTvuHfriorSzg+O8bUf9GNaC7+XbUGVgCqSKRqEbWu2rsSibArs7w7TEvRSLGnkslmSiQSRaHTBmh7TssmXSgR9XnoDFl6vj6whUdRMJMFmd3uAHW2VCYqRoI9MvtLt18EwLYZnsshYmKaFVtaQFZnusJ+pdIF02cLvUaoWjm1bqLMV5tl8kXOTeSYzWvVgn8rJbIn6uHd7K6miRrGs41d9RP3KvJnqpmVTtmByLEXAI7Gj1YsoSWTLJoZlU7YEOsJejuzrIZ1KUywWZpveCdWaFZ/PR0iGqYKB34SAV8UWJEpli86AjFe5ftApioxgV4TQI4vEAgpj6TK2Zc3OUbHRbJFtrZXU6LJhV2NGumWTK5uokkB3WGUiLzOeyKFIIrpZQpVFulr9BH2VqZfFskY8b3D1WhzDrKzfEfLQHlTrEidKmsYL54d47uwVZEmit7OV7T3t7Ohpn2et3MgW8oIgEAgECAQC1YJIZ5795cuXKRaLlc7Pk5PVVi+bfVW/FiHJ5XI31ZhdaAIhAeju7l7ysN1o15YTbE/kNf7rP5/kueFU9W/3z2h8fJdJLLB5QjKezJMvlvB5IRQJI4oSmlWebbNhkCkZSwqJbds80X+BZ04PIIqVIVEClerrytjaymEQDfroC1SCwqlC5epcEARaAyo7YyqFYplcJk0um6NvW2/FZVXz2vJlkyszeSazGqIk0RmQCKkq7cUMrR4PcshLe7SF7lgYyzaRRIlM3pkzMn/PhmFQNkwEUURVPZiGgShKeD1ewkEvhVKlVX3A5yFfLGNZJtM5jYlMmZBHQp5tH29YNqPJPFG/SE/Yi7ctCDYUymWsmumK2bLJlUSlcNCybTySSE+Ll91tPrIlA920KHk0trYGK0IWDhEKBbEsm4lUnqFkntxkAo9g0hP147MgVxTJFnVkSaQ9oLCrI0TI58GybCzboqjpJPMammHhkUW6I15MCxIFrTKyV5HoCKrEvAKarqMqlbYsSV1kbKqALWgoksC21hA9IZO07KGomcQCCq0BhaBHriZGJMtwaTJLwKviVSFbLDMYL2DbNp3hSowp4Ku0u3GsQ8M0GRybYnBsiu8CLaFANbaypSO2qS3kJUmqNpOEipX81FNPVYuEnYJIx2LZjHn2aylIdFxbNxNNISTLcaNiJL/0Lyd54Wqq7m/PD6f5b188zafeffea1l5v+m8mk2Hm6gCqLKD4Aohi5UspUGnV0eFTqkORFqKs6Xz1yX4uj1aqVy3r+nTBRF7jcrxSIyFJ0O4Bv2jxQ7vaGM+UKM/6+bvDXgRskvEZcoUS3d1dWIIIloXP40GWRNKFMs8MTpPRbDwSmJrB+axFe1Dlrq1bMMolCoUC0+OjpGdkIuEwkqwSi0ZmixkrdRuCUJmxHpQt4lmDtoCCdzaRoKBbKBJ4RJNcoYxA5WCzLAufR6VY1siUK8KmSCI2lfo+r6qSKxeZTBVp98sYNZ9HZf+VvmUXR7KkCxoRXyVoXdQthuJFvEpl2JSAQMYukiuWkT2V99Dv9XAtVWIobaKZMqpPwRQkhjNFtgTAaxUxbYGQ10vMr2CZBtmCRcDrJZUvM5wsky5bGIaBaRjEAio72/x0hT0gSsiijSoKVYtBNwwuTWUZyxjEIh5iIR+6BZdncvSEZPpiC7tfPaqH4dEZVAlkTGyr0rFAswTSGnRLEj5VJl9cOqmlVNY4fmGI589dqVS2e2UUW2P3vjzR8OYefs7U0dtuuw1FUUin09Uq+9p59s6EyBthraylINF1bW0QsixveIzkakrjmaH8vL+Zts0PriQYnMmzo231H+56ChKdWSsPHtzJGa3A81fT6LMdZ1MFHcuGt9zZvWiqbzKT598ee454ev4sg3RR58nLCXJlk4DXQ7msMZC1CckqdwZ9+NXKrHOAclkjnZzBsGDr1i11P4zibDbd5ak8WV2gLaQiUOk/5rcsZvIaMwWTvlgl3VNRRAr5Aql0lkIyzcTkJD6fD7/fj+r1Iysq+UyKqFgiG/CQ06Fs6VWraVe7n6CnEmAOBnykc3kci0ZVZPw+L4piIIqVhpCqR6WsaVi2jSBQ81lUMrkKpRI+j4epTIls2aAzGkCgEpvwqxK6aTGRKdEb86PIIsWyXokfOe9xrsiF8QyCbdMR9qEo8qyFYlKUFA7u6KRcLlEoFEmlkkxPTxONBEkJMiN5SJYsWnwyfo+A7fGQ0W2mCib7O/yUdbPO4oPK6IKZnIYq2QQ8CgI2gmWgCjbJosUeVUUSBQplrVolH/B5mEjm0U2rmg0GlT8Ltkk6pyF0BdE0g1DAh2ladY93qG35ApVD8upkmkwmy2The7QEA+ycja30draiyDe2dYvz2YqiWFcQCVAul6vNJkdGRhAEoa59S6MKIufiurZuICuZq76RFkkul2M0VQIW/8BHksU1CclaXFu1lfN33nkn7e3t/EaXxl9+b5BnBhNkSwYhj8zLOwx+/M6eBdcYHp/mW8+exjAqUwoNo/79uzSVJ69btIW8WKaJxyOjmxbxbImB8RTb2wIEvB6KhSLx6QlUb4Du1tZ5RYjOfnM62KaOoYPTc9/j8SAbItlZK8HvVSvDnlQv7e1ewEbTNNLZPCdGU8zkZ7BECVUQ2N7m58F9HUxkykyki8iiTVfIQ0fYgyiI+Lwq2TluMd0w8UsWlmlQ0kUioQC2ZWEhIAoi7SHvbGNKqrEVn8dDoVSiODvRUa9JA1dVBT8ShmkiUAnIz6WSTWUSC3gQJZHibMZawCNRNgVUjwevquDz+bDtKD5VZnImSTJb4NpMCY8kULQ9FZeVqqBgk8jrpAoa0YB3thhTR5u9kNKMSqsZz+zFg9PYUpVF8ppBIlsk4JGqjS4lUaRU1pDFSrKEYdqoNVlhmmER9HsplsqVmEz+enaaz1uJrWiajixL1Wy8uZ+98/stahonBq7y4vlBJElia3uU7T2VDsbR8MZnIdUKyVw8Hg89PT309PRgWVZ1QmRtQaTjAltPQeRc3GB7E+EISaMDe7ZtMzQ0xMDAAF2Bpb8421vXNvNkta4tXdc5ceIExWKxrnI+FlD5rTfuYypbJl3U8VpFLp8/UzdECiqv6fiFIR57/iyWbc3eVmkl4lEUDNOkUCqTKFkoooBVszdZFMAWSBY0+mw/k1MzJJMJIi1R2ttaUWUZwzIpluprbkJ+P5aZxqqc0NXBLbquY+ga2DItIR+WaeNVlMrVLgACqqoyWiiR1BVUVUCwLQwbzk1kyeWy7Grzs7fFT7SlBb/Xg2GaWDZ1LhjTsshrJrIo0hpQ6W3xMVEwuTaTqXwGAmxvC7GrMzJbTFm5qg76PWRyhcr7I1fiKWXdRJVEECqWWFGD1kCl1XzQ4yOrKpg14iUKs+m9ooCm6TV7srFtg0KxhCKJeFUZj6pimiaRSBhUP8FyBp9kY+o6+UIeK2uh+nxkC0WKERGlxqWlyjKqKiNJJl61TDJv12UoaYaFLArV4kZJFDEMk7xeccFF/B66YzCWLCKYFopUGedrCjIB2Z5n1ZqWTTpfQhYrdStlTSPo987WvVy3VpyP2+dRKetG9TA3TZPhiRmGJ2b4HueIBP3s6Gmnt7OVbV1tqErjj56lhKQWURTrCiI1TatOiDx9+jSWZdXNs3dcZmvd01piJN3d3Wt+zs3gphESYHYGeGO2bBgGp0+fJpVKcejQIc6cOcMr9rTyxKV4de4IVA6KV+5tY9sivuflWI1rywkSBgIBjhw5smBwsCPkoSPkIZUy5tUHmKbFt549xalLV+tun9s6JOT34VclMiUJQRSwZwPO9ux/iiiQTiZIZ7K0d3Ti83nrW4+IIn6POhuDsMkWCnSFPIwmihR1C99sVlJeqxQS7u6KkspeTzeWxMrVLsBkKs94uoAsmKiigM9XybTJlgzygg2iRDqdYnp6mlDQj8/rw+vzEQmHEAQYmMhweSpHQa+kKHeEvBzaGqEtVyJZkMCGiF+hNaBWxUcSBUJ+HwXNIF0G0zIJ+ioNKCcyZXyKhCiAIUgItklX0FexCnSDoqbj8agEfF5EsXLADyfLJHJlWvwyApVeWAXNZGuLF1UWZ1vuS2TyhdnPQ6A94ieS0SmVDQJBFb/tR1UUxmbSiJjEpybIyBJ+vx+fz4/l9aIZBgGfl5hfYiYpYYkSCBV3W1G36I1Wnk9RZLBtSppOQTPRTAuPbNLmFSh4BVJFE80W8SgKHapAT+h6V17LhulsmamcRlk3iYUChPMarYFK12Rn/461Uszn8aoKJU1fsodTsaRx5so1+i8OI4oiWztis2OH24mFG5Nd5RRHrnYtVVXp6uqiq6urriByYmKiWhBZO89+pcJQ6Tpgr8kicV1ba2C5D/7/z96fxsh6Zved4O/dt1gzI7ebmXcnL3cWyVpYlLWUVkttj9Vy98iepTX2wIY+aL7IGEACBjYwMAYGNC0I1tjQh25LxnjG7XYDUo8XyW7LKlWVXAuLvNzJu6+5xx7vvjzPfHgiIjPvvWSRl6TMmqkDEIWbFfFGxLs85znn/JdZ8vikEkkURVy8eBHbtnnppZcoS7WT+r//1af4td9/mz++1FXfC/jxC0v8g//yyYf+rA/b2trf3+eNN97g5MmTnD9/nqsHMe/tdQlsky+dblO7R2L83uNGScof/tlr3Nw5+MDPqfsKbrtWN7nbC0mkEhDUNI1hnGFpghoJ47Bg7cS6WpTuCSEERVVRVYIkywlcm/OrTaJCcmlnRL9QC45jGTyz0cLVK462oKqpjzvAwWBMklcs1R0c257PwhxT7ZiDRovlTgfH0un1R4RRyEGvx7ZhEONwfShwXIdWzaOsBFujlLQoeeFUi8XgftlyxXGxubQ94MpBRJSVGKZJw3M42aoROCa7oxTTdvAo2Wj5tLzDzYCQkt1JwbXRHrphUrM1Nts+umEwSnLKokDTlGTLZtvDNA0MTSdOM3pRwcEkIy0FdcfE1yWjokBi4Ts2g6TAcRzOLQV0Aos0TYjjhLt7XQZJhe0prbCVVkDTLEnTgkQrcR2bR5c8Nluu4qxUgiQvudlP6EeKh2IZOos1i1MLHhsSJDpSVHiWgWOpakcIydXdEbf6CYau0QhcuuOIA1SCWZ4mnJlEDoBp6iSpVEZhQihVAo4nFMe2qCoxBzkIIbi92+X2bpevX3yPuu/NyZCbq4s4D4mu+iQ4JA8iRM6qlRkh8l4/+/dbv2adiIcZtv8gkXwKMdtlfBJzktmCvbGxMZdhmfERao7BP/7ffI67g4Q7g4STCx7rrY+nSfS9EomUkuvXr3P9+nWeeuopFpdW+Af/7gp/crlLVgg0DZZqDv/nnz7Pl44IMR497n5/xO9/9WUmUYJjqxZWVVVESQ7aoae2a1tzxvfpBZ9BVHCzF3MwjtEA24DHOhZN12B1bZM0f7C0i+86vLc95NpBSJhV+JbOmU7AuUWPtaYzR04t+CbO+z5DkvFoRJmEOKZBJbV5P9k0TdKqwDLANjTqvsskTqjV69TqdUVQTBJevjUkzQuMKiOpXHRDp+GYTHJISo2mo6qDWZiGjmka7AxC3t0LqSpJ21eLYxgnvJukfP5Um2dOdciLiqoqj+iACbIs43ovYVTZ1AILkaXsjwX1ScaFlRrLvk4loBm4dOo2CEkpKrKiYGuYcq0bUwmJqWv0owLf1tloeeRSZxyl1GyDtU6NzcUaGhqWZRALk95Yp/J0wiQmH1fc6U444Uvafonj+dR9F8fS0TWNtBJ4ts2tQc5BWOBbOnXHIKsk26MMxzQ5txRMZy5qp5yX5fQ/we4kp+47NDyHLM9puCaTrGR3nLIYWMdIqTXf4+5wSFnJORlV0zR8x8HQNdKiRJ8qGN8LGjgacZpx6fYOb1y9ja7rrC+1ObW2xOm1Dp3Wh0dXfRpkRNM0WV5eZnl5eU6I7PV6dLtdrl69iuM4x/zsj250Z8/nDyqSz0homvaxB+5SSq5evcrNmzd56qmnjvUgj7bOdF1no+2x0f5kRO0+6Hsfba/NDLv+X9+5w797Z5+aY7LgW1RCsh9m/IN/d4X//n//HAvTXfYskVy6tc0f/tlr893eveq3vquqjaKsCOOUUkgsQ7Vbnj/Z4kwnoBfllEWOU4SIssCvt0jzQu3eXcXYTtOcoqpo1gJevbHPG1tjpATH1BilJRfvjMhLwaMrNTp1h6KoqIRU6r2acv2btUaklAz6PbI0YWN1ibGecneYIh0Dy5BMkpy0FDy2WqfTrCOEwDKtI46JOq7nI42EVt2m4TlEcUSWZZRlRFTp3NzOObfSYKHZmBJaS4pCkGYF+5OctKjoBIdInYZr0YtyeklJfQrtBYnvOJimznA04dqdXSaVzXK7AaIA0yCwdfpxyd444cJKbbrpkehI0qLAtk003WB7PEFHtdnUkWGUVGQVPLpkIxbs+SI9a8GVlWR7UmDaLgu2Rm6rRbIf5/TSCR1NEo8GhIMeC606Y8PC9zyitGBrEOKZGoGrhDHt6SK7H2Ys1635sP5opNNBfsM3iJNEtTlNk5ZlE2UFeSnwbGNKJPUZhcnRkdj82s6qFd91KMsK31W8mTjN7qtWTNNA17T5PSuE4M5ejzt7Pb7xGtR8d2o53GFztTN3qnxQfNqs9qOEyJMnT1JV1dzP/sqVK6RpeszPXtM0dF3/yK22HySSh4wPc6I/jkxKURS88cYbRFHEiy++eJ9hzOzmq6rqEyctHa14jv7OJEl49dVXMU2Tl156Cdu2kVLyb97cVQPOaSvLNDRW6g57k4yvX+3xV549TIDv3N7njb1XHoikAvVgCSGJkpS3t8fcHuXklaRuG5zruJxa8Gn7FrZIGSQjWouL7O3tH75fqvcCIDWatYCsVKQ9pFT8FU3DQ1nGXutGPLnRJs2KOXL0cCgucW0LXdfYunuXUVyw0FnCdR2ePKH+vjdWKr22qfPISo2nNlpzu9uZj7ptKR5InOS4lk5capRVieu4uI5LWQmKKMPUJPt7e+zt7tJuNjBth0a9Rt13QU+PORmq66RhW6YiSLZmCUbBaMPehIODA/xGG8/UcW2DIlf9b6mBZ0n6cakgxlISeO60dadRpTm9qCBMcxYDB9ue2gqLisCBbphyesF54MIel4IkFzhGRV5q6IaObZosmiZbcYRXa7K85OBaBvu9PkkY0uv2KDSTMDZo+w5FUVCUJbZlYepQSkOh6RDH+DSghCVtSxEY7RmZsyxJCvVbzenGxDYMepOEvUlGb1xgIqgX4hhjv+a5cyXkfP7cKqHPWbXCtFrMi/d/rsMk4/rWPm9du4OuaawttTmztsSpE0ss3VOt/HmbWhmGQafTmevvHZVvuXFDIdeklOzv79Nutz/02vID1NanGA8rkzKZTLh48SJBELyvw+Js1/Bpyb3DcfRGv9/n4sWLrK2t8dhjjx2+RsI4Ke9D0Bi6hobifoB68P7om69ze3/EuUeWSNNy3sKahZSSRi1gHEZ8++aQawcRpq5h6hp7aUY/ynBdh3o5oTccsbKyiuu67O8fwD27RkPXsS2TURjRj3LCJKPm2liOSn5lUeCaOqnQ2e6Hx5R4D0NjEiXc3Tvg+rAi1xyMJGbBLzjXcfncRoMoq8hKQdO3CRzzHritqmpm7TbDUJa4L98aEuUVnqVTCckkLek0XB7ZaGHoGqYOB70Bw+GQvb09HMchrWyKSmBYJqauU009PbKipH6MTyAZDocMBkPWVtdINIdrgx6ZqTYFtm2h6zpxIbENMHSDuu8yjuJpIlUS70jlfFhWFTITWJaFqASaruM6Jq5lIUR5bFE0dB3H0ijKAls35/dQmisWvBQCz7ZYbNZIsnyKQmpRVhWTKGYnmdAfT7B1CHyfLEvJhYFl6hR5jtQ1PNdG0zQOJhlRVuCaBp4B/bii4ap7Ja8kcVGx3nSxdEUWvdUdc/UgIhMaZaFRVhrJXsgjHZ+6a05bkSn3hzzmZc80eVvmg2crmqbh2vb8PUJKtvb7bO33+cbrlwg8l1Ori5xdX2ZztfOfXWdr5me/sbGBEIK7d+9y48YNbty4MSdEzqqV9yNESimJouhTc0f8tOL7JpE8TGtrRug7ffo058+f/8DK59PiqhytdnRdn7s+PvbYY2xubh7/DrrG+eUar94e0nDN+ffNCuWed7YTMApj/uBPXma3NyTJC+IkwzRNAtdBopFMZU/qgc8kihkmJbf7MZ6l40wJYq6lBsPfvrLLcwsVG+sbNGqBQhdNiXyzcCxzDreVUs75CEVVYRzhXBiWhV5IfOfBu64kSTjo9ni3D5k0qTmAKLnbz+iHCV95bIXVtoeQkjTLSfP336XqmoZjm9RFxrkFi5u9kriQmIbJiQWbcwsuuqbRqPmMw5h2e4F2e4GqKonjBDEJ0YuUG1sJzZoylSow6TR8Ti81QJZICd1ulziOOHVyE9/3IEzxbV2pCLsmeVFQVAoddfZEk8VmTcnhG6aCQiMRQtLwLALHYJQWLDd88jynkpJhUrLR8pCywrJMvKmsfJjmJKVAE4LANgmzclr9KbhtmFX4JtRci8EkQkroxSXduCLOBZYG7UadUVLgOSZZmhBHSqp/vW4yGQn8KWrtajcmzJXHiWmY1F2DhgtRruZDhq6xUrfZaHn4nsM4TrkzSEgLQcs3icsKaUiSvGI3qtjoNA6r2PcJ17YopnOTbG6xoOG7NoaukxUVZanagskH2EeEccLtvR7v3NhC1zQC28CSOacfGbHc/nSsfD9s6LpOEAQ4jsOXvvQl0jSdVytHCZEzNNhRP/s4jh9KIPbDxNe+9jV+4zd+g1deeYWdnR1+//d/n5//+Z//2Mf9TCSSD9va+rALvRCCy5cvc/fuXZ599lmWl5c/0eN/lJhVIWVZcvnyZfb39/n85z8/Z9zeG3/tC+u8uzthZ5zRcE2KShLnJc9uNFn3Bf/s3359LiUCagcjhJjvAE1dpx54INWub9iNKCpJYB8O/KqqwtAgTAray+sYpkGUqvcLCY5l0Qg8BBDF6ZTDo95bd02WajZ3h4pjYJsGFTr9ScJqw8G3NGV3axiUU4Z0OJkQToaMhEsmSxYCa/79HVOnFxVc3RvzhTMd4jTHMgx816SSkiTNpp8t2RqmbI+Vb4pvwam2x+lFnxMtjzAr5y1B2zAIPJeyqtB1DSGgFIIwlxi2x+aJGq2Fklv9hK3emLIs8XRBy88YD0sC3yecjNFkyZnTp4kKwWQYU3NNzi/XuLIf0otmUGhYa7qcWa4zmKg2nK5pBJ5NmFbEeY5rGpxfrnGjn7M7iucFX8s3WW/aCgVXSJKsZHtSsD1IkJqOZ5vUPEsRRaN8+ltUYmpYBnGWY5om26OUawcxmqakYcJSGXetLdSIs4LStFlseSzXLOpmRZok7O3tcTuEDIemb+HYJhJBd5zRqdl8brON1DRMTWLr6l6K04w4rwizippjoKEhUdWZbymp+53+BM8ylCy/qdBu8RHe0b3s+MOQ89cZho5j25iGju7qD6xWABqBPx/yCynZ6Q0Zjyf0/+jP8F2H02tLnFlf4uTKIq5zP4Lv046jXQjXdY8RIsfj8Zxl/84771Cv17l8+TKdToc4jj+1iiSKIp599ln+5t/8m/zCL/zCJ3bcz0Qi+TDxYWVS8jzntddeI8/z95Wlf1B8WolktmC+9tprAHPXx/eLF88s8H/5uQv8P791m9v9BNvQ+Kln1nhxTef3/+Q78/bb0UQyC9eyqKQ8IjWulGcty0IzTKQoqaqKcopG8lx7XqUc/b5xmlGvB0zCGEPXqXkuEkmSFggpeWa9QVYKhqlgkhcgJYuBzbPrTTRNOyLJrpBZWRyxtnaCve0IXTvewkHTMHTIhD7tqWtzFBFMF2Xf4ep+yFu7EVUlsHTYTwS9MOfpEw022h4L/iEIwbJMhvPZChxEJVe7CZMkAyloexZfOLfEU67JI8vq/tClII5joiii1+uhaRpm0OQbV7tkQkfTdWq2zsmWzQsnW/SjnFJImp7FStMnyw4Xy0lW8MrtAcO4pBIC37V5bK3JCyddtvsmeaW4Nm3PnFeAUkpuDXJudiNcS8c2JJO4YDCRnF+uEbg2SV5i6pKVhsvN6z1AmWjdHaaYhjb3P/EsnUwaDCYJz6zXMfQajanDY5RkNOo1oqxiZydEz1OyJCEKS0zDxDBM+qGkXCgJHAPTUO0ww1D3QVLE0+Qx/bFTNXvPdRmGCVI69/GWZkgu01Azpw/im1iGMfWsP0p6nVUrBlmh7A5qgTdPIrM4OoeM04xbuwe8c+Mumqaxutji9FqHMyeWWV7486lW3m9mo+s6rVaLVqt1jBD5z//5P+df/st/SVVV/J2/83f4hV/4BX7mZ37mvs7Fx4mf/dmf5Wd/9mc/sePN4vsmkXyYhX5mhdtqtXj++ec/Eufk0/JWVxLjSqLhc5/73IeCAv7w+UV+6OwCw6TA0jW+8+Z7fOu1mxiGQc13QUKUZsBhGyrwlMyFuOchXfBMAhMGk5jANhBVgWa5iKrg1IJ/3zxG01B9/lBJcsdZwTvbY7ZGKULCmaU6F1br/MWnA24ejIkypTy8UneOQUOlFAx6PbIsY3FpGakZOIaGZpjYU4Z3WaqkohkWuix5kAqwkJL+OObyfgSiYrHmYhgmlajojROudyPWmu7U6taYJsLDRWh3nPL63TGaBr5lgG7RzzRevjng+fXgSCI18DyP0WhIENSoNVp84+qBmh3oCr20F+lMEocfubDChYZPWVZImC+YoFj27+xM6EeF8nHXDUo0Xr3Z5akTdU4u+niODZpygqympLVK09kaDAlsfT54r9k6k6xid5TwQtNmre6BpmEaGp5tYZqGQn4VxzW0XMehSlKioprLqRyVN/FdB92USEJ818UyfYQQ5EVBmuWEYcSdu8rbxPd8TNuZ+73bhkYrcIkKiW8ZSCSObdObxDRdE+9I5ZsWqpJKC0GrJvAMoaoV28KyTMVDSrP5ZbdNE4Gco/MOQx67pjXfQ5v+jqPVilIiPuJxM22xSSnZ6Q7Y6Q745ptX8FxnmlSWOLnSwXM/nWrlw8qjzAiRv/mbv8mv//qv8/jjj/P888/ze7/3e/zyL/8y//gf/2P+9t/+25/Kd/yk4v9nEsndu3d59913OX/+PKdPn/7IO46PI674frG9vc3bb7+NYRicO3fugTdVmJa8fGtAVgqeXm/MeSu6ruEa8K+//l1u7yqCZFVVhPHsHGi4jqkkwV2HUZg+EL1lGhpfOt3iG1e7jOIcw9QxKVlvuXzhTIfAtSiKkiTPMQz1kI+jBM9zKSrBt28O2Rml6NOB/3euH7A1yvj8hs+pTg3bnLawjixUVVUy6HUpK8Hy6tr8d59oudzsJewPI+quiWkYRCXYpmCj9eAqTUqJ0E3GUULTsyjLaq4bVnMtcqGBYeI7OnlR3YdEujNQkvBtz0LTFI9EkzkHo4xuy+bcstqdDkZjtre3qNcbnD65zhu3egjdYr3jK++XokDLc3rDjO+8E/PMRhPH9RQSzHLJioK8qJROVlLS9q0pb8WkKAoSYGuYstpwCY8h2Ww81+LWQUhRSRruDB6s5GYcQyMpKgRKS0xIQSohyQvKUvmyeK6DpmtomnJqzHJVLRm6hvGAHbGh6+RZjK1DLjTqjouQAkM3yKXBsh9wfs0njiO6/b7S2rJsDNulUfNZDUyudWN20wwhlM9Kux5wsu3M/V0macnl/Ygwq3Bdm7vDPr5t8siSryqW6WxE06fVhqaRlRXlB8zG0DR8x54niNlzMKtW4ihU94XvMYmSBz4PAEmacf3uPpdv7yKEYGWhOfdbWW43/rPqbGVZRp7n/L2/9/f4+3//7zMYDL73mz4D8ZlIJB8H/iuE4N1332V3d5fnn39+7k3wUeOTbG3NZjRbW1s899xzvPXWWw8s5//0Spf/9n+5Si/MEag5xi987gS//CNn6I0m/MFXXz4Cf703JHmh4L2jMFVzCdNUrObs6KJeoacjPrcokBsdSqk4E8t1ByFKJrE6p4Hnzi1hi6LAdR22R5ny9nAVugkNdMNipz/htq/jWYfIKkM38D2bLMvY2tkHw2BldRVNO3woG67FsxsN3tmdEGYCNIFroPgiNVdxTnSdJMsoSpXUG4HHnd4EQ1fkQt04ItJYVVSVxNAgzUsljujq5EVJmimGeZQp7SxdN+a/bVY5JXlFmGSEYcj+/j4bJ1ZZXuqQ5uVcckVDcZgMw8B1XYSZY/vKm+Wgpx7yGVqn1aijmxaGaShGu65TTBdM29RVQpASfd6WVIrFg3EMssKxTDTTwjF08kJJjhRSErg22hT1NRvgz+4BA4FvCA7CgsWGCxoYpkUUF6zV7blcDSjDsAKTre0Bjqlzoulwo5ewM5hgGzq5UBDtC2t1At/CtCxqjRa3ehE3+xHJIEFuT2i7sNrwqXyPg0FC3bU52bYJHB3PsTEMnUsHQyZpwcZinTTLCQKbYVxwq59Qd835NZBSUlWCtKwoK4FrW9iWoWRmksNqRSG4rAcIRx5WK3lRKng3imn/IN4KKFuBoiznJMnd3pDd3pBvvXkFz7E5udrhkZOrPLK5+j7P3oeLhxVs9Dxv/r73m6V+1uIzkUiAqevb+/dOH5RI0jTltddeQwjBSy+9hOc9PInwk0okRVHw2muvkWUZL774IkEQPJDdfneQ8H/7w8uEWclCzcbQYJyW/PPv3sWuIrTJwZzA96CwDAPHMggTBeM92pOOc8E4l4iyQEZddN3k5MbGfQKPs/BdZ25Vq5s2/X6fJJqwGytCpKFr05aKQVkW6LrG7jjlwsohaaoSgt39HuF4gOX4bJxYRdc19scJvUmKaxos1mzWmi6biwF745SqErR9C8vQEVIe26n7roNtGaR5RcM1aPsW+5N86mqokkqYlpxba4IoERxvaTm2GiC3ay47oxSQ8+s7Y7u7lj6F9w5YO7HKQrvNcDowb3g2+qTCsm2q8lCMUDNt6q7F0nKbjpRkWUYcRwyHA/b398k0mzwzKAwNyzNxHMXlyEqlVzVLIhqKbDeezrMarknbM9kdxdRdE8vQqNDRDIv1ljO3uxVC0Ovvk0mTbljg2oJzSwFSi+mNFYlQ02DRt3jsRJO6a1NWFb1JzM1hyd5wMCcRNj2TUwse47Qkyis6nsmpTp3AUr4jrm2xNcnZnlSYlk3Hc8hLwSSrCCqNphixZOWYCIokJNc8pISkUJ+33KpNr4VNXpTUXJMwq4jzat6K812bJCum8w1VqcyqFd3Q8RxrOtTnA9FgUkp8x2YUxnP5HdAIpppgWVGS5TmeY5MfuZ73RpLlXN/a5+nzH38u8TCCjWEYft/5tcNnKJF8rzBNk+zITnswGHDx4kWWlpZ44oknHtoKdxafxIxkxlmp1Wq8+OKL8xnNg479x+8dMElLluv2/KZpuCa37tzln/27S/ylp9VuSNcUiQuNeU/dtdXiUFTiWPIVEl67M+TKfkRaqP59YMJPPLVMs+6TZsV9/ee67zKJUsR04Lu4qFRP0zShGg8pipwsExiGOVUKlkg5VQo+EuPxmGgyot5sUavVGcdqNrE1TCmlkvto+yZfPrOAVgkW/fcnZ9mmSVZU3DiYIKWkU3P54rklvnNzwMEoASQasL5Y52zL5kGzlbwoyYuS0ws+e6OUsJAEtkVeFIzjgrZvQTphlERsbm5QD/wjiUwtxK4esTcMqTsmpmmRlBLHqFhpqJ66pmm4rovrujRbCxRlAVXJwc0+W90Bnqnj2CYlBrbj8OhaC8+xyIoS17bZH0V0Q9WGChyTc9O2Ty/KiXJJ3fNYDWClbuPYKuFevXWXy72C0vC4sxvhWqZyXlxwWKmZ5KXEsXRanoWsSibTVuh2WNENczoNH1lVFFXFIC6wDJ2n1pQAZs1XRMpZognTnOu7I3QkNcfCti0CqWHbOeOs4OzmGsPuHoZhkGUpw+FAVX6Wi6ZZJGmKOALmsC2LAkV6lFPiZpLlCCFVtalrx6yPFW+mxNR10rxQCtamSSEqkiSfX3YpJfXA4/ZgcM9mSU5niSoagYdEVc/vV63YlsnP/+jnWV9euO//+6jx/y+mVvB9lEiOSsnfvn2by5cvc+HCBTY3Nz+R7P1xZyR7e3u88cYbD+SsPOjY/UjtnmevE0Iw2LlFMewRHbHNVTv1w51YM/Dniz4cR21dO4h4Z2eCoYNnCHTdJKkkf/LuLn/xyRV825i3wIqqxDQMxlFyD/NeSZd7ns+5NZ39fIKQJboUZJlixle6xZKnkWUptu0wHPRJk5j24tIckXZpL+RmL8a3DWqmrnbFIXzj8j5/8ekTGLo+T4xHw3Us7vZjXr87JExLJOBZBueXAl5Yr9Ft2gjDoOnYNFwNUd1/zaK8JMkFnYZP0y14fDXgRjdmECboGqwvBKxaGbooOH3qJJaldsV5KRinJYYOTc/iqRN1ruxHjNMSE4GrC84vBSw1fBxL2Qz3Jwk3ejF74wzTsmg6Go9vLrE7StkfJ2R5iSEz6kbC+CCDtEaz0WBvkvHWTsIkTue78U7N5sm1OqdKD8dxqMocbyqamaQp13d2uDmBTHPp1HwcyyBKc+4MEwxD43zHm3utzFpguq4hMNjpRziGTlUW0/Ns0zFtwjwnzEpOLNQYR8fnbHkpyCuBP5VFqSqBlAJdCgQ6lmXj2jaGbdOo15FSkqYpsiq52R/SzypangJX2LbNMCkIbBNTk2pRlxAWcPMgZJKWWIbGasNhtaGAG3P5lKkQ5n3yP44NqFbheH4e37/qDqdcKBUzlr1OVhZkWYFr2/zCj3+B1cXWA4/xUaOqqo9smDVLJJ9WRRKGIVevXp3/+8aNG7z22mssLCxw8uTJhz7uZyaRfJjWVlEUvPnmm/R6vQ/kYjxMPGxrS0rJtWvXuHHjBk8//TSrq/f3VR/U2jrT8ad+4gKqgu6d6xRpQikkndqDUSSNwGcYxoceFZZF4Nl4rkOc5Fw7CBESbFFh22reYJmScVpyZ5Dw2GqNLC8oigrXsYiTTBEZpSTJc+7No+dXW+xOMq4dFGQVgIluwHrNpGEU7Ozs4to6uqbTbLXnpKpSCO70U2xTn3vJ+76HlqT0o4pbBxOW6w4g8RwHy1RzDUM3OBjHvHJrQFoKGp6FBsR5xTu7EwLHYHPBxzQN0qxAVALHsnBs5bMyjFLe252wPUzBsKAasNZ0eWKtzlrTIcwqNCmY9A8Qpc6pU5tIwLYMbg9S3t0ekuRqNtLwTJ5Yq/PFM21KqVBPNcdE17R5tVNUgje2JwwSQc21qYqSO1HBMC544WST88s1KiEV674sKfOMKIq4u3vAtVBHaiYLgYPn+0ipcTBJuNOPee50h0mcwTSJFEXBzs4OwrApDIOGZWCbOlmeY2iSmmczzJm24ap5ItE1DcPQORgnVEKgmYfPWJ7nCKnMunzPRUqo+cf92i1Dw9R18lLiB0qaRghJXompi2RGmuc0XBffdRjGBYXhkVc5T51Z5fLuhHGSE8c5+SjGNnXWXA9TU8TaflxyaT+iEpK651JKyfV+SlJUPLHWRCLfVz5FCEGYpNQ8l1GU4rk2nmOCZswhybPwXWfa9jy6vshj85ZG4POXf/h5VhabD/y8h4nPoqnVd7/7Xb7yla/M//2rv/qrAPzSL/0Sv/d7v/fQx/3MJJLvFUIIRqMRQgi+/OUvfyyzmQfFwySSsix58803GY/HD9TwmsWDWls/8dgy/+K7W1zdOqDo3QUkRaV0nJ5YO34cTVPIlHEUH9sxVkIwiVKkZiCkYJIotVXHc9CkNn8vGqRTaXfLNNFQ/WYhJEVZoV6idmgK61/g2RaTOOXZ9QYnmi574wwJdAKblYaDmCKzikpgWg7dXh+dHo16gDBdsrLEMY254GaR5xi6hpCSrDy0u02ynDiVNGoeaZYzyCSZ1Gh5ytsDoOaY9OOcnUnO5kJwRDpFU73v6WJzeS/i9qik4XnosiRF52Y/RtM0nllvEJglOzt7uK7D6ZOb89787V7Ea3fH6Bp0Gh5SavSilLe2J/zwI0uYspqjqY7G/iTjYJKy2q5R5jmmCb7r0U8qDqKKU+3DtltQr1GWLn6tTuHEyHhIYAqiKCKMQizTQkOnm9gIqexxkzQnSVN2d3eUiJ9bp5qMCVyXfKoqoDHjwKRMYpeaayl4r6ZTlCVJVlB3bTzbJCkqLF2ft3SirKJZ86iKnFCqc5iVglEGSSkwEDRcg34qGcfKQTGvBFGmJFN822AoVeXyys0+/aQizXMs02Sh5vL4eptBlJIWAsfUCAxBzZLcurNNVVVspRaZNFisuegokqzUYZBKCqnh2yZlKR7YgkJOW3GJqqLSLCeMc2zbom6oof8swu/BtPdch7/yoy+w1G584Os+ajzsjOTTFGz8sR/7sQ/csD9sfF8kkm63y+XLl9F1nS9+8YufCDxPSsl/vNTlX7+xwySrOFev+MrJD48nj+OYV199Fdu2+fKXv3xM4uDeeFBrq+6a/B+fa/Lf3niLrUqZVLU9i+dPtlhveVPVXW0+0zjqCHgYaoeZZRnDXpfArEhKDSQYppJYyUt17KZn4TsOaVFQluWcqa4SkxpmhknKQZiTlOAYGmeW62gIllBS9rPIspRRv4du2awtd+ZleFHkitQ3GaOVOZPCxNQ1yqLEMHTyUvli1J2jt51KIso2F0ZhQlWUaI6jdNE0KIsS13EIk/J9AQhJUbEzzggsA0PODLwcLMtmPyzoj0PG/S6NRp2TG+uEccJskb87UEm16VtU0/O96Nv0k5JuVLDZdo8N8mcRZSWWZVMWxVwCt6oqtKpgfxxzruPhOfac5FnO2nCaggUHgUpOVakkQbJccNDt8u6VMfXAxzRNwvGQ9dUV/FqNYZRR811GUYJ/D1/DtRT/RAhJWQrKqqCsKlzHxjJNHlkVvHlnwDAtcczptbBUi9LQFBAhzAXv7qo2k64rAETDd1ms2URpwTjJMQ2N9abLmc5MwkOyF1XsxRWBBUFgU0nJ/jAizzNeONkmcO0px0NnHCVs+nWiNOPWzQG6LBmOhui6jm3ZeL7LMMk5GEXTyvxQOiUtSvK8UCq8nnNfgpi1tqpptRJ4DlGc4cwQjQ9w9ww8l7/6419gsfnJM8kfZkbyacqjfJrxmU4kUkpu3LjBtWvXOHnyJLu7u59YEvl7/+o9/sdXtuayE3+mwb+9pPM/nc9YaXxwX7PX6/Haa69x4sQJLly48KGsPY8mEiEEX33lXV577zo/8ViHJK8ohaTmmGjaoequ7ygZbtuyqPuegrXmh/IomqaRZxnjYQ8vqPPcGZ+vXekxTktcU853/8sNnyc3F0FWlEU1l7U4Wv8nRcV3bo7YD/N59fTanQEvnmkraK6nFoODbp/RsI/r12m1mseOYVk2zaZNs9lCq+V881qXfphiUiF1E6EZbLZsGq4+PS/gOe48iQBTv/GpedZ0121ZFmmccrbTxHMV9PbeHnIp1X82hyZaZVGgCUmUZOzsh1w4ucpSZ2GKzDp8f5yXc4va2eeVZYkoS4ZhwqKnZPeDqatjkuUIKah5LsVBDLZ1TEu9FBLH1OeJY6Y04E8l3TsCLGNCkqv5g23bOI5NWKWcWgloN3XG4zFZlqHrOr3RhElacHK1w3oqubJXUmUl9swuV0g22h6GruO5FnlesjdO2R6lczmTE02PZzZaHMQVk6RgoW6y6Oks1axDZn0vZpyWLPhqE+I4DvvDGFmVPHWihhAujcCl7lqkmbIVAOjFFbauY01334am0fRMxmlJP8oQoqI+ZaJ7roVlGEpbzI0ROPiWalsjBYPhmCgXDJ0MWwR4ns+wrDgIc0ZJiedYrLd9AvUAzC1/4TizfU5IvGe2YujTakUDUzf4+R/7PO3Gp9NKetjW1vebhDx8hhLJfQvDtG00Go344he/CMDW1tYn8lmv3B7yP766NV9LZsmklwh++0+u8ff/yhMPfJ+Uklu3bnHlyhUef/xxNjY2PtTnHU0kSZbz77/1Brd3uvMb/ygbeBZ135vqZ8ljvBDHsnAdJXqnIQjDCYudzvzm+6FzC7y5NWaUluganO34/PCFVaI4njN/PddD0yBOi/n3emcvZnuUUHcMTNuaigoWvHxryE8+tsQkShgNR8TRmLXVNer1+pyEN4tKSCopWah5nAA+f6rF1YOIOK/QpWTJgyUjZutuSL0WUA9qZFmOZR1Wc2tNlxu9mEFUKKFJx6U3jPBsg+VADegt08B3bYSAOEuxLYtSgIEgK8Gcnk8JTOIMUeScWO7QajUZjFWrq+YpyZAkK2h4FluDFBzFMi6KQs2uNObXRgh5qGdm6ASuw1rL4spByCjJ5/OcaDpjWak7NAJvaq+rAZL+RJEjPcvgzFKNW4OMSSHRZEFalNQckzOdAJnH5HlBZ2mFnbDg6n5MIXJevtHlRMNmxbEZ5jpSN2nWDNbqJit1m8BTs4CtYcJ7uxNKIbENnd2spBvmPL5a54kVD9Ook+cFnmtjGgZZXjCMU0ZpNZ0D6di2TZqm1BydcVqQFpVynJxyj6RUiD/DMEHTj6kagBIgFQKqSlL3vTkkN0kLhmWGoWustXxujzJ006Lm2KplWeqs1XUW6xpRFLF70Gc7MYiFrpBrlsPtXsjpRZ/Ti/7U8lcjz8v586QUmB9M0J1VK43A4xd+/As0a5/e7v8HieQ/c4RhyMWLF3Fdd+7VEYbhJ0YY/Pfv7GNo2jE5EU2DSsIfvb3/wERSVRXvvPMO3W6XL3zhC7RarQ/9ebP5S3eoSIbDSQQwHxRXQhDP3AylRj1Q/IIHPQh5WZLmBZPhgKIoWFlaYmmpQ5zlCCHYaCtXR+WXrrFQ9wnjQ2SW4LBNpmQmbCoJd/oxrqkr4iFqV1l3TIaxsoe1ipAsTVhcWgHDmic5x7aQaLx+d8TV3TGGZVMz+1xYrXNqwWez7ZEWAsvQsKYyG4YO4/GE/f6QPEsJfBfD9rEdC9/1+PzJFpf2QvqZJElTVuoOj6wESgEXRawbT6uYwLOREhbqHqc7Nd7bGYNUBMBJnBBnJU+st1hfWiSM1e+W93BWzi03GGYQlgK7VFIwUV6yENhze9lZ2JYJUiUoDXik43G1K5kUqj1oonF+yePcamvKEdGI8pLLexG9KEdISd01OdcJ+Nx6g1u9kLzUOLtcZ7PtMRn06A+GrK2tcn1Ycruf43k+lqiIM5M7UcXJWsGKlgEGDSugZvg0pygo0zS40VX310x/DJQFwe1BysZicMg3OtLmsU0T23EwNIlrm6RZhqEbKASGapceVtUanmMRJYqFbWkGSanR8F2Ykj6jrMAxdTpNf96C6oY5dwYpYaZmeYs1i7atEeYVaZZjWRar7RrnFj1MrULTWsQHEVkyoelIhCgo44RKM7m2V9Jy9SPoRQUOaNV8SiEf+OzMolUL+Ks/8UUawSdjXvd+8YNE8p8x9vb2ePPNN9nc3OTRRx+dVypH4b8fFxpXTglp9x5HA6oHDKLSNOXixYsADzXo13Wd27s9/vk33qM7UZaqC4F9XJzQ0Kl5DppmzO1wH/jdy4pRv0ucFVSGwzv7MeZwj8WazfmVJpZhkBUFtqUQRmGczJnQ97azhJQYhs5ud0JRlniOjWlZSCkoS8UAr6SkNxiwYMup3MnRW0bt6P/sWp/tUYY/1Sw6SATDG0O+fLbFUs051s+fDZGDWp2gVmdrEPPazphRMkIKwUpg8NSqzwvrdeJSA03Hs/X54P1o1AOX/jiiEuBYOucWlXz83WHGOIwQVcWzpzo8udEkPiICGOcl26OMMC3xbJ3VhsPzm03evNMnLiSWZXG2HXCmbc8TK4BhGlw/CDmYZBi6mhutNhwWA4t+VCCBlm+x1qrN3QXjLOf1u2P6UU7gmFiaxiAqeFckPLum8+y6GvBKKenu7RLHMWdOn0IYFvt3D6j5DrYmwTDwLINBXBBpFo+dWSNNEuI4JhwPeH1vF8/zqQyHpBAs1H1MXfmZSCFp+jaTtGQQpg8EDhiaxNMFg1xikOM4Npqm05sk1ByT5lT0UUpJUsE7twcMooIsFiw2gUqyO1SCk0UlQdN5dLWBZ+kkGfSjgnd2lQyMb+nTzUvKZqfOY22DrLQxddUSM3Qlae85NpMipha4ND2bsiypyoq8yOlFOVdv77Bat/A8H9/3MHQFAw40YwpQcabunPl8ttZu1PirP/4F6v6nm0Tg4YbtURSxsPDxOSx/3vGZSiRXrlzh5s2bD4TRHrXD/ShijA+KH32kw//7O3cVWmm2YkvQNfjKo51jrx0Oh1y8eJFOp/NQxEcpJa9e3ea/++ol9uND4tVaw+FHH+3MF1nL0EnzkrxQCriBp5A3yqJ2iqjJMob9LlIzKL0237xyQCEKdF3NDN7dnvAjj3Zo+i4SNdjGsoiz7L4komsavu8wiVIC16TmmEzSHJNDj/ekVPIjNUtnZXXpmNzJLPYnGfthTitw0KUAKkwLhknJzUHO2eWmYivnJY25Yqv6HrvjlFfujCkriec6VJVkN5VU+yVnw100BPUgQPc9DNOet8CklFi2zdcv7bIzUjLzDc/kkaXp4h/3yFvw6Jkz1F0HqUliodp4gzjn1TsjNVDWNISErXHJEyuCL59tE+cVhq7hWSp5+Z5qnWRFxdcv77M/ydCnUPU7g5RTCx5Pnqiz1nTRdR3XMhnN1Zclg7RiUmgsN32qSl3Hmu+yO4i4M9Bo+U2kFOzt7VMUBevr60g0euOErKgILBPLUlDpoizwbIMwKymFxPd9VpcXGYcJrSnQoTuKiMKcKovxHQvLsglqPlkh0I2KB03zJBJNajy5scB3rh/QC0sMvaASEtvUubDRotOsTblAOa/e6pIUFZQ5WSXZjyoWfAvb1IhzQWAbnFwMWPR1kizH0HV6qQTNZDE47ATUPIftfsiy37iv8iurikmcUFUluqarc+s4lFalOCTCZGXZp2kJ4jhiMkyZxClurljrvu8TJYfVimObLLcb/NwPPUfgfTRux8PGwxISf1CRfIy4fv06Ozs7fPnLX37giZwlj08ikfzw+UV+5JFFvn61p25qqQa/jg6/8pWz89fNhCAfeeQRTp069ZErobKq+PfffJ1/9s0bbMcatq7K70oo6e8/vdzlLz65QuA5pHlxpHUg5+0nKRVJL88SBgf72H6AGzT50zd3KYRSYLUsi1IItkYpV7opT62qmUwsFaDeNEz8KXImzjIMXccwjHmrx9A0Hlut8d1bI0ZpoYa4RUklNU43dU6eWMZ3lcJumpfH2PFRAVJq0ySiQkPDMXR2hxGTWF3LRs1Hk8oDPZ7OfK4eRBRTmRQAwzVxipJBWuKur7DgGUp+ZDQhS1ULzHU9glqdr767y/4kw7MNDF2jG+YM45zTXs5S3eWJk5uqBThtq2iA59i8uhUR5VKJKuo6umHQnSS8u1vRqdlzKXZ1FVQbsB64vLc9pBsVLDUDdCRlWZIWFbcHyodlreUrt8R75M/HcUaZ51RTr3HHcZBCYpsGo7REiIrd3V2khPX1E+i6Es400xKkmKoXHEHs6Qa+rTgTvm0zidKpW6ODbTu0Wi1GDNkdJRSVoCwTJmFIInRWGi5N38J3XSohuN2dcHeYMk4KGjWPZU/n2Y0G+5NMiS1aOss1Rw3Oo4Sa53DlYEKBTsMSJJWgtdCgqCDMBc+v1Kk5Fq6lqmIpKoSm5o8HowgdEFIN2k3DoCiU3lVcVCxwf5VkGQbLDZfLu2NsQ87tkbMKaoHL+kIdTZSsLi+yP4y4NtgiSkD2htT0HqsNi2bNx/N8ltp1/ou/8JxSifhzCEXgfLjW1vebOyJ8hhLJqVOnOHHixPv6Gs/scD+JOYmua/w//tqz/A/fvcsfvLZDlJc8vx7w+WDI2U6AEIJLly6xvb390EKQYZzyB199mWvbPW71E3QpMU3l92DpOnpRsTVMyKWBdp8Q3fHodnsMBn0WFpdoNRvcHGRkUle75mluM3UNx7F5d2vAY0su2hFkVnXE+MqzLXRDnwIMxHxYfmbRx9A0ruxHyobX0Di76PLUyUVAO0LeUnMR2zJBgEGMEBVC6nMdKVDtw4atBreeax/zSDF0Hdu2iEoN11a3oGWpIbc5Ra0p+RiHRqNJo6F27VmWUWQpr125w/bEoOmamIaS1TA1nf1RTN9y+PKZk9Pfe/h9JNAdx+wNQ3xLGSfNQBB1x2SSlQzjgs4RmLOyK1ZOk/uTDB2lXyZQlWwj8MgmGeE0dxyVk5+FPZ0LSSFxXGcu81OUFct1n2HvAM+2aS4soOk6udQYjhJcU7V5BnFBy1Oe9nkpCLOSR5YDfNtW1sCBSz/Mub4/JikqAttgo+1RCohKjaLMqahoWJIFI+PK1eu4rkMsHW6MlbaaZzt0Rwl7Q8EjSwFnO/ejmOq+yzCMGYYZRZIQI6jXazi2g28Y7I9jcqETeDZZXqBp+nwuBxLb0BinJZ6poWsGSaJmUYZh0Ao8ap7aYMzasBKdQkiWA5NeYNOPiilIS2IZOqebNoiCmu8RZyVXezkHqUbdt9B1l3FRoeXg5AW6GHHCbXPj2tUHOhJ+GjHbFH7URPID+O/HjPdLIEfjk1TotU2d/+bFk/w3LypZgNFoxCuvvHKfMdbDXNSd7oD/+avfJUxSZVkqwZiS/kRVQVWhSdAMi3FacGrRU4PPe+YzQkjGwz7jScjK6hqO41BWFaMwQZYFmgHG1IxIM3TSOKFEIVPUYPt4BVWbonpErj5HSIljm7i2RVkKNtuSupYQRZLFxUU870G/XSPLS2zTJExSTrQ9mgcZUV4SWIqRkpUCISXnlmrYtnkfB6YSyvnQkBVxUdIM6kp6w9Dnwpz3+qQ4toVr22SuR5BZGNEIDUGaKMayrhtKx0pzpoid+6vH2dk1TZOqqubKvJqmYVj2vOqaybY0Am+aALVj7we1oCl2uFLlNQ0dz7bIy+qYg+Vy3aHmxoSlRpVkylwqKxVzJ+5T2R6dxQ65gEu7CfuTlDwrcC2dlYaDlErMU0iJaehstnweX2vNwQJ3+xFv7UzICoFt2+xFFZ5Z8PypNmGckhY2rqWzGNhY0/MbRRHv3hkrC18nJy+UknOlW+yGFWeXDRCH/jD1wJ1vBNIkpqwki+062pT0KIpi6qxp4FhqkzFDBKpkIlhtOAzinFIzSNIYIWGcVtQdE0cX84F8LnRu9hO6YUZZFCzVHc52fFbqFZOpC+aCb9HyrTnE91Y/YW8Y4RuChmfjuA5lKTiYxHTWNvg//Zc/TJ4mc5vbd999l3q9zuLi4gf6p3+ceNhEEobhDyqSTzs+rEviw8RMXfib3/wmjUbjIxtjzeLdG1v80X96nUqohFd3TAwNjklC6RqiAl1WWFRzXkTgu4q8lmRkec6o3yPJC06sb2AeEb/r1GwMXaMUEl1UgEmRpRRC4+RiQM1z5jLqoBa9Zs2bo4iSouLdnQm3BmoQf6Lp8thqDS0dI8qCs6dPUlbcZ5I1O5YiEKpj2brGsyc8Xr09YpxUaIaBbZpcWKtxfuUoC/3e0Di14PH2vsYojHEtnUpIolyyUPc5s1Sb+454U7jzzGvEMVXP3LItQCPLMgxDo5IaeTyhu5dTqwUYlo1lO/NFInAMOnWPnWE8b6cBTNJC8Tn0ikpoh8rDc1VajZWGy0GYU1YCc1pllNJAlyVt3yTJChLUb7Usg1IoQl/g6nzhTIeLt/qMUwWbtXVoGQkbCw0WFxcoheT17Yi9QUTNNam7JrnU2JqUPLUaYOlQlGqRXKw7ZFPPjkoILu8rK+WF4MjvKSSXdsb86IVlxNTueBamaWJ5AbpTseJryKqgKArlZS9iEqFz0y05tdykHvhYptJjE0Kwu7PLoqtxUDgUAmxjqgWXC+qOQWBp88pXSEFcKkRWVSllgKc2F7m6OyItK3Q0Go7BI8seOgIhNKJc8PZezCTJ8SwdwzDZDisKmfPEss9a87BaPGpcNYwLTENDFuqczNwqg6DOhQuP4zk2nmPTbDY5e/YsWZbR6/Xo9Xrcvn0bXdfnSWVhYeFDbWq/V8w2vD8QbfwMxqdlhwuKZCiEYH19nXPnzn3kHYoQgq9ffI+X37mGPrWnBdC1nNMLLpcPErJSYFtK9iEvK84s+rSmC5qUco61T9OU8aCvhqknTtynN7Rcd9hse1zvJZS5oBA5eSlwLJ3HOmqhsS2FeinKCtPQpnBZjaISfO1Kj4MwxzaUQOO1g4itYczzSzqn11fISzlnDxu6kjEpSjFXiN3uhwzjAsvQpsgll5983GZvnFEKwYl2DddQcwDLtSnLmUfKkWG/Dk9ttgnzLnf6JYO4QEej7pk8s6bcBw1dtY/KSpAd4ausNBxqjkF3HONoFbVaQImBIXOe3Fgi8CCKY6LeANPQaNRrOK5Lo17n7KLLMMroRbli3QuJaxk8tlLD1HXMqaT9cJJQCkFRKYb8o2sW3TBjbzydK1k2sko5veAfW8R7Uc6lvZBRUqDrOgs1h2fWm/zUU2vsDmNGk5B01Ge5s0Cz2ZyioHT2hxEt35rzMTzUAnmrG/FjF5anMGt5rEIaJUr+XSkFKACA67pkZUw/zNgbhASO8v446sroOcq2oKgqPMuaL5xZUVLGOVkac/3GgFY9AMPCdV2l7By4bG4u8dqdAQeTnIkoMU0D3zJ4dMmfw7uVS2TIzjidS/bXfY8LqwE/+tgqB+MYXYOmayrXd6kUpXtxySjK5oRIAEtXaLClwODcsjKd0oHxEZtde8roR8r5HdZuNrGXNmkEx2ciW8OUawcRpbBZXz7Dlx9/gmgyptfrcfPmTd555x0ajcY8sdRqtYeqVmaD9o/yXinlD2YkHzc+rLnVJ51IpJRcvXqVmzdvAnD27NmPfOOkecG/+car3NjaBw4F5VRovHS2jRSCrUgjywt0HR5ZDnjp7P0wvziO6Pe6BLUGQaNFUVY4to1rm3MnQk2Dn376BH/65m1uDTOkBicXPB5fq7NSVw9OUVYIkeFYJlGaU/MdQOPNOwN6UU7dNRSXRgh0NMKsYkQNXTfm5yU6wrUIPBdd1/jWtR7vbQ/JhUK5NVyTL5xq06nZbLY9JUsfJ0g59W6fViTm1H1xkBSEcUYrsBFZwXMbDc51fEaJYpd3agpyK6XE91wGkwim4N9giqAys5xNvyRJBML0mOQSSyt5dKXGqQVfQT/9gE5HsjeMefdgTCUy9HKX052A59Y8dkIlC+/bBustl7ZvY1sGM/2vG92Y692YtFAJ7UTT5akTDU53JKNUkBc5nSBgqWbPocmTrOTinRFxXtHwbZCSnUHMJM548UwbLU/Q4iHnT6/j+zWSLKNZ87h1uw9wH6nPNnXivEJoci6xcpSZPUrL+fUBlC9Nlk2/z2E1WYlD3oxrmziazvpCjWv7E0xdzP1golzQafo8cqpJzXU46A/Y6U+4szUiLMBzKjaiA5460abSTMZJSVWVSuHXONx5b48ytkYpdcfAMnQs22YwiXnzdsYXTrdZqtl4ro2h6XNSq+dY9LcnSmFA06ZdXpUYpFROonGqREZHSYZjm9iWhRSCTi1nZ5SRquEV7VaTpY2zaLrO+aXD9uyfXevzHy51GaclGgop+dxGg59/dpV2u8358+dJ03Rerdy6dQvDMI5VKx+2S/Ew0F/4wYzkzyXezyXxYaMsS9544w3CMOQLX/gC3/rWtz4yZK8/DvmDP3mZ/jh8n1dIiqLgmSWDF88vkkmdhcDBMTXlVz17lYRwMqLfH9BZWjpW3uZFQT4z+9F1GoFLXlQ8vuyxZER4nkUQ2Pj+4Y3r2CZSMm9rzBBa3TBFMwxcxyFNU8pyKvRomexP7teTAuUolxclb2+PeHNrhGuZdFybSkiGYcK3bw74qcc7dBq1I0zu4zFOCv708gHdeOaEZ/LoSp3HllwarnUPt0FO5xOqippkJdcPIvbGGboOdTJONk3+6xfPcxCWTJKElmsROMdv5xu9mLe2JgjdoipzpHQZHVQ82opolCmrrkOtFqDrFc7Ula+sKm71Et7anqBrGp5lUAjJ9W5MVgp+/InV6bm05jpWRVmRpBlbw4QoK1lpKg90IRU6rB/lXN3pUxcRq6sraIZNkuXUfeWPsdjw0HZDSiGP+bxkpWCt5VOVYj6EPpoUarZOO3CZ5IIF1ySd+p+HWclS3cZ3ji9krmMzSTIMDdYbBoPQYBCX6EIt2U3P4vHVGg3fI0wy4krn3YOMUpoEnk2al7yzE7LXG/HUmo9pudR9j1bgKi2sKaJvd5xiaGqhtm2bPM+pOSa9KKcf5tQdUxFwZ9faV170Dd+jF6n7kan6iZRKstHUwbHMuRHYnV5EPy6m59jm/Eqdd24nVGaAu3wS0zT4iQsdNtuKL7I1TPkPl7romsaFZYUkjLKSl2+POLXo8aXTSkncdV3W19dZX19HCMFwOKTX63H9+nXefvttms0mnU6HxcVFfN9/303nwyC24AeorT+XmA1JP4mIooiLFy/iOA4vvvjivLyvqupD90hvbO3z1Vff+UB1UQ2Nuu/R6/XpLJv4gKwK0krJwLu2RVGWbO9sE4Yxq2sncJwHI0o0VItiMI6RUlCr12m16qRJQr8/5OCgi+M4LLabVKWDYaqWx9GwDJ2qrEhiReSzLRvLscmiHNu8/6HwXXsOTb7ejdEB19Copomt4ZqEBQxzDT/N7vs8UIvBy7cG7EcCz5Q4tkZaFFy81aUqGnzuZBvLMilKQZ7neK4777WHWck3r/UZpSWWDmmWsY+OEQSs5iUNG9quP9+lz4a8cV7y7k6IaVm4hkCzbYSU9OOCofR59tQqaZoQRTGiCOke7NOo17Acj2v7E7RptaXOmYJI91LBne6Etq/EBI9WXJZpkAsddwqtlVM4tKZBVZb0RikXLqzhOIo06brW/Df6BrQ9k0EqaHomSMEkzrAtm7WGdcRaF0ASZhV5pfgaZxdd3tuP2RmEmIYJuk6r5vLosj+vlCSSbiy4fH2XJK+wTZ3NtsezGw2GcTH/21LNpV33kEhkVfLWzT0qTNYWAnUszyEtKyoMMk2jzFL6gwE7Oxq+r2C27VYDw7SxTbBMa65SPIt7Cb81z2UYJUgJbVfjjqGRS4Oaa05NyBSR82SnrtSakVzei7gzzOa2xXcGKUs1i+dXXf7yX/ohbNvk9IJ/zI7hWjdmkpY8unxILQgcE9soeGt7Mk8kR0PXdRYWlNHbI488QpIk82rl+vXrWJY1TyrtdvtY4ngYDkme5xRF8YNE8nHiz7O1dXBwwOuvv87GxgaPPvro/IJ/WHixlJJX37vBV195Z97fPfRMr6btJw3TNDENncEwfqB0c1GWxEnCaNAjLyoefeQcpql8qY+KPEqp2iaDpIJexFrTUSgwTaMSGpbjs7LmYRkGZZHRHwzZ3t3DNC2CwMf3A1xXDfLXWy7v7oyVA5+rRCLDOEVWgrNLTeqBCxLiNMN3nTmBUEglRW8Zxx8OwzCgKOmPI5a9Gp7rYBk6eXGIXupGOYMUAlPOxRED20Bkkhu9mEeWaxh5iWnouI6yo50hzK53I0ZpScPRSdOEhmthewG3eyHrDWXde3SXPrPpPYgrCgzqeoU2peGpCkNnd5Ty9HoDz/NZXlxgEifkeUEcR3QP+gzDEsexKKupZ7tl4rsWB+OEKK9oP6DzUFYC3zZJswmBqeYOGhrjyYSirFhZa+M4auduW8aRHblqaX1uo8G7uyHdUC2QzXrAI0tKTypOlIR/WlS8vTPhIMyphMQ1Dc6t1HlmLWB/omTia47JasMhcCzl9a5pXDuI+O7NLjrgmAZJXvH29oS8FHO7ZF3X5zv+NE3Z2t6hMj0W6z62pVFM53T1KZlSGA1OdFpzM6s4jhgM+uzv7yMqm0lqYusCz1OyKXGi9LWa3uEmTTNMvnO9y/5EXbtOzWaj6bI7TtmNleBiK3B5aqNJ3bVIsoxBWLI1VsN419KRUkHNY83nxEaDL55uqTnKPYu4EtC8f40xp7DqBz3jQh5vN3qex8bGBhsbG1RVNa9Wrly5QpqmtNvteRusLMuH4pAAPyAkftrxcVtbUkpu3rzJ1atXefLJJzlx4sR9x/9eiaSsKv7Dt9/krWt35n+7173NMk0C11F8iCR9X9OuNM0Y9btgmKydOEGal5Ar2OXMvS1Kcr5xo8f1/ZCiqlSF45r8hXMLLNWPDxJdx2ZSVbQXl+gsLyPLkvFkwv7+HlJK5WkvKs424HZoMMkEaAJL13hkOWCzNVPiVUJ7lRDUA48sV33spmexN87wpmZVumFQVhVSVDSmA98kzZmNQZWWmEE3UVL3QXC80pup1+aVoOU6SHFc/0nToJcqgEKWxViWTb1WI89zKgGDuGCtea9cjUZZVeRFSVnkmJ4SFpRSKjXgqWS+FIJ6o8Zk2oqbufjVGy2uRgfEWUGe50gh0HMDTCXK6BgPrriaNY/FOMc1dUZJSVBJkjgmzCsWW3UeW+/gO4q3kmQFk7SkGylWftu3aPsWL5xsEmUVjmtDqRJrNIUM+47NazsDJUVj6QS2SVZJ3rw74Mm1Oo8s1+77TmGS4bkO72z1sU3lXy+qSm1g8oo7g4RTCx4118I0FAs9SWJ2d/dYXGiz3a3IsgybQzXgsqrQdW2+wGqahud5WI6D7jVACtplzuD2kK1ejGVMMAwDTTc4t9rk5FKdqpKUleDrl/fpx0qcE+BWP6HpmTyz3iSrBKaus9R0EVNItaEbindlWASuIjpqGpxYXiQxanRLqVqK003YLKHous5G28M2NMKsnJNOKyGZZCU/snxYjZRC8t1bQ16+NWKcFmy0XF48054n3FkcnZ2Amm3MqpVr166p36xp9Ho9Wq3Wh0oqYaja4z+YkXzM+DAuiQ9bkVRVxdtvv02v1+OLX/wizeb9Tmjfy243SlL+5z99he2D/gd+lutYU5kMhX6q+R6OZWDo+pyjEEfToXq9SavVukdb69C97e3dmMt7IZ5tKRhskTNOC75+rc9ffnoFy1DKq45jHyPhVZUEzaDWaFFvthBlQXd/j7SoWLIqOksOE2Fj2TZrzRnySJt7xM/aLrPv4zo2nzu1yFcvHTBMcuq+S5IVpHnJSsNh9b4FHYqqxMZEVjmWqSN0A9tQboFSKqc9zzJoBq7SURLHr72UUCQJUZSxUHMJAh+JhmGaSJnfN5xW515pMjVcA9c0mCQ5gS2mvwJyDM4verRq/jEE1CwMXeP0os/bOxMM28U2IUlzxlFG3axIB3uMyxqO66GbJkmpUWCwOx6yVLd5er3BuztjuqMINOg0azyxVsMzVQVaCcl2WPLO9oQozZFSDbtPLXg8sVpjrV1jHKdK2XIaQkju9CZs9ybUbJ2a76EhsYUgLwpu9xNOTQmlh+dOwbS3ehPSUuJbkE/JkLqu0wws+nFBXql/p7nil+zv79HpLFGv1zlRRLy3F+KYgrrvEicJ47TEtww2FgKCKSz76v6YqwexMsPSNGq2zlMnl5mkBXujGFGW1PQcK9zn2vUJS4tt7o5LJoXGaiugKgukBM9SrcdBkvPIch1zKhs0i0oIkjSjLHKEbU9bS4sEvk88KVg7sY5t21RVhRCCcZJzeT8myiuW6w5Pr9V49e4Y21TPTJhVnOv4vHCyNf+Mf//uAf/xUhdTV6rcr29NuHoQ89c+f4In196/5eT7Pr7vs7m5SVVVXL16lW63y6VLl8jz/Fi14nkP1vmaQX8/CauMP+/4TCWS7xWmac5JZB8l0jTl1VdfRdd1Xnrppff1Uf6gRLXXG/Gvvv4KZSUIXJcoy+4jEIIisd3tTtgaJWjARsvD1iVJpvzJPcdm2B/Q73VpL3beFzMupaTme7x1dwsdgS5LRKWqHcvSCfOKrWHKo6uKGHa0VXJvxHHMZDjAsFw21xbVA5okDEcjxpM+sZhAFtBs1HB8/0ibaBZqHtB2NF7YqHG1r5KZYZqcazo8vd44xmoHxV53LJMwTunUbJZqNtujFN82lJig1EC3eHKzNe2j35sUJL1ej7qeMbJsDNtRr5MQ5iW+Y3JupUngmSSpIgbOZNSllNQdk/PLPu/tqqGsoandZtOzeGy1Tjj1ezFMgyTLudsLySo5lXL3kbrJtf0xcaRQW5udGs+caGDrgiiKOegPuNYvGFRTBxQpaXo2T60FnPNTMs9S/fXApua55IXSrhrEOa/dHIAGbc/AtFyyCm70UtbaAbr+4HlbWghKIRWkuyjmMxjftlSCtixkVSGmbPKZWZht6Op8CzH3C5FCEOUlutQwp6rMWZKzs39Aajbo9Uvs8Zilms1aw2aQw3Z/AppGYBs8vlajqirGcUU/ynl3LwLNoB04ZLmCVmel4MUzbR5dqc+vZ57naKJid/+AG72cMNexhUoIrqvaflYhmaQVxj1JJCsrKiFpesosLSsFa6sLBL6nJPgbbZ7dVHMKwzC4ehDxP7y8zdZQ1cemrvHIks/PPL7AjV5KUUkePRfw+VPtOQS/G+Z8+8aApmcqyXxgqWZzvRvztat9Hl+t3XefPygMw8DzPBqNBk899dS8Wjk4OODKlSt4njdPKq1Wa544wjD8VP3aAf7RP/pH/MZv/Aa7u7s8++yz/PZv//bcpuPjxPdVIjEMgzT9YNvMe2MwGHDx4kWWl5d54oknPjDbv18iuXRzmz/8T6/NCXEwtb/1XDSN+ULmOTZ/+t4ur90ZzU2NTEPncxt16lKV3dvb20yimJWVVeq12nzYnhzVaNI06p5Ld6y0qGY7TQ21CIBAlBVC07EtZUlbVdWhA9+RuL0/4Mp+RFxptGsa56yMtaaLabt0llxWVzXKPGMymbC9vYOQEt8PCAIfz/OOCTVKKXlqY4GNdkycK2l411I6XrqmYLNlpVpRcIgY09D4wqkWr90dsTvOyEuBbWg8d3KRjbp5KKdfVfNd+v7+PlmW84ULmzg7MTe70bxicUydx1dqmFRESYWmabTrPkUpCPOSqhLUXZMLKzWansXWMCUrBZ2aw/nlOroSOSHOcsajgldujxilFWgGhq4Imk+vBmw0FggzNYhueYfAhVbLZlDZDAkxtQIHQV5V9CaC7yQpz69YnFxdRteNY8kNYG+SkVWCRV+ZYZVliYFqE97uRZy5sEwl5HwuMgvPUrIySV5gH2mvJUWJZ0nyosDUlZugYpZP4b6WwUrd4WY/xtQ1bEOp88alZKVm4VsaO/sHbO332S484kpgWzpVlXN3kPDMyQVOGZJJqmyYOzUb9wg59u4wISslnUBDlDmWobPSDOhFBb2oZL01g5NDp91iHMWsr28wMcaMdycKKh+GhGGIZVnklYHb9nAs1W7rhymX90L2xhmVkAS2GsRbtUX6lcNgXNFotnh2s8lzJ1WXIS0q/qdXt9mb5JxfrmNM1QTe3otZb3n8H760fqTzoXTTdF1nZ5QySkseWTreWloMLHZGKeOknCedtKh4dzdkb5Lj2wZPrNaODfdnqC1N0wiCgCAIOHnyJGVZMhgM6Ha7vPPOO1RVRbvd5pVXXqFWq32qba1/8S/+Bb/6q7/K7/zO7/ClL32J3/qt3+JnfuZnuHTpEsvLyx/r2J+pRPJhWlsfZUZy584d3nvvPS5cuMDm5ub3zPT3eqtLKfmz1y/xrTev3PdaxbNQSc0yTTzb4mYv5tU7Y5ASd6rqm5eCV++MeaohaXf3SfKK9fV1DMM4Bus1DQPPsRFSICRM4gRLV54gg7jgKLK1EBLTsvDNQ1jvbMhs6LryLMlyLt3t8epOqmClhs6wG3NnkPL5k815T72sJEGtjm46tBY6SFEShhHdbpdeXDGqLKRustL0efrkIuM4Rdd0ao5+5DwcfodGoJLPMEq5O4gxdJ2lmo1rGbx4ZoEwK8kqwWoroJjOlI76rgshuL59QFrC+vIajm3z3LrBetOhH6l21krdmQ9tpZQ0Apf3tvq8vTNhlKhKqVNzeeZEjZW6IkxapomuMf8cUKzsV2+P6IU5Dc9E1wSaaXHjYILvmHzxVJt6lqk24ZEwDI27wxxNiik/B+yygjgmyjV2JwJR3qHdbJAlDoZlY5ozVOCUNHfE5dIwTGQSk+Ta3GdFOTIqjkqS5awv1Fg8iNkepQS2gWVo8yrl1KJ3uNnQ4NL2gDv9mLiEhZrDWjsgKyu6oSIR2pZFx7d4bDVgOBwyHA5JrAZhlLMQGOiaRBoaubS5tBfyk48ts9qsKB4wlM4qDcvQDlvCUlKWBWWZM0ktHCvAtkwMQ2M4SVRylJLVhsfdYYYAGp5SRg6zClEVJINd3isHuJ7P5YGgn0oCx8aWFeO0YGl1lc+fbCIkrG1s8uhKXYEnprO7qwcRW8OUzbY3b38Gjqoy3tiJ+EvPrmHr2rwFJuU0mUjlGz+zLp6tF3ml9L1msj3DuOCfvbzF5f1oLvraqdn818+vzdtf7wf/NU2TpaUllpaW5gTE3d1dfvd3f5c33niDIAj4tV/7NX7u536Ol1566RNh2c/iN3/zN/lbf+tv8Tf+xt8A4Hd+53f4N//m3/BP/sk/4dd+7dc+1rE/U4nke8WHhf8KIXjvvffY2dnhhRde+ND6/kcrkiwv+KNvvs6V2zsf+B7ftcnykjBOeP1Wl6qqCDwbTTeQosKWkjgXdEuH01Jjff3EAxNaWVXkpZKTKMsKz7HRNXh6vck3rnXnO+NKCCrdZDXQ77EE1uaDaikFw0Gfd7s5QjdpOIeouCgreWNrzKkFH8vQjku7SwADv9YgDnWu9iLyqqIsc24PC97dHvLiyRpLrTr2VJ7kaNSmznSX90Pe2ZmQVWqnXXMMnl712Wh5NDwTz3Ee6EE/ilK+dmmXsNAwHZdLwy5rTZ8ffrTDRtuaky0PfzHUAo/b3Qkv3xqSFAoSK5Hc7U8Yhgk/8dgyy01PSXncA9PuRzmDuKDuKhkb23EocjUwv7435lzbwTY11QIzVIIWQiDRiFLlXw7KUz5JEjzXQRQazXad8yca7HX7TIYj8iyj5nv4gY9vTX1vhFqcdF2nKHKKSrJ4BIwghKQ/TtgPMyzLou5UfPn8Eq/dHnK3H5KVqjJ7rFPj9IKPriu+z3vbI97cGlMIgW3oDKKU2wc6z2w0eXpzgbQQChzh6gwHAyaTCSura1y9OcGzDNS6q6nrm+f044Lb3TGbbXfOmynLiiTLcB0H39LYK0qkbc/vBqHWVjzbIM0LbNtkbxByq5+yH5ZUSBZdg822x/YwZZAU6JqB45g8ttZgvWGTJDHb/ZC73RzPhFLamKbJk+dPsZ+b9FL4v/6vv/RAguDMfti6BxhhGzp5WZGXEsc15t2JrCgJk4L1ts9G0+XWIOFU28WcJutemPOTjy3NLR/++FKXd3dCzix6ilUvJbcGCX/w+h5nFn182/hQhERN06jVapw/f56vfe1r/NN/+k/57d/+bfb39/nFX/xFkiTh7bff/tBOrB8UeZ7zyiuv8Ou//uvzv+m6zk/+5E/yzW9+82Mf//sqkXyYYXue51y8eJGyLHnppZfed7D1fscXQjCcRPzBV1+mOwynu3yNJC/vq4YUiztjxiKO80oplFYVcvY9NQ0MQ7UzFhfftyoKPJc4yahEhZRKvlzTNE4vuujmCm9uTRjFGbbtsNEwee5k84FmT1VVMuh1GaYVSSlxTSVoaJjK2c8XkjCv6IYZF06071PJBcXdeGt7PCd7IU0qYJRUXO6mZOHwGLTYcRxadZ9xlLA9ynj97hgNqNsGEsE4KvjurYITC3WavvVA3k2apnzj0g7jQqfTrKPJkrzSuN0L+calii+fbePYin1elhVZXuI6NmGccqsfE+cVbd+an1/bsBjEBdtTqOiMc+B7h224vBRUUi04lm3PPeJNQyMvFRjAnppTgQJRGLqBZRkst3xuHkwwqcjSDM/zkLqBVhSstutkpaDVatFqtRCiIo4TJlGMjCIC3aQfSVzTRNMEWamIi5tHcMV7k4w37o5IhUFRZFiGzkbL45n1Bo+u+KAZ+LYCLuiajmUZjOOUK/shAnmfO+LlvQnnVhq4eo7EYDIaUhUZZ06dIj8GctCwLAXqOB5HeTMSzbQoK8G5lTo7o5RhXFBzTJWws5KGa7HScGgELoNJzMU7I/bGGY6pdvpXJxWLdY+XHl0izgRZntNwzUN/HqvJoLRwJ2PqtkZRltTrdQTg6oJQ2sRpRqN2/xK23nKpu6qSXwgOPWx6Uc7jqzVqU6KmkJJvXR/w1Ss9BrFqUZ3reOQSbg9TpFQE0afWAn7oTJ2iKMgqyetbYxYCa16h6JrGZtPl5kDJrzy93ngouwshBBsbG/zu7/4uQghef/111tfXP9Ix3i+6XbXJXVlZOfb3lZUV3nvvvY99/M9UIvlerafv1doaj8e8+uqrtFotXnjhhY98IQ3D4O5en4vfenc+s5j1mqUEz7WxDIO0KHAt8x5kEyzVHXZGKcoFRO3MqqpCExDoFaBNNbi0qWS2mLZmfMZRPGfyHjeh0jjZtDnT7pBVys+k5j1YvyrPM0b9HugmS0sL6PsHMD1mOW2hCcAwTeqBT5o/eEC/O87ISkG77qqkONUwcnRBP9P4yhPn0MQhtNi1TLpdC98PuNnNKIWczhTUfKThmowyweXdEY8tB8zbcIZOlhcMhmNubO8TVgaLzZpSntXUDtK31fcJswpQEGvL1HFtpUtV8xzGaYmha8fuH03TMG2b7iTmzIKqZMQ9bbilpo/vKalFOTf/gqQQ1Bxz7tcOR4mZkjQv2GhY3DkQDBJBK6iTS0GSFJxZbuKbh5yFUgi2hhndsMTQHZYX6vzQCZ33tofc7cdIDTabLmc7DpZWAQZpWfHanSElFoFZoVs2WSm42YtpeMqmFwRlIbAsE8dUvfi4kMR5RXAPoz1wDDJhsDsIaXkWBwf7ZFnG2toaAg3ftjiz3OCd7TENw5gnkTArp8rBx7XEbvQzuuMYNDUzOdfx2Y8qwqKaSpbYPL5Wp9PwmcQZ++OMgzCn5Vtz5n5gG/QmCVt9h0eWArTAw3MOPXOEYJ50dMPkwlkleaLrOolhYlQZ3/7mNwkCn6WlJRYWFphIl1Fa0vIsXjzT4j9e6k1/g8EoKWi6Jl+50Jlf5z+71udfvLKNoWm0fJMoq/iz60N+5PwCP/fkCmFWshhYnF5wMTSmtgulEu7UlTClpimu0cw9cua++rBeJDPwja7rPPfccx/p/f854zOVSL5XfFBFsrOzw1tvvcXZs2cfSi8L4MrWAa9d26Hdvp/lqmmQZjmFruPYFmleTrkWFXFSgCZ5fLXGlf2QJFey4lVVIdGUnlMgEKI6psHluw62aRKl6dy74V4nQwDXtqhEhSkEUsgp1+PoXEVy0OszGfaxvWD+/RcCxfswjekiKyVxoVRkPaOiKDVcx8Y2DPKyJMmK6edLdMtC3Je0DxdHUzdptRdYWVkhzzPCMKI3GLLXz5GVTlEo/3BFzLSQSUKYFPPjzNpwo9GIyXjI0soKVhojqwL9CKzX1DXySijSmDM7F8cVbWuOyb5RYVoWoqyoRIVl25RRhG+/n5GRhmdqbLYcLu+M1JzLMYhzlfAfWQrmc4ea7xDFGUlREefK8MnIJ5zyC8b4hHmFYWg8e3KRJ9bqaFKQ5gWlkLx8a8judHMBcHtYcGrB5nNnlnnuDBRFSRzHxHHIeNCl7nv0S5u4hJZTzc+Fa+nkpeBOP+Fcxwc0bMs85j8vhVCeN5aNqSlHRQ0Nw7Sp4gRdg729XcqyZHXtBP2kYpJF2IbOUmCxVLM5mCSYhoVAw9R1Hl0O8KeeMeO04I2diHGU4TuKDHh3kBBmJV861aIQ6v7t1BwFw64EGsxVj4/Kv2iaUnXeG6ecXVRdg9nGTAN81+GM63Cjn6LVOhRSwzVNdL+JnVb8whfWefFUg36/z82tPf77b77BrQmqleu7PHtygf/VM6u8uTVmlBZ8/lSLv3BuYT4bzEvBVy/3sHSNjamMSsO1sKOc1+6O+enHl+/jaQkhaJsmZxY9Xt+a0PIOxSW7YUHdMdloqfd81vzaO50OhmGwt7d37O97e3v3udE+THxfJZIHzUiklFy5coXbt2/z7LPPPhT6oKoEX3v1XV67usUDgE/zcKypflU6MydSC61h6HiOS+C5/NSFgm/d6NMNCwxDZ63h8sXTbUb7W8eABKahHsTBJEQI5QviWBZlWREf8bOYe4g8AIRQVsqwajweEU3GrK6s0Gg05uipF062+NqVHpOpuJ9mmHimwfMbtbkXeZoVpFP5c9sycW2T86smr94ekRTMB5hSqt7zmUUfU9exTOVMqBKChuvXWPcDTssJ7+1FSFESxzmWbZPlOVIcSo5Mrxz9fp/xeMLa2hqe72PcGJFJjYajrGXLoiQtKxxTp+aax6qCo3Gy7XG7l9Abx2oQbTsMk5Ka57D+AH7L7Lci4YllHwvBrX5CluXUbYNH1ps8dqKJrumgwWAc8/buhNt95Tooy5IFR/DiI2t4rk0hwLPV7GAmCeLYFtv9lL2opO4qhQPLUm29GwcRa3WH5bqDZVk0m02azaYiKyYxeT8hjRMSaWDbqhU3IwFmpZjOHyzKe5B6Dc+k4ejsjyPaUyVh07Y5GGcs+jbhQFWoneVVXrkzZm+SI4RE13Xqnsljyz6rdYtRUmCbOsv1GuttH9tWfJHL3YRRlLIQWPO2qmPqDOOCvUnO6UUfXdMwTINRqGC3uq5R8x1MKz8GpjFNizxOsLx7lyDJKC05CDNqjsnf/Knn+F/e7dLLdQrHpwn87JPLvHR2QQEvVlb4t9cy9qjYWNExqpz+JOY/vD6mv+/wv/38GoudNZqNxrHN5SAuGMT5MTsBUOTQ692YvUl2XyKZkRt/+slVtscF13sZgaOTFiph/vRjizQdnaIoKMvyI29mwzD81BKJbdu88MIL/PEf/zE///M/D6jE+Md//Mf8yq/8ysc+/vdVIrm3IimKgjfeeIMoinjxxRcf6iLEac6/+tp3ubPXo6wktmXQCHy1Q08P2x3+1OPjQYTFSgjCRElLyKjHT5yt0VxcJssKpusw4wNtvgAqqKsgTtP53/KiJC8qsrJib1Kg6Trr7QdxOg5DSslwMCBNItqLS2jmjJSoWkd136Xp27y3MyYTOpYuONX2jslUHI2yqpBYUJU8eaLBO3sJk1KiVcojvOGaPHmijmdbFFVFmt9bHWqcXnC52YuIMmgEDYqqJE5zbEq0qMvBQYLve4RhSJblnDq5ged5pFnB2U7Au7sTBpMY29TJSwm6wdMbTRYbvpJyeQCobzGwef5kk7d3xqSlThTG1ByTZ9YbdOruvGqL0oyDcUY/qSiqirZnstZ0eWy1ziMrNQVdNlQ7JYwzmoHHKEy43Eu53s+xDR09SykkHOQW7+4nfOmsj6Nrc4+QWeRFyfW9EZqoME0b21JtG9cyCTPV6lm+Z6EyDYOlzgKRmOAPSuWxUpZkZYlEkkiLzaaNCdPBvzoZaVmRFQLfNnhyTc1nBlGOZTuUYUjdNenoEb7jsrmxwSu3+myPUhqupTZHSPphxjs7gh99ZJHTi4ezmjQvp9W3S2+S4rkOtj3lc0k1H5AoEIehaziWdYzTJISkbmkYsmIUS9o1V9k8Z4oLc9RjJM4r3toe0w1zKik5eeo01u0u/7vPtaivnSEtJestd87xANifZLyxNWal7kyTgk+71aIxSdmOU+52x3MV306nM2+D+baBYxrTVuDhMpjkFY6hHbNcvjfOdgL+9l84xbduDLjei2l7Fs9tNnh2va44OlFEFEWYpkme53M5eU3TPpB+EMfxp+pF8qu/+qv80i/9Ep///Of54he/yG/91m8RRdEcxfVx4jOVSD7MjKSa9uxnoou+7/PlL3/5oWByB4Mxv/8nL08Va9WOI8uL+b9tSz1ouq4zCmM+6OvNmOq1RpNaQzHJLUP5hJuGMW9DBK5LnB4O1dXvBtC42Yv51o0BSVGhmxaG3OOx1To/emFlzleZcSmEqBj0u+R5ydLK6hxeOj3ivHVkIPmhR1eQQlKIiiR98FzkKIEQ4Mm1Gi3P5FY/IS10TizUeGy1Ts1ROlEPqpAA2r7Nl8+2ubyfsT+O0IDNBZ/nNps0bZ3xZMz+/gFSCpqNOlmaIaSGYRg8eaKObepcO4jISoFv65zreDy93mQSJaoNZ5kURUl/khDmFa5lUHdMTi8GnF2qszWI0DRY8C0MXZ9XbSB5c3vC9YHyVqkqxd9Yb7t88VRL+dgf4Uc0Ao9xrPgn1/bGGFJSpTmWadKu14jziq1xRpiXOA9g2MOhkLtlWWTZoWujYZi4ro1jmaR5MYUAa2qwn+R0ajarDZetYYpjGui2SZJXuLpkxZNcv3kL37Vx/YBL/ZK9ULXRHNPg7KLPi2fahAX0JwmO4SCiPoFr01roMIoSbnYjPMcm8ByklBSFGnSP05KDMOfEPVXczBrANTX2xxm+IUED07LQNNCSEs9WXuxHW46VkEo3zDN5fLXGe3sh/bikrBS0/ZGVOo+utdCAMM147e6I/UlG3TU5feYMk0zySlfn2SdXeWHlwazycVqSloKFeyqLhmcTF5LNc+c4veAxHA7nhMAkSWi325yp2Xx7O8exdOqOSVII7g4TnllvcnLhg0E6G22P/6p9/2viOObNN9/kxIkTdDqdect6tgGdJZMHJZUoiu4bhn+S8Yu/+IscHBzwd//u32V3d5fPfe5z/NEf/dEn8pmfqUTyvWI2PN/b2+Ott95ic3OTRx999KHmIZdv7/CHf/bavD0FqgwvisMFsihLHNtkHMUYhk7gqpZLmGTzEl1KmIxHDIcDOkvL9xGKZkP7sqqoew66riTeo6Q8Ng8ZpwX/6XpfGSl5DlKUZCW8vT2h4Zo8ulxTvWPPRpQVd7d2qITGyurakRtSkhRqgK/QLwreO2szwOFcRUo5b5ndSyBUobHe8lhvHT4sdcdUC4qtRAmLsiRJ82Pn39A1zi41Wa2nhFmArjH/LnlZMBhN8D2PUxtr3O2Oef3OgCxXi+eJdsDZhYDzSz55JXFMjWbgz5FlaVYQpTlvbY+51U8ppI6pwUrd4oun2+iivG+XP4v9Sc71foYmSpq2gcREoLMTVmxPCjYaSuDwXmXeOFewbL0qsExD2bgWBbZpkGSSUuh0aqr9WN1Tra7WbfqJJE2zOZ8hKwXIipohyYoSx7Jwp4vYpZ2hkpUPbJ7fbNJwTe4OEkohWW95PL25QGBK5T4Yx7x8a8TWOMe1DDzbIisq3twe4Tk2my2btu2wvb2D77ksLS1NRT7l1LZXmzPkNU3HdQyiQuPoTzjqWT+7H7ZHGZO0VAP8PGeSlnimwalODds0MTSN7iTh6kHE9jBFSEmnZnN+KeCnn1rj9sEEIT3avkXTO7Rh7kU5o0zSaQac3NykLEtWmh6x5vH1qz2+cqFzzPNkFks1m7pjMEyKY9d+mChYd6dmH1PxvXDhAnEc0+12eao64ObWkOt3JkhDJdYn11v84udPfCgG+70RxzGvvPIKKysrx9alGahmxls52lU5qgf25+GO+Cu/8iufSCvr3vi+SiSzBfPNN9/kqaeeYm1t7SMfQ0rJt968wptX72DoGvl8wD0jRM4Y6QaWacx36EKIKd8CQJvu5mBne4vRVP7dth8s/w7KlGkUxRRTFJUa7qoFPUozbvZicgE110QKNfB1TIMoK7m6H/Hocg0J9AdjxoMeuuVwcmMV27IoipKtfsjFu2MOJooRvVR3+PK5DtyDLDvcoavf2675VFL5ivRCNZhXLYKjD5IiGs6semftDgBN1zmIK8JEkSZPLvjTGdLx9kCWZezu7hAENU5trvOd613e3ZlMtZ48docavTThhN3Hti0C3ydYaDOOkmOJ6r2dCe/thAq5ZYJA42Y/AU3npx5fns+H7r3mo0yJZM7goBpgIKiKkhv7IWcXl+dS9JMjidegoipy5eHiumionXiYZJi6sgSYxBKQeI6DZR4qHz+5ucjeZIf9ST5tASk83+kF77D/rsE7W0NevzskKSSGaeKYCY8sujy+WuPCSk3BsGsekzhFoqFpOqXuMC4NFus+pq68dQxRkguN1293aWo+/eGQWhDQ6XTm19M2NBbrHtuDGMtT6s9SCsZxiSYFddfAd20MXUfXNYaTeFpZSZbrNk+u1bm8HzJMiikiz+KZjSYGknGkXCVfvTOmG1d4lokmSu4MEsa5xhc2NU4uPJi5nRRKaPP0hXPkRYHnebTbbfS0YJIqkIPt3Z9Imp7FS+cW+Ndv7lEJpWg9SUuiXPCXn+nc43Ojwvd9Tp48ycmTJ/nCcwVv3dzj+k6XPByxJEdsXZ2QdTp0Oh1c98Eztvu+f5LwyiuvsLy8fN/mdrZuHdXyu5cMCbC9vf1QHiafhfhMJZIPqiyqquLNN98EeOihel6U/Ltvvs6lW9vzv808QSohGOn6dPBtT1Va30+/SjIYhYwHPbKi4vzZM7iOTZYX81bFLGYtozQvsZxqjsw6uqDrmobULUVivKdlZOjaFEkEYTghGo9wgzrNZpMsLxUZMiv506sDolLimMo1bmdc8Idv7vAzTyw98GECldwGYcylvZC3tsfkUsPQdRZ8kxc26rR9G02DwHXnVr1HY5QUfONan1FSoOkGSMlyM+bHL3QwNTFnhMdxxN7ePq1Wi5Pra1zbG/LOzhiNQ1nxrBRsRZLTa+ucalqEkwk3bt9R1dVUssW0Xa73YkxDIeFm4Atpatzth9w6cFkIrPmCnuUlaZ7TqPnEW2Me1JvUNeWRMVdwLso5qzyJE0bdfTZaHlthRVpUBJ5LGGfERcWZjn8kWWpEqbLiHacljcBl05b8+GMrXNodcTDJ0XVYbbist6aeJLbF/iTl1dtDhFSQaQ2I8oK3tnMWGy6nFnwM3WAwCY/J1UR5RVEJao41tyzQDQMzyYjSnLv7fTwTRFmQhJO5f33gOZxZyOmOE6WYYOmUlaQSkrMdn6an5FXqvsftgzHXeynduERHSaqcn3qnD+IC21JscXmkjNkdZRxMUgUw0AXoOg2/TjfM2BorU6sHPed112bj9BlGSc5iI6DVaoGmWlerdYfAfv8F9r94agXH0PnGtT7jVIEb/uKTC/zEY0vv+55ZWJbFc49s8NwjGwoBF4YcHBywvb3Ne++9R61WozNNKs1m84HfPUkSvvvd77K0tPQ9OySzpDL735la8de//nUuXrzIj//4j3/P7/xZjM9UInm/SJKEixcvYhhq8fiwu4SjMY4Sfv9PXuZgMDr296Is5+0t0zAIPKXxE+fvLw6ZJgmDfg/DcjixvjJly6pdrGOr3ncpBKKqEBKiVBEJDw66jMeTqfaOj2Wp3XHgOXjGBFkWCN1QXhaaRjUdcndqNsPBgCQOabYX8P3j5e/1bsQkLag5Boap0GCurTPKSq4exDy/eVzp+FDUL+FmL+GV20NA6TIJUbEzyPmzouK/emET29DmlcixYyD59s0Bg7igFTggBWUl2BmE/Omlih97ZJHAdQgnE/q9LstLS6wud5jEKVtDJZrXOoLYcU2drKy43U84v1TDbxicabXRpNJi6g+GDJOcMDZwbQPDMJWKMGqXHeeSKK9YCJT7YJKpvNEMFFR2faHGpf2IojpkPFdT3P/mQg0xdUcENSDeO+ixv39AZ3GRswsLvL6l2mm9cYRtGpzp+Dy73ph//6ys+PaNIfthjqbrVOWIwDH5/Mkm55drPHNSmWEl0xaY79ikRcGdvpoHLcwo7yjexyAquLo74vRiwDCMcSwbxzanCrg5rqWr9lQlcWwdXVPkxKyoQJQsL7ZZbDdJkoQwitnb7SM0k4bvsNoKeH6jxu2hYq7XXYNTC950yK64OduDkG/dGMx5GEJKLkUZYSn5sUc7tAKXshIU5XHAxSQ7DvW1bIc8y9BFye4w4ZkTDTzHppJC6YlJZQr2iz/2JL/7jRvcSmzatk9SVgzjgrJSn3evD87RsAydn31qha9c6DCZJhLX+ug7e03TqNfr1Ot1zp49S57n9Ho9ut0uFy9eVNDmaVJZXFzEsizSNOWVV16h0+lw4cKFj9xm13Wdb3/72/z1v/7X+Yf/8B/yy7/8yx/5e38W4jOfSPr9Pq+99horKys8/vjjfO1rX/vIUvJ39/v8f/70u3PY7oNCTtVjb/f6tKYeIoHroGmHDz9AFIUMej1qjRat1v1S9DP9LH/qRzLrG3emSp+KM6BMgEzTZHlxgTRNOb3g8c6OYmNblUSfav54jsXpBhR5wkJnCce5P4n2o2LacrGpSpUAKwRaVdINc3xP+WOneUFZVtSO2Nhe3lfw4/q0MjCmMNNRUnJ5d8TJlotpGPhT5NNsrjKICvpRQSNwFYEQtXh4lsH+dFc+g/eurq2w1G6hTPZsiurBg3rDMMnK6ojulmoFeUGdjaDOCSm58uYeeSEYj4boho5pqFmHaWjHdq26ruNappJkB9qucgXcHpdkEkSliGUrTZ+TbXveDquk5O3bXa4fhOiWzZpecd6I+fLZRU63JxRVk1bNwbf0Y94p7+6G7ExyWr6NLgXCshinJa/eGfGTgY0Qh0TIVj1ACIklBGlRTbW3jp8LXQehW3PtrbwsyacbHl3X2Fisc6Kfc7sbqh67VhKnBWGa8dhKQGdBcYlMx/v/tvfe4XXcdb7/a+b0pt7de2+SncQhFJNeHDmh32wIgXthuSS/3WVZyi5LWWAJm3uBZbMLWVrYhVwCsdMTHHDshDSIbbnHRbJlWbZ0iso5OnXq7485MzqSJRcVS0rm9ew+PJGl0feMzpnP9/sp7zct4RzRXIhMNgM9WQKdaeYXaSwoDuCt9OFwunB7PAj5lG0yY6Ra+3IKZQVqAapL50x3kpNRH9NKPFZ6VlaMzjxBMJSEdYzaodvjRsrlEARDednrEpEVFTm/6RIFgeKQjyuXzyV86gQfvXw6u3o87GlPEOuTKPa52LiignctKB/y/TIYr8sxogAyHG63m9raWmNwU9OIx+PEYjFOnDjBgQMHCIVCpNNpq/YyklrtG2+8wfve9z6++c1v8pd/+Zfjqvw7nkyqQDL4Jra1tXHkyBEWL17MjBkzgJF5kvi9btYuncuxtk46Yj1n/14Egn4v4Vh3QRFdH6AH5fO46enpoqe7m7KKymFVOo3dfoBEMmW4x+WMOQuHQ6Qk4KWkKEA6a8hmaIpMrLuXdDqFIAisqfRxrNdNOKmg6UZOel5Iw6tLlFVW4fV48Lpdgya0jWE10elCkQcWvjUd/O5+iXlHvqdfALxuJ5mcRDyj4HIO3O25XC50OUtvSmJmibHzTBTUVQI+D4mcju5woisyiIWpPGOAsDMSw4vMzBnT8ft9eSkZg8oiLyd6JRCdVhASHU6UTIaKwNDdMjrGCWPF9FLeOB7F7Q3gdohkcjmSmSyVfgE1HSctBAiFAjhFkdM9SSMwO0Rqijysm1VMa1ea9t4smuZkbnUJ86v8CJqOnPdIeflwB229OdwuFy5doDmaJpo2ZjfM+gqqQlo1XqvP40bRNNrjOXxuB2K+xiYKgpWvj/TlrKaFoN9Hb18KM3JUFPloiyuIohMtfy90QBdchFwDA66sanQmcsiqRonPxZppQTRFIZpSkFQNTZaZX+Fn9awK62cOdfRxpk/FK2qUBzwomk4iK3NGcVPj9pBIpshksvi8LopDIXJZFy6Ph66kZLVCF/5tBdFJVypHdciFohonPwC3y4HP42Gu4KA5kiStiuj59vm0pFqWCgPeZ04HVy6fS2fbcWbPns2cOXNYiVF4T+YUKoMeSzJlohFFkdLSUkpLS1mwYAG9vb3s2bMHp9NJLBbjlVdesU4rZWVlF1TraGpqYtOmTXz5y1/m3nvvnbJBBCZZIDHRNI1Dhw4RiURYu3btgEnzkbgklhUFuWzZfC5bNp9kOktze5jmU520dcYQRRGnKJLMZPMyB2fPiRTKv9fU1BIKGoqm2ZzMsXCCZFYh6HUyo9RPcdBPIpk+a1Jd03RLqdftdODxekHw4fH6kGSFbDZLKpViYTDFTI+Gy+3B51AQHE6qqqoQBHM3ZwRR0zVP12HFjDKOx9rJSLol65GRNZyiwNwKIw3mdjkQEAY80D0uN+VFPjri/QV5Z95nW9f0s6Q2wAiU6UyO0oAbFyqy7sDjcqNpCqqikJVVRE3FI8CcWTNxiE7L19xkerGHZo9INJnJD+q5yWZkSvxu5lUO3bVi1mpml0KyNsSJWJpkTjGmr+tKaZgeRM6miXd3EYlGOd4nEs2CqguIgqH+etmsEuZXBplfGbRaWhXJ0I7yuFy0nIlyJqkS8rnxuY0TWpHfSSyR4UhYYP3cgeKflsWvKKKpOk6XA6fbUATQNA1RMO6XeQILBbxnmWnVBF0UuSDWl8bnduJwugyJFrfOrILCdKQvx862XlL51JHb7WJ6sZuGmUWEu+JEuvuYPrOCuooSI7ipKj19acJJFRcqnvxO3ekQCHld9GYUFEcx1dVFCIJxQuvq7iWV6sEhgqB5kPPpWdFh/qwTXcswhEkksqIhKxkEXefyeZXsbouTlA2FXZcIC6qCTC/tP0173C6uXbuIMyePM3fuXGbNmmX9W3nAPWBWZLKRy+U4ePAglZWVLF26FE3TLGn4w4cPI0kSZWVlVmAZSu9v//793HrrrXzuc5/jb//2b6d0EAEQ9HPptl9idF2nr6+PpqYmNE1jzZo1Z/0R/vSnPzF9+vQxETPLSjInTkdoPtXJ8dMR+pIpzpw5w9y5c6zvkSTJKKorGjU1tTjyudpEVuH5QxF6MyqIIrquUR70cPWCUkIex7ByJ2YqoL+zSO+XKVFVMtkciUSCdLKPnGx0dvh83nzBOTBAP0wURetkcbJX5s+tvXnvCw2PU2TV9CKW1ATxeTxIsnJWeyrAia4Urx3vAQwnR1VTSaZzFPmc3Lis6qyWS4dDwON0kc5J7D+TYP/pBIIALlFE1gw9qyVlDtYvnpYv4g4tFZCVVQ539nEmaUyDTy/xsrA6SHVJwDBakhSrcUFFxyE40XXFmqjOyip9+fx9KF/w9nvcSIrCoY4+dp2KI2oyDl1DEAWyqjEdf92SKqpKQ1ZLK2D5nxzvznEy5aAs4MHpMvxHZEkiLRlSJRtXVJ/VFmrWOrYfiRLuy1FipggdTiQNFEXlnXOLmFFZXBBEdHKKhphPBaVyCofDSTr7JARBpNzvYFFVgLrSIA6ng0Q6x7P7zhjyNl4nLpeLdFYiLSnML3NSJqSpqanB6+3/rOi6Dg4Xz+zvxOtyIKJZmyRdN6TQr5xXxowyHy5nYbDXkSSZlnCcfR0pnAIEvC4cLiepnLE5eef88iGHWg3LYUO8M6eoRPuMwcLaEj8VIR+KqpLO5vB63FzbsJj21mYWLFhgZRumArlcjl27dlFUVMSyZcvOCgDmjFssFiMWi9Hb24vfb+iBJRIJli9fTktLCzfddBOf/vSn+drXvjblgwhMshNJLpfjtddeo7S0lOXLlw+r5z9Su93BeN0ulsyZxpI501BUlcMtbTz7Qgq/10M6myObzdITi+L0eKmr6xd703V48WiM7pSExynicICmC8TiGf54ymyAXgAAZItJREFUXOT9a2rJZCUGR+ig30sqM3g6WxggU5JNp8mlk1RWVOL0eFAUhVQqTSqVoqurC7fbTSAQoKS4CKfLYeXpZxa7qFxaRmc8i9vtYkaZH5cATqeYDy5D34M55X6yssaRaJa+VBpRgMqQm/csrqY85CGT7W+nNU815rzJ8toQXqfIsUiKZE7GrcvMK/fyjqUzkRQFv8+NrhkifFlJs0QA/W6jGPrORTUDWqqBAZ7vOiL7O1Oc6Eoj5XIU+1wsqw0xrcR3Vj486POQyhrzPc2RJA50gj4vDofRiSdKEj19GY62R0j3xQkE/Hg8XnRdo7PT8LSvKCvjZCqBDmhqvt9fABxOvC4nbqdjQGux8TsN06pF1UF60zK9aRmPU0TRFDQd5lX4mVFRlP9+LydjSQ6eidOdNupa00p8LK0NcsXcMjRdICvJVmE5nZMgB23daTIqlBf5EQVD0cHjFEhnVVpjEktX1A5oQDGbKXr70rgFjWR+psLpdCIKIsmsjMshUBpw43QMPjEa/vWLp1egODyciKVIqQJyNocTjdmlTlxqGinrxuXxWJ1khvio2SIOHqfD0rACrK+HAj7es2o+7a3NLFy4cEwk0i8VphT7cEEE+qXhg8Egs2fPRpZluru7iUaj3H333XR2dhIKhbjsssv4zGc+85YIIjAJTyTt7e3W8NRQ7Nmzh+LiYubMmTPkv4+GTCbDiy++yLXXXkvTwcO8/OcmZIcPwTnwmN2dknlszxlEQbCc/dB1FE1D1aBxZTUVIS8Bn1GPSGdz+H2eIT3C+9Hp6TblTirwen04HaJR5MaoiaiqSiqVRpVzxBN9CKLDknL3er0D7pm5O8zkcvg8HmRVyU+1D/z9xqnGRW8yQ0/acLgz/dvNdfkKJspTgwYQwWjvPdMZoby0mJnT6wa8Tk3XOXimj5buHJKqIWga00q8XLWwcghRyH5UXeePx3s53ZPBIxp6ZpIu4BJFrpxdRE2BF4uZpgIBTdd5Ym8nuq4PUO8FSEiwus5PnVehuyeen+swNie1tbXkVNh2tJucohF0G6qusqaRzKosqwuxoi5keXIIgs7xzjhZWSPodVLicxLpk2iOpuhKGUOCc8p8rJhZZqkJdKclXm7uJqsKBDxOZMWYx6ku9rJhUSUMc3prjibZ3RanqjiInK+DyYpCKifjcjm5ZUXNAL/2oN9rzT8dj6XYk5f19zhFZE1DUnQW1xXzjnkVhgDmIDfGfnQk3cHprj7EvNKvqEmk08bGRhSgKBTE7fZQUlxMVj73Bi/g8/DeNQtob21h8eLF1NXVnfP7JxOSJLFz505CoRDLly8f2RD00aN89KMfJRQKkcvlaGpqYt26dfz0pz9l2bJl47DqS8ekOpEIgiHCNpYuiReDeQI6cuQI8Wgnd952I2VlZXTF+zh2Ksyxtg4i3XGystHW63a7UAsn4wUBBY2sYgwaJdNZBMFIf2iqRlFeul0a9IHTNI2erhiyIlNRVWPJvRQWuUVBoCjgp7Q4RCqdpbi0jEwmQyqVIhIJo+tYQcXv81GUTzEAVpeMOdUuKRqJTJag25g9SGdzuJ0i1UVDtVUbUg4dPUkOnklwOi4hig5ml/uYX+5Byabp6opRU1lJbXWl1Q1m8mZnkn2nE4YOk1NAAVp7cmjN3Vy9oOysuRuT3qxGZ0+GoEvAmd+hu3WdeDbHkXCSedWGT7wgQiLZH7hEQaAs4OJMbxavy2GMjggimi6AlqPI6yJUHMIfCBGLdhqdYpLMyZNtlBSFWFjq4FBUoTet568HtcUeFlUFMdt3JZfOtoMddGUMu2OXKFATdLB2ZglXzi0DdETRUFYu1J1qiaYs3xRQcToF/B4/sbRMRzxLTdA15L0o8rrwuN2kslncDoFMNouqKKi4qPa7CXo9OJ0iuZyE2+WyggjA3Ao/giBYv9vtEFlaG2JRdcB6f4iiQMBjTPYXDnSaAWlORWHdyonP56e8vBxZlkmlUmQzGY5EooQCfnz+AA6X+yzjs5Dfy4Y182k73szSpUtHNEw8UZgnkWAwOOxJ5Hy0trbS2NjIxo0b+cEPfoAoinR2dvLcc89NqYA6HJMqkFwIY5naGow5dRqLxbjiiissuYKKkiIqSopYv2IBiVSG3UdPsaPtT6QTcTwFHU+KpuMURcMMCkPh1+l0kBqgb2XURNp7c+w+2UM4nsLrFJgZFFg7v3bYbg9VM3L98b4UHfEsJ3okElmVkNvF/Moail2GVk9PTzfxHp2w020FFvOa6ZzCa8e7OBFLowkOSv2G2GFN0DVsLSPk9xLpTbLtcIyejIxLFNCR2dOW4XinSEOFztzZs/D7A2f5syiaxrFIEodo+E+IogO3oJOVFNpjfZyu8FJX6sebV7I103RBv5dDHVE0XcPpKMjFC4bneFcqZ9RxAl4SyYx1SpBlhUxOYlF1kFhSIp6V8bmdaHlZ97oSL9VFHnK5HB0dHYRCQQRvESldwhNwIjgVStUkCwNZEoohx15V7GdGeRCHKFrpm6f2tNORyBH0OHA5dHKKSmuXRNDnYf3ccnKShNPhGBBEALpS8gDXPofTacwaKTLRRJYZJf0Ck5l8m7Wu68ytLuZYJGnY+2oK6Dq6w4XX6WBhVYBMTkKUDGkXWVEpCvjyKtKGwsCccj+zynzkFI2Qz22cngtSdJqmF4iDGidQj8tFRjJSokM/NwVcLjfT60LG36K0jHQ6TV8qRTodxet2URQK4XC5KS8t4b1r5nPyeDPLly8fVz2pscYMIn6/n+XLl59TdHE4Tp8+zc0338wNN9xgBRGAmpqaMRFMnAxMuUDicDgM5dExxtTJAVizZs2wmjdFAR/vWbOQj/U4+K9XT6Bm+yCbJJNMoGk6S+qC+N0Oa1p+cMcSCBxs7+WVlm4UTUMQHfTJAofjILYnWDer9KzfKYA1+9EcTfP6iW4U1XD869B1TvZkuWZJFbOm1aAqKsl0lnQ6RSLRRzQaw+v14PP5eaNDoiMh4Xa7EDSVzt4Uv+9L8875ZSyqKcHhFMnmzAHN/px3SyxNT8bwWxAFoz01J0n0pBUSjjK8eSHKgM9juQ8qqkZW1sgpmmEp63Sgq4afisshkJFVkjklr3qcbwEWoCgQQFEVq/7R37RgoGg6RW4nQb97gAaXeZ/dLicLa/24XW72tffSk5ZwoLGkJsjS2hC5bIbOzjAlpSWc6BNoPhlFE5xoiozbIbK8LsSqxXXIUpZ4vI/u3hjt6R78AT9V5WW0RuJEk1I+iBgPBE/ebrW5M8GS6gABtzG9XRTwkZONtQmCgM8lksgYJx2Xy4WSbznWdeMag+VrAl43LqeDVDbH2pnFIKXpTOk43R5K/C4WVQepLvJaMzNm4DLncByiiC+vD5fOyvi9bmRZHXbTYL7bnA4HvUmjRdmwFnCh6jqZghSYofvmsToRRdFBMBgiGAwZbe/ZLOl0GjGXZVmNnxPNR6mrq6OoqGi4XzzpkGWZ3bt34/f7WbFixYiCSEdHBzfddBPvec97+I//+I8RXWMqMOkCSaFnwVA4HA6y2bOtWkdDd3c3TU1N1NXVGW/+c/yxzbbeT101E79LYMueTuLZcqpniLx7lpdlZRDpitPblx5SIVfTdZra48iqaigL6xoOp4OconE4nGbtnEpCHkOmQtP1Aaq8sqqxu60XNd+aK2DoN6VyMq+0dFEdrMYpipSXFFFSFCSdlVAUhXQ6xclYktM9Eh63C4dmpKdcHgfJnMLBjj5mlPogZ3QUeT1ufB7DvEvXIZzIIQpYQUSSJNB1nG43PVmNTP4hXug+6Pd68Ho8eFwuY8ZBVS05XEXVcQjCoBqGTsDnyz/ADLvUIr+XlKQRcOkIuk5W0dCAxXUlpAbt9nUMmQ8UHVlRmVbipSpYAaLDMMeSFRKJBNFohIqKSrplB0fDPXi9Hpy6Ak4naUll35kE5UE3lUEPJWXllFdUgKaSTqU4eeo00bRKThLwiC70AldGlygi5T1bnIICBfsHr9uFx+1iYU0x4UQESRdBltF0w4XQ53ZQVzIwrajrGqIo0pvMoKoqfT0xlld5eVdlFRlJydu8GpI2LpdjkOCmgarpVprL73Vb/5uT5bPSqyZFAe8AJYMBLef54IZgnFL6UkMP+AqCgM/nY1pNBVctm03biRZqa2vJZDK88sorVhdTZWXlsLIjE40sy+zatQuv1zviIBIOh7nlllu47LLL+PGPfzxldbQuhEkXSM7HWNdITp06xeHDh62hxzNnzgybOjPloM0ZgY+tn8lfXD7D0vcxW2U1TeN0tIfmU500nwpbuWiAREamLyvjdIg4BN3q0Xc7RNKSyolInLkVAQRBoCToMyRW8g/oWFIiI2tG7j//QRcQCOS946OJLBVBj/XBd4gCoeIgJaEAp1IiTk8Sl6CiqTqSIiEAIiLdSQlZ1XA5HDhE49o9CVNK30HQ70VIGl1IkmQMmfn8AaR0DseQZdp+GfvFtSF2tnbjdLhwiwI5SSIta9QUeagK5QUUBcOzvjA15nGKrJsR5M8ne0lkjHkat9PFsho/M0v6012arnMknKQlmiIra4R8TlbNKKNWMLrrUDUUIJ6Ik04kmD9nFg6Xm6ZDYQSnCxeqlbsJuB30ZhXae7JUBo1ivo6A1+NFRWRWMERFTuH4wSgZWcIhSTgcIg6HAwknHqeAe4jnTU5WyMkKNUEnq2aVcyScJCGDrij43CJrphdbLcwmwfz9UFWVjo4OnE4H5ZXlxibC68brcaFphqLs2afegfi9bsNLx9rY6HjcLjxOp2UtoOtQFPQNqalWeK/TuRxet+GX7vMY1tOSYohUFgaE8uIg71g6k1Otx1m9ejXl5cZ0emEX0549ewDOkh2ZaMyTiMfjYeXKlSMKIrFYjI0bN7J8+XIeeuihi7b9nmpMuVc3VjUSTdM4cuQIZ86cob6+3nqji6I45PVNGWjztGS+uVwO4azhKVEUmVFdzozqct7TsJRIT4LmU2GaT3VwpvMEQj4MFL5BtbxwoJku8XkMKXPDf0Qn4PUQVPI/kzeF13UjzWGe0AbPOKh5W15RECjye0FP4vJ40TUFXdPQdA0pp+LQFNrb2igOhQgEA8huj7U2WdGoCTo41qGQklX8XkP8L501TikzhvFtMLvG5msaiZSf1q40GVXH6RSZVVnEVfNKEclLmLucJNM5srJKd8p4OFcG3VQXeblhaRWdCWPor8TnJOR24HY68XicqKrGH49GONyZRBTBKYp0Z3V2HA5z2eyS/DCmTnd3D4lEgtraGlQcqJKKLroQhRwOhxNFyRf88/dPVk0FaNHQXcvv9nUd/G4nM0u9HI+puN1eHCJksgo5OUNNsUiit8dqLT67i87HIgHqgg66UjIOUWB2ZQi/xyj4S7JqNGd4DZkSRZHp6OjA7fbkh1L7TwnmPIqqaQR9nrMK5Sb9bdGFXxUswU8wUmChvHaWQxQsz5vBWMZV+e6/TE4mU+iu6XGhaRoBr5fLF9Vx6uQJVq9eTVlZ/yCny+WiurraaqqJx+NEo1GOHz/OgQMHKC0ttQyohlOPGE9kWaapqQm3282qVatGFER6enpobGxk/vz5/OpXv5oUwXG8mXSB5ELNrUaDLMvs3buXTCbD+vXrB7xhh7p+oZeAaUpzoQiCQHVZMWUhPx45QZ1/Nl0+maaWM2haLj/9DFlFI+RxUldsOBsm09mCvb5AKivhd+j4XQJJSSfkdoEgIEuG+VJpwH2WbSj0F/yrAgpeh048lSHgMcQvNRUEUWbptCBzp4fo7Y0TjcWQJEPG2yzWV3qhyqMQyTrIaIYDodMhsGpGKUvqSslK8gDxPrOmk0hlcIoil80uZWltiERWwevMtxfrGi6XA4/bha7rHOxMcuhMIj+oZ9jyXj6nlMqgh8V1JWRyUr+bZF53qi+ncLwrjc/rwes0/i6KLNGn6Bzs6GNWmY/urhiZTIZp0+pwuQzbWp/PTYkH2rskFNGZP1UYNS0BhbKAC7fLAbpgyeUX0jCzGLdD5GR3GlV34vc6WD2rioXlbpJ9ScKdYXQMufJAwI/X66OkKGDt9kNeF6G8IrOqKPTla1J+jwe320FWUpGkHJ2dnfh8fior+2XgwbB8VjXNChoDC+X9UvYOh0Bq2Nbe/E/oOn6vl96+jPW3M7XZClNgDoeAy+kcMoUG/Smw6vJiLl9QS/upNurr6w0V32EQBIGSkhJKSkpYsGABmUyGaDRKLBbj2LFj+Hw+KisrqaiooKSkZNzrC4qi0NTUhNPpHPFJJB6P09jYSF1dHY888sg5rSXeSkyqORIw/pjnChSRSISjR49y1VVXjej6qVSK3bt34/P5WLVq1Vm7hVdeeYUFCxZYMvWFfgGmXeZIfueePXsIBAKsWLGCzj6JLz7+JsfDceR0H1IqgUvN8K55pSyaVnrOeZP23gx/bO5G0gQ0VUEQRYJeN9curqTYM/BnPC4nmq5bD/kz8SyvtnSTllR0jB3mjFIvN66chlMUkBV1QF0llUpZpx2fz4+vpIK27jSCIFBb5KUiaLZ49k/nJ7MSp+M5MjnDrGo4CXtvXslWVjSOx1K8dqIHp9OF3+NEkWWSWZmgx8kH1s1EleUhH4Zt3Wleau6myGv4tCuyjNPpRNYMjbOGSnCjUltbi9PpzLsQusjkDC2n7UdiJLIKHqeIjo6kGErLt66ZjtfpIJnJnbMw7XK76Iqn8XscOAseOqIoIOgaqWSSru5eRFEH0WUF5qHSHGatI5uTkaQckXCYivJSyssrSBecKLwe1wUUzA05lmxWwut1o2kDtdn60Qn5fWd12xX+u6FmbRiTJQrUAIaitqKEhnnVnGk/RX19PcXFZ4uaXiiKoljKu7FYDE3TrBRYRUXFmO/yFUVh9+7dOJ1OVq1aNaJ6Rl9fH42NjRQVFfHkk0+OSKV8qjLlAklXVxcHDhzg3e9+90Vfu6uriz179jBt2rRh1Tpff/11Zs2aRU1NzcCayEWeREy6u7vZt28f06ZNY/78+dY10pLKi8e6aOtOUxF08445JcTjcZpPdXLidMTqvBmM2+kgnlV4syNOMqdS5HUyr8JPyGtYyxrT5KDpKlmp39fbRFIMO1FJNaTL51UXW91PYJxgfB43qqZxuiNMb28vxcVFOATo7o3jcDgtGXzjg9J/TzoTEq+29pDKKQiCA5cD5pV5aJhZMuDe+b1uspJsrW3roQjRpETIm3/A6joIIilF4B1ziplZ4h7y3ncmsrxwpIuQ32OJP4IhnyJJMu+Z5WXRnJko+d27w+EgV2APEM/IvNnZx5l4Pk1X6qN+djkOtPzajKYBp8NBVpKt7jIYWjdrMALGEF4uJ5HJpOnujZNMpfPqBEZQ8XiMzizD5tnQXOvs7LB26mBsXvxew7I5k8sNWyg/19pEUcDvzQ/I5nKoqk7Q3991NRwup2itzXhvuNB14xqFsWxaVSmrZ1XQ2WGkiseyO0vX9XyjRJRoNEoqlaK4uNgq2Pv9/lEV7M2TiCiKrF69ekRBJJVKcfvtt+N0Onn66afH3elwsjHpAomqqucspsfjcXbt2nXRBjCmkvCSJUvOKcvwxhtvDJCOhpGfRE6fPm0V8i9GG0xVNU5Fumhu66TldNj6sHs9LhRFPSsPPpiQ30sqm8OfHzIbygYWdEKWnPygf9F1otEouVyW+XNn4fX48oVfhXQ6kz+tGMX4QMBPIBDA4fHz5L5OspKC320MAuYUDVUTePfiKpZUG11kfp/bSLcUvOs2N51BVvsn0XVdx+X20NOXYkVdEQ2zSvPzFdoAuRddgOff7CKayBDyOAyrZEUjkckxLeTkmuXTEAQRj9uJKBhtraqmDZB/h3x9quC+DfeJ8LicuF1ORIdAvO/cu3PTsnfgLImOyyEiSTni8QTdvQk8bheBQAC3xwvohMMRysvLKCoauJv3+zz5orhmFLmdTqRBVseDrXGHXZtoqBADxgnoHJsWQRCG3NQIAvjyToplRUGWTy+ls+MMDQ0NhEJD+6uPFdls1kqBdXd34/F4rBRYaWnpRaWkVFVl9+7dowoimUyG97///SiKwrPPPjvur38yMulqJOfjYmskmqZx+PBhOjo6aGhoGFD4GwpRFJFl2QoiI8mT6rpOc3Mz7e3trFmz5ry/czAOh8js2kpm11Zytb6cjq5eTrRHOHaqk6548py/t/BBUpg7D3g9Ruu0JKEoGj6vZ8ggomkax9s7aE8oOH0h4m19zCqVKPK6CPi9+en8IiRZIZczFIuTiTiHoxGSGYGgx5FXlReM9FBO4cCpbqaHnIQCXnTd6EgqLAwX+1x0JrKA8SF2uQwfC4CQ13mWm2TA70bAaCZYNyPEK8dlEhnFaAFWFMr9Tt6xqBZBMHbQkpUKMk4jpvw7gqHthTZQZmU4crLhChjvy1gqAXqBR4uJmG/ZHjyQCIYRleBwU1JWQV1dHdlMlr5kH9FIBFVT8eT1q1RVtR5qQb+HVNqsdeSL3AVzM+bMkohw3lOS4czozqsBGHhcTjxu14AhRpfTaaT7hgkyug7pjMSs2gqWTSsm3NnB2rVrCQaDw/7uscLr9TJjxgxmzJiBqqpWCuzAgQNomkZ5ebmVAjtXjUJVVcuwaqRBJJvN8pGPfIRMJsPWrVvflkEEpuCJxNTDuv766897SpBlmT179pDL5aivrz9vF4iu6+zfv59EIsG0adOoqqq66DynqqocOHCAvr6+cw42jpSueJ/RAdYepjPWa31dAAIFGkvD4XAI+NxuRIeILPcbEoFxxD944gz7uzRUwQ15xVi/y8E755dTW2zeC91q/RREgd6+FDtbezjYkcTr1NE13TBbcohIqiHgd/c75w4KXEbayCGKHAv3sf1IGE0zCr2KbMjRl/hd3LC06ix3PLfLCTpIimEgpupwuL2b0+EoFcUBFkyryKf5PGQHPeTPQtcpLQqgqJrROaUMvUkx7u/QqSAz9SSKAlJe8mWoIn0hXo8bWZaNzrq+PmKxKNNrjXRqV28vmUwOr9dDZVkpiE5c53ggmiKNqUyOgNdoW05lJWszZGJ1XQ1rIW3UaoI+NwgCSatrcGjmTKtkcXWIWCxKQ0PDhKdzTPVwMwWWTCYpKiqyUmCBQKDfpEtV2bNnD5qmUV9fP6Igksvl+Iu/+AvC4TC///3vB9hdvN2YdIFE07RzTq7Lssy2bdu45pprztmbnUql2LVrF4FAgFWrVp23j9vszMrlcoTDYaLRKL29vYRCIaqqqqiqqjrvByWbzbJnzx4cDgerVq0a946NvnSGlvYIzac66IqnBgSRjKzSHEkRSebwOEVml/uZWxlE1xnQYeVyOvB5XKQzWZqPt/JGTCSjuwi6dDD+j2ROocTvHiCjbrazJlIZ3C4XJ7uzbDsSxSsa8uiapqKoKilJZ3qxm8um+6yawFA75va4zN7TCfqyMrqqUFXkYe3MkrPkyr0eN8oAGX5DlSAc7qS2uprKynJkRTUm7IdQYC6k/zWY903Py604kOX+2QhR5CzdrKFw54vSDlG0OqcGz1fAwBpRIhGnq6ubmppqfD5zo2OkwBQpR6y7l3hfHy6Xy/KuH1ibGrpgLpBPPTlEcpKMqmmD5OKHxpSrUVTNuMYQHVwA82dUM7/ST3dXFw0NDRPSqns+stmsVaw3lbMrKyspKyujra0NXddZs2bNiGY8ZFnmox/9KK2trbzwwgvW+MDblSkXSDRN4/nnn2fDhg14PJ4hvycWi7F3716mT5/OwoULz3tyMQvqg4vqkiQRjUaJRCJ0d3fj8/moqqqisrKSoqKiAdc1fVTKyspYunTpJZdCyOQkTpyJ0nKqk33HO3j2QCfxjJzvqQKny8nK2gCrpp3dSZPJpAmHw+ieIl7rUHCLAqLev6NWNJ2cqnHj0ioqgobkxuCHl6xqbD0UoTut4PO4EARIZxU8LgeX1XnwC4ZqrMMhFjwQfQiCYJ0wMpJMPCvjdTmpKvZZaSPzHTrUCcPczVdWVllplVDASzYn4fW4UbWB0h6FGOms4U9wRpB1o6MPmQYsxEgvqcjKwFOAOfOiaRqpjETA58l3Yen09vbS29tLTc1QMvD9KUqnQ0SVJeJ9Cbp74oBgtRZXlpWSPk9wcDqMOpFDdFieIEMFc5/bhaQM1xGm43W7cLmcTKssY2aJi3hvLw0NDUMaN002VFW1BiE7OjqsLrCqqioqKiqGfZYMhaIofPzjH+fw4cO88MILVofn25kpF0gAtm7dylVXXTXkCeFCi+rQL3di1lzOVVQ32xEjkQjRaBSXy0VlZSVVVVUoisKBAweYM2cOs2fPHjPJh0hfjt/sOs0fm7txiALvWVjBB+vrKBliXqSQf37uME/uPI5fy5BLJUAQSGeMzqybl1dZopLQ/yAuL69A9BezZVcbPqeYn61wgiAgyRJZSeX6pVXUFHnxed1DtpMmcwpNp+Kc7s2CIFDqd7N2dhmzy/2kczkURSOTyVitxbquU1JUhNfnw+3xDhl8RUHA73PjdIj5gn//27W3t5eenh5rN6/rOsUBH4n0UB1LxmtOZ2UjXef1DNMS24/RTWUM74miQMDrQccQVCxM+RhpqqGNwwoJ+j0IuoCGTvvpDhJ9CWpra3G7+x9iheZQQ+EQBdA1En0JMuk0iWRmwMzP4N21yykiCuKAgvlQ3VdGLUk5ZyoLYMmcaUwPOejrS9DQ0DClWlw1TWPv3r1IksSiRYvo7u4mFosRj8cHpMCCweCwn2FVVfnUpz5FU1MT27dvp6am5hK/isnJlAwk27ZtY926dQNaDDVN48033yQcDrNmzZrz5iuHm1S/0DV2d3cTiUTo7OxEVVVKS0uZNWvWBfs1n4+ulMRf/eYArV1pSzFW0XQWVgf5/vuX97fKDkLVdDY9+GckWaPEbwz7ZdNJMn1xIrEu6uv8LK8rAnR6enqJx3uprq6msqyU3lSGJ/Z2ksqpeS0v4zSTklSK/V4+vG4aTlE85y4eQBdEJFXFLWJJuRhaWl5EQcinSRQcAsS6e0gmU8iyjN/vs04rDofx+gp35wKC1SnUfqaDnt44tbW11m4y5PcMsBIeCocoEvAZFsXnqom4XU7DJneIfzcFC0VRQNM0Mln53HUYCltyIRqNkcmkmTd7Nl6fh1zOXMf55joMRBG8bjeZnIRTEEinU3T3xkmlMwNai4MBPwIC0jlqjoJgCJHqGI0HQ71ek2XzplPrF0ilkjQ0NFzULn6iKQwi9fX1A+ZQcrncgBSY0+m0usAKP8+qqnLvvffyyiuvsGPHjjFxaX2rMOm6ti5kNz+4c0uSJOtNsn79+vMetUc7HyKKImVlZUQiEURRZOHChaRSKQ4fPowsy5bEQ2VlJU6nk/aeDC+3GIZJq6cXsXJa0Xl/55P7OjnZnaY86MYp9kt3HA0nef7NCO9bM7SHgW4WNvKXFwQBXyCE1x8k56vgyoZKlpXCH9/YQyKRYPq06RSFAiQzOZyiyJoZxbx+ooe+nIJDMIyiXA6RhhlFqKpGJm+VahpdpQcZXZn5f484+PUJA0QdS4J+VE2nrsadH4KUSaXSJJN9xGIxPB4Pfr+PmqoKqxNJx9Adi0ajZLMZ5s6eRSDgM6a4ReG8QcTlFHGI4sCaSD5do8gq6Xw9w+d2IavDt1mb6wj6PKQyEj6PC6fTMeAa1vdaJ4w0um4M1EpSjrq6aciajpzK5tdh6GflcvJZiseFGB1h/c6Ysq7j8vqprvEZrcW5HL3xOJHODmIOBx6vYdPs8/mGvKY/371nBML+GtHg17JywQwqPRrpdHpKBpF9+/YNGUQAPB4P06ZNY9q0aZb/ejQatfzXH3roIVavXk1LSwsvvfQS27dvt4PIICbdiUTXdUNd9hz88Y9/ZPHixVRWVpJMJtm9ezfBYJCVK1decFF9NEOGsixbb8zVq1dbgUvXdZLJJJFIhEgkQiqVYl8yyJMtMpJmPNSd+RTVP9y44Cw/9ELueWQ/+04nqAwOLNiH+3JsWFDBN25dPOzPfut3R/ndwQjVIY+RCsEQi9SAf33/UtIdLeRyOeYtXEx7rJfmtk7aI91WLSKcyHIskiKeVSj2OVk+rZSKgHPIB6tZrDfTOuey9TXv0eD0k8vZL7ufzkqoqkIqnUZXJLp7EzidxhCkz+ent7cHVTWm1R0Op9Vqq6gqXrcLTR96ituUPDnX7tzldBDwelDyvvXnYrh24QGvJZMzpPjTWXRdIxwOoyjm2vtPraa+lrlul9NhiTIWuhea2l/n7QhzG5pXiiLTl0jQ1RtHVTXrxOf3+3E4HAR87nP+vVxOYzh1/owaShyS1f04lWQ/NE1j//79ZDIZGhoaLmoi3uwCu++++3j22Wdpbm5m2bJlvO997+OWW26hvr7+ktZCv/a1r/H1r399wNcWLVrE4cOHL9kahmPSnUguBPNEEovF2LNnDzNmzBhVUf1C0HWd5miaWDxJ6kwz5UV+1q1bNyBwCYJAKBQiFAoxb9489p2M8cRvDyEpKj6HjkMQUXSRPxyOsKw2xAcbhndG87nEIeX0BcA7lMRsAXdeNoP9p/s4E8/iEEDVwSUKNK6spKf1EG6321p7VXkp9YvmkMlKtJwO03wqjLMjarklBnwDfdsHY2oshfzGbEjQ70XXsGTwB93FIRVmC6XKHaJAyB+gvKSYRCpFqLiMTCZNMpmit7cDgGAwSC6XIxRy5ae9Jes65jX6fThyeJzmCePc80cel5N4/uQgigL+glmTwtrBuaba+1+LTjDgRQP8XhfHT7Shahp1dbWIYn8QMdNUhcFvgHS7mJduxxhUzZynsD6wYC4SKCohWFyCU4BkKkl3jyGSWFocpNfpJuD343INHRhkRWPVglqCZJAk5aIfxBPNaIII9PuvC4JAKpXi1Vdf5dixYzz99NN873vfY8eOHaxZs2acVj80y5Yt4w9/+IP135NFVXhyrKKAC01thcNhIpEIS5cuPe8xc3BR/WKDSGtXmn/+3TEOdSSQZIWg28Gd68tZdZ5ayGttSRREKos9hiudoiKoCqmMwiOvHaOhJENVVdWQxb0NCyv4c2svaUnF73ag6zopyUjhvHv+uVsNZ5b5+MEHl/P0/jAHziQIeZ1cOTOIt/c4RUXlLFmy5KydlM/rZvm8GSyfNwNJVjjZEeNER4RjJzvPmf8fXBw2u5sEQTDk5yE/sGeowp6v+8kY2tPoS6eMwBzw4fcaHUJ+v5+ioiIymTTxnm66YjHcHg+BgLHLNh/QhT4cAZ8bdPA53WQl6ayuKpPBJ4xC10BTyFDEaAVOnGfoD4zJ8WReBr6zswNRdDB/7mycDofVSjs4TTUUmqaTk1QEQFYUAj5j9iaTk/MGZP34PIbXyGBZHF0HWQePL0itL4Df66KvL0lvb5xTXd351mL/Wa3Fly2bi09NoeZnLaZaEDlw4ICVihvJ2nVd55vf/Cb/7//9P7Zv386SJUu44ooruPPOO5EkaULuh9PpnJQF/kkXSM6HphmdP4lEgrVr115UUT0tqbx+ood4VmFhVZDldaHzBpSMrPL5xw7RGkvhQiXkdSFpAj95tY1iv4vbVw/vPZ3MqXmrUkOi3OUWceEip0sogkgymaS1tRWPx2PNqphGP9cuqWRXW5wXjsRI5owHhssh0riyhivnnX9Svirk4eNXzgQMva+9e/cyfeZM5s6de97X7HY5WTCzhgUza7h67XLaI900t3fScio8oBAsYNjiDtVhZHrWQ37Ize9FQMDtcgyrFeVyGg6M5qyDruv0xPvo6Ogg4PczY3odTqcTXSsxpruzxmR9b2+cSCSKz+e1ivVOp2sICfV+ddycpFh+8YZUzPCyIjqQzuQI5RWN+619jQnzwvspCkZDQDKdRVGUvAy8i6qq6vxpQsYcxnQ5HOTyLonD/U08bqN1WMoHwMI6k8ftxu1yGBsUQRjkOTI0RjE/g8PlpbzSS02tiCJJJBJ9dHZ2YrYWv7thKV4liQ7U19dPmp3vhWAGkVQqRUNDw4hScbqu853vfIef/vSnvPDCCyxZsmTAv09Ueu/YsWPU1dXh9XpZv3493/72t5k5c+aErKWQSVcjAaN4PtSyJElizx6jSDxz5kwWLlx4zusU1kP2n+njy08dIZrMu/s5RC6fXcI3bl1MwD38h2TroQhfefJNPKLRMup0Grve7pTEzDIf/+/jDcM+BJ45EOaff3eMYp/Tms7WdZ1YUuKm5dV8+caFlsSD2VYsimJ/UCkpYVdbgp1tvTgEgcvnlLJ6+vkL9YV0dHRw6NAhlixZQl3d8Km0C0HXdcLdcVpOhTnW3kkmK51zNw0UCBKaKRl9yGJ94SCcSTabobOzk+Li4vyGQchrTuXwuF3G4KBiNACoqkIqlSadTpHJZCkJ+REcbgLBQP5Df/Y9czsdBHwespKcT48Nf1+DPk+B5EzhNfq9UbI5Ga/bmByXZcNLxOfzUlFROeBv5nI68t1r+Q2CUxxy5mWoezIUAZ8bSVbztSp9gFpwIeeTgXHkVYunlwUocWuW3IjZODIVWn11XbeUJdauXTviIPK9732P7373u2zbtu2Sp6+G47nnniOZTLJo0SI6Ojr4+te/zunTpzlw4MCES7NMmUBiFtVDoRAOhwOfz8eCBQuGvUZhEMnIGh/66W5iyRwhrwsxLyiYlVU+snYaf331vCGvoaoq33l8J48fTVMRGjjnYCjcCjz7mcstf/HBpCWVex/Zz5udSdxOwZi2llVK/S7+9QMrWFA1cA7G7Bgxg4qqqtaHuKKi4qLainVd58SJE5w8eZKVK1eOy+RtTyJpybV0xHrOengNN6RXiFHgdqNo2oACdyqVIhKJUF5ebrV5D9ScGngNn8eFoumk01kCPg+d0S7S6RTpdAaHQ8ynvwJ4vabh1MBWW1P1WNMHPogHF8KHwyGKuF0Owy0xl6P5RCt+f4CKinIKH9xul+MsdYFCzJkX84RxrnZcGNq4ShT6r2Fqml2IlhjAO1cvRE8Z6a758+dbQ3zxeJxgMGjNTp1r1mKi0HWdgwcPkkgkRtxZpus6DzzwAPfddx9bt27lsssuG4eVjg29vb3MmjWL7373u3ziE5+Y0LVMiUASjUbZu3cvM2fOZMGCBRw+fBhBEFi8eOjOpcFF9a1vRvnq00cIeZxWFxNAX1Yh4HHw9P++DI9z4EM6l8uxd+9e/typ8KvDKsV+l9WGC8aJZHqpj0c+MfyJBIx5kF+8fopth2NIqkb9jGI+tn4GS2rOvYMwpbPNDrBsNkt5ebk1WX+u/KwpVBmLxVizZs0l2a0k01mOnzaEJU91duFxOcnltaTORdDvsdSAHaKI3+uipzdO++kOKqsqCQTy0+oX8CA06zVmK6vRJKCSyWSs04quG4ZTleWlIDoQhOGHIM2INdRJpJDCE0Yul6WjwzhFTa+tRhRFqzbjdRudb+c7YZjWuLquW3MzQ/msB/1ekucNDjqlIT+KqiEphi3vcO/X99QvRk5E8Xg8Z7kDSpJELBYjGo3S1dVlDeRWVlZetOLueKDrOocOHaK3t5e1a9eOOIj853/+J1/72td47rnnuPLKK8dhpWPLunXruOaaa/j2t789oeuYlIlPQRCsAvnJkyc5duwYy5Yts1IzDodjyKHF4YrqPSnjewePNrgcAllZIy2pAwJJMpmkqamJkpIS7rp2ETvC+2jvMaTKHXlvdUEQ+EB93Xl3ZeUBN5+9eh5//d65aLo+wADpfPeguLiY4uJi5s+fb+3Q29raOHToEKWlpVZQKUw5KIrCvn37yOVyXHbZZZcsHRH0e1m5YCYrF8wkJ8ucOB2huT1M6+nosN4qg7ufVE3l1JkuQzaktoaK0hIABPH8qrbG9XwD6jVGDcdnKBYXhZAVlVxOQpVztJ/pQFGU/FS4cVoxT3yarpPNyTidDrI5iYDXg+gQyeaUswrc5gkjJytkMhnC4U5KS0spLi4hZaX9jACnA0gKcr6mMRT9EirGf6cLrmHOvMiKilMUzxtEzGHOngLJe6/bZSj9FkilCAJsaFhCtieM3+9nxYoVZwUGt9tNXV0ddXV11kBuNBrl4MGDKIpizU6Nh+nU+SgMIqM5iTz00EN89atf5emnn54SQSSZTNLS0sKdd9450UuZnCcSWZZRFIVDhw4RjUZZs2bNAMvOlpYWkskkq1atsr5WOGQIA+VOdp7s5f/7zX7cTgceZ/8HpDcjM6vMx68/0WCJEcZiMfbv38/MgsJ0SzTFN547Sks0hapBwOPgA2tq+Z9XzTrLJ/1SkMlkrJNKobxDSUkJR44cweVysXLlyknRZaOoKm2dXbS0h2lpD+dPH/1DeoXig7FYF6lUcoBsiHkSMZWCh9qZmwXuc6efDEtZt9OYw8jkzCFIw1sllzPUdv3+AMXFIbxuzxABsL/ALSsqaLplmpVOpwiHI1RUlBMKDTR1GmzkZUi/G6eTQt2r4VJ3gwn5vWQkCZ/bjaoPrSXWP68zfJecOeV/2dK5pLo6CAaDLF++/KJOF0Mp7paUlFhBZbwVgXVd580336S7u5u1a9eOaOOk6zq/+tWv+Nu//VueeOKJi/Y6ulR87nOfY+PGjcyaNYszZ87w1a9+lT179nDo0CEqKysndG2TMpCYyr2qqlJfX3/Wm6O1tZXu7m7q6+uBgfUQQ6114AdB03U+8+v97G7rNYa6ROMk4hAF/v6GBdyyohqAU6dOcfToUZYuXUptbe1Z1zgSTtKX7/g6n97VpUKSJCKRCB0dHfT29uJ0Opk+fTrV1dWEQufvSruU6LpOR6yXE2ciHG49Q29f2vp6JBIhl8tRV1eL0+k6R22iYGcuq0iKgsflsmZJhqNQNwv6PThk1TCHUlWVVCqNnPdYERxOy7TL2OEOvI8+jxtN03C7nfT2xmlrPz1AONLEOGEM3TwCZjrPkPXvS2bO23VVFPCe1X7crwMGmbymWVHgQqRWBK5eu5S+6GmKi4tZtmzZqN8vpulUNBqlu7vbSCPmU2BmR+JYoes6hw8fpqura1RB5Le//S333HMPjz76KDfccMOYrW+s+fCHP8xLL71EV1cXlZWVXHXVVXzrW99i3ryha7yXkkkZSF5//XUAVqxYMWTbYXt7Ox0dHaxbt+6CJ9UTWZkHdrTy+8NRFFWjKuThritmsDEfRI4cOUJnZyerV68ecPqZCljtvdOnEwwGLfc4l8tldYCVlJRMuqDSFU9ypPU0L76+i1g8SU2NMfEtiiJel/OcvhlgdDu5HA4cTgfqoN19IefSzYL+Qjv51uOcJJPJpEmlUqTThke9mf7y+XwE/V4yeRXiRCJBV1cXtbU1VJSVYtZmVE2/qBNGXzqDIOSDSkGRvPB+FQWHdrQcTEnIh6rqZKWzU3EmDlHkmnVL6Q2forS0lKVLl475+8MUOjXfj4AVVMrKykbVUlwYREajQPzYY4/xyU9+kkceeYRbbrllxOt5uzMpA0k6nT5nUOjo6KC1tZUrrrjiouVOUpJCKqdSHnDjEAUURbGmX9esWTMlJLELMdt7B9v5mrLZZgcYYHXclJeXT3hxFIzT1O7du3G5XMyZv5CT+RRYtCdx3rbioYKDWazXdSzXwvPpZpmY6Sd0Q5AR+nf32axRrE+lUridIg6nG3/AjyzLxONxampq8Hr73zcCUBzwo+pq/mE+fOfVUCcMg/6Zl0xOwut2nVdL7GzRx8JUnNEmLQiGLP21ly2l60wbFRUVLF68eNw3GaZsvnlayWazlJWVWSmwizlN6LrOkSNHiEajrF27dsSf2aeffpq7776bX/7yl9x2220juoaNwaQMJIqinNNONxKJcPToUa644gprmGskH4RMJsOePXtwu92TpqZwoei6TmtrKydOnGDlypVUVFSc83t7e3utuoopLGl6MUzEsFk6nWb37t1WSqUwsGVyklGsPxWmtSN61oP4QoKDIAgUBbxGO29mKM/6fgYXuK1rwICuKbfLSVdPnFQqTV9fAlU1rHFDodAACfeBTQT5uRmHA0lVLY/1Cz9hGMFBkhU8LieyZlxjqJNXcBgHRxOnQyQU8HHF0rnEzrRSXV19QdJC40EqlbKCSjweJxQKXZCMu67rHD16lEgkMqog8rvf/Y4777yTn/3sZ3zoQx8azUuxYZIGknPZ7ZoPxTfeeIOampoR77Dj8Th79uyhqqqKRYsWTYod+oWiaRpHjhwhEomwZs2aAXL658MsjppBJZ1OD2grvhQTu319fezevZvq6moWLVp0zgeZrKi0dcZoPtVJS3sEQWBA4Xo4Bs5X6MMW6y+shdaQqJcUFbfTwZmOTrp64lRVVSHLEqlUmmw2i9vtorq8HN3hOMcQpBOP24FDdNCbTJ3n9w4tK18485LJ11/8vvPPurhdDq5dt5TwqRPU1dUxf/78SZHuvNDWYl3XOXbsGJ2dnaxdu3bErowvvPACH/7wh/nRj37EHXfcMSnuwVRnSgWSQrkT85gciURQFGVA2uZ8g3vhcJiDBw8yb948Zs6cOaXeSKqqsm/fvjFLxZltxdFolEQiQXFxsVVXGY80n1nPmT179kWbgGmaxulIjyHX0h4mnhza/OncMyf9xXoRgd5kashZEuu79X4/FF3HSsvMmjmDYMBnOR8qioIDjXCsm0wmjaOgWD+cNe5QqbhCznfCAHA4BII+D5rGWXWVQjwuJ9detpSOky1Mnz6defPmTcr3vaqqlox7NBq1WosrKiqsuarRBJGXXnqJD3zgA/zrv/4rd99996S8B1ORKRNICoNIYSqrcHAvHA4jSdKwaRtz2ru1tZUVK1ZMeMvcxZLL5QZ4wo91Ks7suIlEIvT09BAMBgf41Y/2QxcOhzlw4MBZ9ZyRoOs6kZ4EzafCtLR3Eu3pAzivbpb5s0ZaKYPL6cTrcQ1ZrC/0dDc6y8JIkkxdXa1lvAV5xeKgz/DwyEqomko6bTpBGp1pgYAffyBAVVlpwXxJP0J+Gt0stHvcrvOeMEzl4MJZE7/Hg8PpMEy78u3LHreL69Yt4czJFqutfSpQeHo+ffo0kiRRVFRETU0NlZWVFx1MXn31VW6//Xb+5V/+hU996lN2EBlDJmUgGeySOFwQGUyhH0g4HCaTyVBWVkZ1dTXl5eUcO3aM7u7uSzbtPZakUil2795NSUnJWTWF8UCWZSuodHV14fV6raAy2K/+Qjh16hTHjh0btwDe05fixOkIR052DCnXYqLr+rCtsQNPCDkCPsPTXdc1Ojs70TTN6iwrxEiP9ase+71GI0c6P1mfzWZJp9MoUo5UJovP57cUiwdfSxQEvB4X6OBwGBa50hADnQ5RwONynaOzTcfjdhHye3nH8rmcOtFsWUFPJXRdp6WlhdOnT7NixQqrtnKxrcVvvPEGjY2NfOMb3+Cee+6xg8gYM6kDiTmpPlIPETNt09nZSTKZxOFwMHfuXOrq6qaUOU9PT4/luzIRKQnT+8VMNzgcDiuVeD55DF3XOX78OG1tbWcNlo4X6WyOlnbDW+VkR2xAob3woT8cAnn5eQwr3ZbWk+g61NTUDHit59fh6j8h6JpOMpNBkuR8W3GKXE7C6/X064B53EMEByMguF1OFMU48TidIi6n01JJHg6/182165Zw6vgxK4071WhpaaG9vZ2GhoYBMzrnai0enN5uamrilltu4ctf/jKf/exn7SAyDkzaQCJJ0rCT6hdDKpWiqakJv99PaWmpVQsoKSmxdtiTWdW0s7OTgwcPsmjRIqZPnz7RyxkgLBmJRNA0bdj6lDl1HIvFqK+vP2tY71KQk2Vaz0Q51tZJtCdBdyJ1zu8XBQGv12V0eqmGDLzT4WT2rBm4nM4CL5HBaaWh6T855Ppl31XDPVFVVSv9lctm8fu8ON2e/BDk0MV6bz6oqJpKOiMNO6MS8Hm4du1iTrYcZcGCBcyYMeMC79jkwdyArF279pzvHU3TiMfjA1qLDx48iCzLrFy5ko9//ON87nOf44tf/KIdRMaJSRlIFEUhm+3fNY40jVM4qFfYoZLNZq0HYW9vL0VFRVRVVVFdXT1p5khMnbHjx49P2nqOruvE43HrXuZyOas+VVpaypEjR0ilUpNmPkdVNU5Fumg5Faa5vfOsQnbhIKSiGDLwHo+HysqqggeQIaTodjrJ5aVWhns4OUQRl8sx5MnBko5XNWRZBUGnpzdhDUGKoqFYbJhNGX7rLqeYl+RX8us10mhgpNHMTVfI7+Xq+oWcPH6MRYsWTUl/cVO5+nxBZChSqRT//d//zc9+9jMOHTpEbW0tf/mXf0ljYyMrVqyY0GBy33338aUvfYm/+qu/4vvf//6ErWOsmZSB5K677qKlpYVNmzZx6623Mm3atIv+47e3t3PkyJHzFnZNiZFIJEJ3d7dVYK6urh53naDhMAeuwuHwRbf3ThSD/eqTySROp5M5c+ZQW1s7IiG98UTXdTq6eq2gkkhmLD90WZbo6OjA7/fn53P633uDfdNNf/XBxXrjoe8o8GEZGpdTxOEQcTmc6JZisWHeZp5WdF2jKBQkGAzidHmG3FiZMy9FAR/rl86iteUYixcvHrUHzURgBpGGhoYR1zKPHDnCjTfeyIc+9CHWrFnDU089xdatW/nYxz7GAw88MMYrvjDeeOMNPvjBD1JUVMSGDRvsQDLetLe38+ijj7JlyxZeffVV1q5dS2NjI42NjcyaNeucQcXsNT9z5gwrV66krOz8boImgwvMPp/PCiqXyn9BVVX2799POp2eNDv5iyGXy1nT6uXl5cRiMUtY0kwljrR1czzp6u2j5XSYA8dOsufgYUKhUP69U+Al4nQgFBhSDcYq1gOyrA77fdb1XA7QBaSCDkVByA9BCqb8vIqmKiSTKeKJPmRZthSLAwH/gO6x4qCf966ex4kWQy17Mlqyno/W1lZaW1tHFURaWlq44YYb+PCHP8z9999vBd5sNmsoS0/AfUkmk9TX1/Mf//EffPOb32T16tV2ILlU6LpOR0cHjz32GFu2bOGll15i5cqVVlAZPFBlPoRTqRSrV68e1YlCURRisRiRSIRYLIbb7aa6unrEXUsXgiRJNDU1jVt773hjdpaZ2k3mBziXy1kBuru7m0AgYAWVyWSQ1NvbS1NTE5XVtShOH82nOjkV7kLT9PPqdZmY36dqmmEuhUA6l0NV9SG+Tzun6Zc5cyIIIMkKmZycVyw2vFWy2Rwej4dAwE9ddaVREznezPLly6murh6DO3JpMVO5DQ0NIz6Ft7a2cuONN7Jx40Z+8IMfTJpB47vuuouysjK+973v8Z73vMcOJBOFruvEYjErqLzwwgssXrzYCiper5e//Mu/5O/+7u94z3veM6YP4cF2uA6HwzqpjJUYotkUUFRUdNFS3pOBeDxOU1MTdXV1LFiwYNh7Isuy1QFmBmizWD+RwpJdXV3s3bv3rMJ0VpI53h7mxJkIx09HhvWbB85hXKUT8HlxiAJZSUYUxAuy0B1stetxOQ2ZFFUjk8sZ6bR0Cicaq2aV4XU5qaqqYtasWWOutDvetLW10dLSMqog0t7ezvXXX891113HD3/4w0nzGfr1r3/Nt771Ld544w28Xq8dSCYLuq7T09PDk08+yebNm9m6dSter5eVK1fyz//8z9TX14/bm8g09TFrAYIgUFlZSXV19Yid4np7e9mzZw/Tpk2bNLIVF4P5EJ43bx6zZs264J8bLCxp3suqqirKysou2YMgEomwf//+Ie0DClFUlbaOGM15b5XCji2vx418AY6QXrcTURRwOvKe9cMU671uF7KiDqsR5nQYSsEhv591C2tpPd7CrFmzyGazxGIx616aSrsXY9N8qTGDSH19PcXFxSO6RkdHBzfccAPvfOc7+fGPfzxpXu+pU6dYu3Ytv//971m5ciWAHUgmI48//jh33nknt9xyC9lslueff57a2loaGxvZtGkTa9asGdegYoohhsNhdF2/aIVdU65lqrZomu3J53sIn4/Ce1kojWHey/ESljxz5gyHDx9m+fLlVFVVXdR6O2K9NLeHOdUZI9rbd179L5/HTU4eqBPmtibrVVL5Yr3P40KSlfMGpeqyItYvnsHJ1uOsWrWK8vJya22FEkKyLFNeXm4FlsmUMj116hTNzc2jCiLhcJgbb7yRtWvX8otf/GLSBBEwnk+33XbbgDWpqmr5JuVyuUm13pEypQPJ3r17ueqqq/iv//ovSwY6mUzy7LPPsnnzZp577jnKysq49dZb2bRpE+vWrRu3P5rZChsOh60PrxlUKioqhvy9J0+epKWlZdK2956PtrY2mpubz6s+fLGYsjfmg9BUKBhrYUlz/YUP4ZGuN9bbZ5xUTnUS7k6c9T2mD/u5jKscokgw4EXTVJLps9WIC6mtKOGyhXW0tZ5gzZo1lJaWDrs2s5uu0MHQvJcT2czR3t7O0aNHqa+vH/GgaiwW46abbmLp0qU8/PDDE6JkfS76+vo4efLkgK/dfffdLF68mC984QssX758glY2tkzpQALGjma4nXw6nWbr1q1s3ryZZ555hkAgwMaNG9m0aRPr168ftzedqRFkBpVsNmvtrisrK3E4HBw9etQy0hrpTmyi0HWd5uZmTp8+zZo1a8Z9/aZCQSQSoa+vb9TDpKbm2smTJ8dl2j6eTFtBpT3Sjd/rJp2Vh3VJNAn4PJZhligI+H1DF+unVZWydl4Np9oufv2ZTMYa3DP11MwNz6VsfDCDyLmC4Pno7u7m5ptvZu7cuTzyyCNTRq3CTm1NYbLZLH/4wx/YsmULTzzxBE6nk40bN3Lbbbdx1VVXjdtxX9d1UqmUFVRSqZT1u6bKjEghmqZZHtn19fWXfNZm8DBpKBSyAvSFDK6Z7eEdHR3U19ePu+ZaOpPjxJkoze2dtJ6JDltgD/jceUveIVdtFevLioKsnFVB+6m2UaWDoL/xwWx3N+XbzcaH8UoJnz59miNHjowqiPT29rJx40ZqamrYsmXLpJtTOhd2IHmLIMsy27dvZ/PmzTz++OOoqsrNN9/Mpk2beM973jNub0pJkti1axeKouByuUgmk5SWllq768n+YTAl7LPZLGvWrJlwaRnTx6Jw7sd8EA7Vom1KtnR1dU1IEJRkhZMdMZrbOzl+OmJNvAfzXiLn+yDOqq1g5cwyzpw+TX19/ZhuQszGB/O0YkrfmNpVY3V6N2tSq1evvqgZr0ISiQSbNm2iqKiIJ598csLfhzZv00BSiKIovPzyy/z2t7/l8ccfJ5VKcfPNN9PY2MjVV189Zjlk0xGwqKiIZcuW4XA4yGQy1u46Ho9TXFxMdXX1hOeuh0KWZfbs2QPA6tWrJ1XBFvpF/My5H7NF29xdAxw4cIC+vj4aGhom/OGjqhqno90cPx3hWFtn3m53eOZMq2RpXQnhzvE/SZn1PjOomDUqM7CMdMPT0dHBm2++Oaogkkwmuf3223G73Tz99NOTcrj17cjbPpAUoqoqr732Go8++iiPPfYYPT093HDDDTQ2NnLdddeNeAdrtveea8Yil8tZQaWnp8dK2VRXV0/4hyWbzbJ79278fj8rVqyY9F0mhS3a0WgUXdcRRUOnqqGhYdIFaV3XCXfH83ItYWK9fQP+ff6MahbVhAh3dp6lgnspMKXbI5EIiUTCUimorKy84M+EGURG09iQTqd5//vfj6ZpPPvssxMiAmozNHYgGQZN03jjjTesoNLR0cF1111HY2MjN9544wXvCCORCAcOHLio9l5JkgZItZiT4Kb+16WcM0kmkzQ1NVFeXs7ixYsnzZDXhSLLMrt27UKSjHkNsxXW7KabbCcrgJ5EkuZ8UAn5vcyt8BGLRmloaJgw/TcTU6XA9AQx04nn8gTp7Ozk0KFDowoi2WyWD33oQySTSbZu3TrlaotvdexAcgFomsaePXusoNLa2srVV19NY2MjN99887AfILO99GJnFAopLIjGYjG8Xq8l1RIKhcY1qJgnqclszXouTMkZl8vFqlWrEEVxgLBkKpUa0FY82WpUuq5z+PBhYrEYDQ0NE34yHUyhJ0g0GkUUxbMGSk1XzFWrVo24RTyXy3HHHXcQjUZ5/vnnR1ygtxk/7EBykei6zsGDBy1RycOHD7NhwwY2bdrEzTffTHl5OZqm8fOf/5z58+ePaXusaTAVDocteRGzDjDWkhjRaJT9+/czf/78KWmIZKbjAoEAK1asGPIklU6nraBi+tWbD8KJfmjrus6hQ4fo6emZlOm4wZg+NWZQkWWZYDBIIpFg2bJlIx5WlWWZj370o5w8eZJt27aNat7HZvywA8ko0HWdo0ePsnnzZjZv3sy+ffu48soryWQynD59mpdffnncxPPMLptwODxA/8v0AhlNUDlz5gxvvvnmlFWQNRsbSktLWbJkyQWl4yaTsKS5WYnH45OiMeBiMb10jh07htfrJZfLUVpaagXpC309iqLw8Y9/nMOHD7N9+/YpObT7dsEOJGOEruvs3LmTD3zgAySTSWRZZtWqVdx66600NjZSV1c3bg8jczdoBhVd162H4MVqVrW2tnL8+PFRT3tPFMlkkl27dlFTU8PChQtHdM8HpxM9Hs+4nfwGo2kaBw4cIJlM0tDQMOnSbRdCNBpl3759rFixgqqqKmsI0pz9MT1/zNmfoe6nqqp86lOfoqmpie3bt0/JDc3bCTuQjBEnTpzg+uuvZ+XKlfzXf/0XsViMzZs3s2XLFl577TXWrVtnSbXMnDlz3B5GpqClmbJRVXVYK9zBP2cO6k3FQUnoVyCeMWMGc+fOHZN7XKj8XCiGOB7CkpqmWV40DQ0NU2ZSuxAziAwnZW/O/pjqz4YDpVGsN4cgVVXl3nvv5ZVXXmHHjh1T0uHx7YYdSMaIM2fO8NOf/pR/+Id/GPBw0XWdM2fOWPL3f/zjH1m5ciWbNm2isbFxXIvYpmaVOVUvSZIl1VJRUWENmWmaxqFDh+jt7aW+vn7C6wMjwbRVnjt37kUpEF8MhcKSZpAuvJ+jaYvWNI29e/eSy+Wor6+fkkEkFouxd+/eC/ZDGaz+/I1vfMPa7Ozdu5cXX3xx3P6W5+OHP/whP/zhD2ltbQVg2bJlfOUrX+HGG2+ckPVMduxAcgnRdZ1IJMLjjz/Oli1b2L59O4sXL7aCyuLFi8c1qCSTSSuoZDIZysvLqaiooLOzE0VRWLNmzZRNpezfv/+S+pObQdoMKtls1morvliFXVVV2bt3L7IsU19fPylbks9HLBZj3759LF26dERpKF3X+f3vf88PfvAD/vSnP6GqKtdffz2NjY3ceuutYyoKeiE89dRTOBwOFixYgK7r/OIXv+D++++nqamJZcuWXdK1TAXsQDJBmCmoJ554gs2bN/OHP/yBuXPnWvL3y5YtG9eZjWQySUdHB21tbWiaRllZmdVWPJV2w6aM/US7Ag72qzelbyorK89ZXFZVlT179qBpGmvWrJl06rUXgulHM9IgAsaJ7Mtf/jK//e1v2b59O4qi8MQTT/D444/zyU9+kk984hNjvOqLp6ysjPvvv39SrGWyYQeSSUI8Huepp56yjLqmTZtmBZXVq1ePeVDJZDLs3r2bYDDIvHnzrOJyIpGgpKTEkmqZzB1DpoLsWMvYj5bBxWVTpaCqqmrAQKGiKDQ1NSEIAqtXr56SQaS7u5s9e/awZMmSEbf46rrOP/3TP/GLX/yCHTt2sHjx4rP+fSJnmFRV5be//S133XUXTU1NLF26dMLWMlmxA8kkpK+vb4CnSkVFhaVUvG7dulEHlb6+PsObvLLyrHSaqa4bDoeJx+MUFRVZJ5XJNMvQ2trKiRMnWL169aQeUBusUuD3+61C/bFjx3A6naxevXrSy84MhRlEFi9eTF1d3Yiuoes69913Hz/60Y/Yvn37pPLn2L9/P+vXryebzRIMBnn44Ye56aabJnpZkxI7kExy0uk0v/vd7yxPlWAwaHV/rV+//qIfQD09PezZs4dZs2YxZ86cc+70zNmKcDhseVeYQWWipDp0XaelpYX29vYxV8AdbxRFsQZKI5EIoihSV1dn2TRPJeWAnp4empqaRh1Evve97/G9732Pbdu2sXr16rFd5CiRJIm2tjbi8TiPPvooP/nJT3jxxRftE8kQ2IFkCpHNZvn9739veaq43W7rpPKOd7zjvEVaU/dr4cKFTJ8+/aJ+tyzLVlAp1P+6lAN7uq5z5MgRIpEI9fX1U1K0T5Ikdu/ejcfjYdq0aVZKERjQVjyZTyhmEBlNc4Ou6zzwwAN85zvfYevWraxbt26MVzn2XHPNNcybN48HH3xwopcy6bADyRRFkqQBniqapnHLLbdYniqDC+ZmPWE0ul8mhTtrU//LDCpD+YCMBYUtylNBMmQoTD8aU0XZTFHquj6grViW5SHbtCcDvb297N69e0SbERNd1/nP//xPvv71r/Pcc8+xfv36MV7l+PDe976XmTNn8tBDD030UiYddiB5C6AoCn/84x8tT5VMJmN5qmzYsIF/+qd/QlEU/uEf/mHM6wnmwJ4ZVJxO5wAfkLEIKpqmsW/fPjKZDPX19VOyRTmXy7Fr1y5CodA5O/JMm2ZztqJQWHKiO+p6e3tpampi/vz5F6xkPRhd13nooYf40pe+xNNPP8273vWuMV7l2PClL32JG2+8kZkzZ9LX18fDDz9snZ6uvfbaiV7epMMOJG8xVFXl1VdftZSKk8kkuq7zxS9+kU984hPjOmyoaZo1BR6NRhEEYYD+10iaBMz2WEVRpuyMRTabZdeuXRQXF7Ns2bKLCq6DvUCKi4ute3opT2XxeJzdu3ePOoj88pe/5HOf+xxPPvkkGzZsGONVjh2f+MQn2LZtGx0dHRQXF7Ny5Uq+8IUv2EFkGCZ1IPn3f/937r//fjo7O1m1ahX/9m//xmWXXTbRy5oS5HI57rzzTv70pz9xww038Ic//IFwOMy1117Lpk2buOGGG8bVZc/U/zLTNbquD5BquZCgIssyTU1NiKI4ZdtjM5kMu3btoqysjCVLlozqhJbNZq2gYjY/FLYVj1edygwi8+bNG7EStK7r/OY3v+Hee+9l8+bNXH/99WO8SpuJZNIGkkceeYSPfvSj/OhHP+Lyyy/n+9//Pr/97W85cuTIqHP8bwfuvvtuDh06xNNPP01lZSWaptHU1GTJ37e1tXHNNdfQ2NjITTfdNK5ihINrAIqiUFFRQXV19bD6X7lcjt27d+P1elm5cuWkLj4PRzqdZteuXVRWVrJo0aIxvb9m80OhZpU5+zOWf8tEIsGuXbtGLT2zZcsWPvWpT/HII49wyy23jMnabCYPkzaQXH755axbt44HHngAMHa4M2bM4N577+WLX/ziBK9u8nPixAlLXXUwuq5z4MABK6gcPXp0gKdKWVnZuOt/mbMquVzOCipmYdkcljT97aeaKyMYKaldu3ZRXV09YhXiC6VQWNK0FDBPfyNNKUJ/EJkzZw6zZ88e8fqefvpp7r77bn75y19y2223jfg6NpOXSRlIJEnC7/fz6KOPsmnTJuvrd911F729vTzxxBMTt7i3GGZLrempsn//ft71rnfR2NjIxo0bqaqqGnf9LzOoZDIZiouLSSaTVFZWsnTp0ik1W2FiStnX1dUxf/78S/oaBqcUNU27IPXnwfT19bFr1y5mz549qiDyu9/9jjvvvJOf//znfPCDHxzxdWwmN5MykJw5c4Zp06bx6quvDmgN/PznP8+LL77In/70pwlc3VsXc9jPlL/ftWsXV155pSWcN56eKmDMuezfvx+n04ksy5OmW+liMB/AYyllP1J0XScej1t1lWw2S0VFhSXbPlzjgvkazKHVkbJt2zY+8pGP8OCDD/I//sf/mJKbApsLww4kNkOi6zptbW1WUHn99ddZt24djY2NNDY2jrmnitlaOnv2bObMmUMmk7EmwE39LzOoTFb9r0Qiwe7du0f9AB4PdF0nlUqdV1gymUyyc+dOZs6cydy5c0f8+1566SU+8IEP8IMf/ICPfexjdhB5izMpA4md2ppcmJ4qW7ZsYcuWLbz88susWrXKkr8f7c7bVI9dsGDBkK2lpv6XKYJYVFRkBZXJ4p1idjaNtp5wqchkMtY9NTXViouL6ejoYMaMGcybN2/E13711Ve5/fbb+T//5//wv/7X/7KDyNuASRlIwCi2X3bZZfzbv/0bYOR+Z86cyT333GMX2ycQXdcJh8OWp8qOHTtYsmSJFVQutjvJTGctXbr0gtRjJUmyHoDd3d0DWmAnSjLFPE2Npj12IpEkifb2do4fP46u6wPkb0Kh0EX9Pf/85z+zadMmvvnNb/KZz3zGDiJvEyZtIHnkkUe46667ePDBB7nsssv4/ve/z29+8xsOHz48ob4TNv3ouk53d/cAT5X58+db8vdLly49Z8fQmTNnOHz48IhlW8wWWFNZ1+fzUVVVRXV19SXT/zIVcEcjGTLRpFIpdu7cybRp05g1a9YAa2GXy3XBSgW7d+9m48aN/OM//iN/8zd/YweRtxGTNpAAPPDAA9ZA4urVq/nBD37A5ZdfPtHLshkCs7Breqo8//zzTJ8+3Qoqq1atGhBUWlpaOHnyJKtXr6asrGzUv9/U/zIfgG632woq46X/ZabkLqUz41hjtinX1tae1WE22AoXsGoqg4dK9+3bx80338zf/d3f8YUvfMEOIm8zJnUgsZm69PX18cwzz7B582Z+97vfUVFRwa233kpjYyOPPfYYb7zxBo899hjFxcVj/ruHmqsolGoZi4ecaS07GkOniSadTrNz505qampYsGDBOe+L6VdvngBlWWb//v0Eg0GWL1/OBz/4Qe655x6+8pWvTFgQ+fa3v82WLVs4fPgwPp+PK6+8ku985zssWrRoQtbzdsIOJOfhpZde4v7772fXrl10dHTw2GOPDWgAsDk/qVTK8lR5/PHHcTqdvP/97+cjH/kIV1xxxbhOrWuaZu2qI5EIgiBQWVlpeYCMZFjPlOMfjbXsRGNO3VdVVV30wKQpLPnAAw/w3//935w+fZo5c+bwhS98gcbGRiorK8dx5cNzww038OEPf5h169ahKAp///d/z4EDBzh06NCE+ee8XbADyXl47rnneOWVV2hoaOD222+3A8kIUVWVT3/602zdupW///u/57XXXuPJJ5/E4/GwceNGNm3adEGeKqPB3FWbA5DmsF51dfUFe4CEw2EOHDjAihUrpqxUTyaTYefOnSMKIoU0Nzdz4403cuONNzJ//nwee+wxdu3axd/8zd9w//33j/GqL55oNEpVVRUvvvjipFUZfqtgB5KLQBAEO5CMkJ/85Cf83//7f/n9739vFaUlSeKFF16wTiqA5any7ne/e1yHEM2ajjmrYnqAmFItQwWVjo4O3nzzTVasWDFhu+7RYgaR0ep/tba2csMNN7Bp0ya+//3vWye706dP09PTMyksc5ubm1mwYAH79++fFOt5K2MHkovADiQjR1VVEonEsH4oiqLw0ksvWZ4q2WyWW265hcbGRt773veO6xBioQdIOBy2JsBNYymXy2V1mK1atYry8vJxW8t4ks1m2blzJ+Xl5SxevHjEQeTUqVNcf/313HDDDfzHf/zHpNRC0zSNW2+9ld7eXl5++eWJXs5bHjuQXAR2ILk0qKrKK6+8wqOPPsrjjz9OPB63dr/XXnvtuA4hmhPg5kkllUrh9/tJp9OsXLlyyqazzCAyWjn7jo4Orr/+et71rnfx4x//eNKqMn/605/mueee4+WXX56ybdlTCTuQXAR2ILn0aJrGn/70J8uoKxKJcN1117Fp0yauv/76cfVUAaNNubW1Fa/XSyaTsWRFqqqqpoxTo2msVVpaOqogEg6HufHGG1m3bh0PPfTQpA0i99xzD0888QQvvfTSpJOqeatiB5KLwA4kE4umaezevduSvz916hTXXHMNmzZt4qabbhrzeZGTJ09y/Phx1qxZQ0lJyVmyIhPlVngx5HI5du7cSUlJyajUlKPRKDfffDPLli3jV7/61aQ0GdN1nXvvvZfHHnuMHTt2sGDBgole0tsGO5BcBHYgmTxomjbAU+XYsWO8973vpbGxcUw8VU6cOEFrayv19fVDzrrkcjkrqPT09BAKhQa4FU4GTJ9409dlpPeju7ubm266iXnz5vGb3/xm0tod/+///b95+OGHeeKJJwbMjhQXF0/aQP9WwQ4k5yGZTNLc3AzAmjVr+O53v8uGDRsoKyubkrpKb0V0Xefw4cNWUDlw4ADvfve7LU+VysrKi3qItrS0cOrUKRoaGi4odSZJ0gCpFlOrqrq6elwtcM+3pp07d446iPT29rJx40Zqa2vZsmXLpJbzH+41/vznP+djH/vYpV3M2ww7kJyHHTt2sGHDhrO+ftddd/HQQw9d+gXZnBPTU8UMKk1NTQM8VWpra4d94Jg/e/r0aRoaGkYkAinL8gCpFq/XawWVixVAHClmEAmFQixfvnzEvzORSLBp0yaKi4t54oknJq18v83EYwcSm7csuq5z8uRJNm/ezGOPPcbrr7/OZZddZnmqzJgxw3rIaprGkSNHiEQirF27dkzSU6qqEovFCIfDAwQQq6urx9RXvRBJkti1axeBQIDly5ePuDU3mUxy++2343a7eeaZZ+zUkM05sQOJzdsCXdc5ffq05anyyiuvsHr1ajZt2sTGjRv59re/TS6X4z//8z/Hpb24UAAxEokM0P8qKSkZk1kMM4j4/X5WrFgx4mum02ne//73o+s6zzzzzITJ89tMHexAMoWwRenGBtNT5bHHHmPz5s288sorBAIB7rrrLv7iL/5iVLIhF4Lpqx4Oh4lGo+i6bgWVsrKyEQUAWZbZtWsXPp9vVEEkm83yoQ99yNJHKyoqGtF1bN5e2IFkCmGL0o0tqqryP//n/2THjh18+tOfZseOHWzbto0FCxZw6623ctttt7FkyZJxndzWdZ3e3l5rAFJVVSorK6mqqqK8vPyCZjXMIOL1elm5cuWI15vL5bjjjjuIxWI8//zzlJSUjOg6Nm8/7EAyhbFF6UbHv/zLv/Czn/2Mbdu2MW3aNEt/68knn7Q8VWbOnGkFldE8pC8EXddJJBJWUJEkaYBUy1CzG7Iss3v3btxu91meLxeDJEl89KMf5dSpU2zbtm1MPGJs3j7YgWQKY4vSjY5kMkkqlRrWcTORSAzwVKmqqrKCSkNDw7gHlWQyaQWVTCZDeXm5ZSzlcrlQFIXdu3fjcrlGFURkWeYTn/gER44c4YUXXpiygpQ2E4cdSKYotijdpSWVSvHcc8+xZcsWnnnmGYqLi7n11lvZtGkTl19++bjLhSSTSatQn0wmKS0tJZPJ4PV6WbNmzYh/v6IofOpTn2Lv3r1s377dtrG2GRF2IJmi2KJ0E0cmk+H5559ny5YtPPXUU3i93gGeKuMtH9LX18eePXtQFAVVVSkpKbGK9Rcz66GqKvfccw+vvfYaO3bsoK6ubhxXbfNWxg4kUxBblG7yIEkSf/jDH9iyZQtPPPEEgiBw8803c9ttt/Gud71rzCfBFUWhqakJURRZvXo1sixb8vfxeJyioiJrVuVcsx+apvHXf/3XbN++ne3bt9sqDTajwg4kUwhblG5yI8uy5anyxBNPkMvluPnmm9m0aRMbNmwY9WS4qqo0NTUhCAKrV68+K52Vy+WIRqOEw2F6enoIBoNUV1efpf+laRqf//zneeaZZ9ixY4e9GbEZNXYgmULYonRTB1VVefnlly1PlUQiwY033simTZu45pprLnro0QwiwAXVRGRZtoJKV1cXgiDw3HPP8b73vY8nnniCLVu2sH379gnfjLz00kvcf//97Nq1i46ODlsUdYpiB5IphC1KNzXRNI3XX3/dCirRaHSAp8r5JsdVVWXPnj1omkZ9ff1FF9YVRWH//v384z/+I6+++ioAd955J5/85CdZu3bthIhKmjz33HO88sorNDQ0cPvtt9uBZIpiBxIbm0uIpmns2rWLzZs3s2XLFtrb27nmmmtobGwc0lNFVVX27t2LqqqsWbNmxIV8Xdf59re/zc9+9jM+//nPs3PnTp566ilKSkp49tlnWbZs2Vi9xBFj2zRMXexAYmMzQWiaxr59+6yg0tzczNVXX82tt97KLbfcgtvt5pOf/CR33HEH119//aiCyHe/+12+//3v88ILL7Bq1SrAqKls27aNDRs2TIrUqB1Ipi7jN1Fl87bghz/8IStXrqSoqIiioiLWr1/Pc889N9HLmhKYnVff+MY3OHDgAE1NTVxxxRX86Ec/Ys6cOVx55ZUcPHiQhQsXjnhORNd1/u3f/o3vfe97bN261QoiAB6Ph5tuumlSBBGbqY0dSGxGxfTp07nvvvvYtWsXO3futFwKDx48ONFLm1IIgsDSpUv5yle+wp/+9Cfe9a53kcvlKC8vZ+3atdx00008+OCDdHR0cKFJBF3XefDBB7nvvvt49tlnWbt27Ti/Cpu3K3YgsRkVGzdu5KabbmLBggUsXLiQb33rWwSDQV5//fWJXtqURFVVPvShDxGPx9m/fz+vvfYaR48eZePGjTz66KMsWrSI6667jgceeIBTp04NG1R0XefnP/85X/va13jqqae44oorLvErsXk7YQcSmzFDVVV+/etfk0qlWL9+/UQvZ0ricDjYuHGjpb4rCAJz5szhc5/7HC+//DInTpzggx/8IM888wzLli1jw4YNfP/73+fEiRNWUNF1nf/+7//mS1/6Ek8++STvfOc7J/hV2bzVsYvtNqNm//79rF+/nmw2SzAY5OGHH+amm26a6GW9pdF1nc7OTh577DG2bNnCiy++yPLly2lsbMTj8fCtb32LLVu2cN111030Us9JMpmkubkZMOZjvvvd77JhwwbKysrsafsphB1IbEaNJEm0tbURj8d59NFH+clPfsKLL77I0qVLJ3ppbwt0Xaerq4snnniChx9+mBdeeIFf/vKX3HHHHRO9tPOyY8cONmzYcNbX77rrLh566KFLvyCbEWEHEpsx55prrmHevHk8+OCDE72Utx2mpbAt5GlzKbFrJDZjjqZp5HK5iV7G2xJBEOwgYnPJGV+9a5u3PF/60pe48cYbmTlzJn19fTz88MPs2LGDrVu3TvTSbGxsLhF2ILEZFZFIhI9+9KN0dHRQXFzMypUr2bp1K9dee+1EL83GxuYSYddIbGxsbGxGhV0jsbGxsbEZFXYgsbGxsbEZFXYgsXlLc9999yEIAn/913890UuxsXnLYgcSm7csb7zxBg8++CArV66c6KXY2LylsQOJzVuSZDLJHXfcwY9//GNKS0snejk2Nm9p7EBi85bkM5/5DDfffDPXXHPNRC/FxuYtjx1IbN5y/PrXv2b37t18+9vfnuilvGX593//d2bPno3X6+Xyyy/nz3/+80QvyWYCsQOJzVuKU6dO8Vd/9Vf86le/wuv1TvRy3pI88sgjfPazn+WrX/0qu3fvZtWqVVx//fVEIpGJXprNBGEPJNq8pXj88ce57bbbBljTqqqKIAiIokgulxuxba2NweWXX866det44IEHAENbbcaMGdx777188YtfnODV2UwEtkSKzVuKq6++mv379w/42t13383ixYv5whe+YAeRUSJJErt27eJLX/qS9TVRFLnmmmt47bXXJnBlNhOJHUhs3lKEQiGWL18+4GuBQIDy8vKzvm5z8cRiMVRVpbq6esDXq6urOXz48AStymaisWskNjY2Njajwj6R2Lzl2bFjx0Qv4S1DRUUFDoeDcDg84OvhcJiampoJWpXNRGOfSGxsbC4Yt9tNQ0MD27Zts76maRrbtm1j/fr1E7gym4nEDiQ2NpeAr33tawiCMOD/Fy9ePNHLGhGf/exn+fGPf8wvfvEL3nzzTT796U+TSqW4++67J3ppNhOEndqysblELFu2jD/84Q/WfzudU/Pj96EPfYhoNMpXvvIVOjs7Wb16Nb/73e/OKsDbvH2Ymu9kG5spiNPpfMvUEe655x7uueeeiV6GzSTBTm3Z2Fwijh07Rl1dHXPnzuWOO+6gra1topdkYzMm2JPtNjaXgOeee45kMsmiRYvo6Ojg61//OqdPn+bAgQOEQqGJXp6NzaiwA4mNzQTQ29vLrFmz+O53v8snPvGJiV6Ojc2osFNbNjYTQElJCQsXLqS5uXmil2JjM2rsQGJjMwEkk0laWlqora2d6KXY2IwaO5DY2FwCPve5z/Hiiy/S2trKq6++aikUf+QjH5nopdnYjBq7/dfG5hLQ3t7ORz7yEbq6uqisrOSqq67i9ddfp7KycqKXZmMzauxiu42NjY3NqLBTWzY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o8IOJDY2NjY2o+L/B8/AuHrxeZQFAAAAAElFTkSuQmCC"
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# %% Fit using a 0-3 order polynomial, getting the best fit for the data.\n",
+ "polynomial_estimator = GridSearchCV(\n",
+ " make_pipeline(PolynomialFeatures(), LinearRegression(fit_intercept=False)),\n",
+ " param_grid=dict(polynomialfeatures__degree=range(4)),\n",
+ ")\n",
+ "polynomial_estimator.fit(X, y)\n",
+ "\n",
+ "show_results(estimator=polynomial_estimator, label=\"[0th-3rd]-order linear\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "3d870dbb",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "INFO:autora.skl.bms:BMS fitting started\n",
+ " 0%| | 7/1500 [00:00<01:15, 19.80it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2**2*_a0_**S1\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return -_a0_**S2\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return -_a0_**S2\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return -_a0_**S2\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(cos(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(cos(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(cos(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return _a0_**S1/S2\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(S1/_a0_)\n",
+ " 1%| | 10/1500 [00:00<01:11, 20.75it/s]/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:906: OptimizeWarning: Covariance of the parameters could not be estimated\n",
+ " warnings.warn('Covariance of the parameters could not be estimated',\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(_a0_/S2**2)\n",
+ " 1%| | 16/1500 [00:00<01:10, 21.08it/s]:2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(cos(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(cos(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2*cos(S2)**(-S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2*cos(S2)**(-S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2*cos(S2)**(-S1)\n",
+ " 1%|▏ | 19/1500 [00:00<01:09, 21.32it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return (_a0_**3)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return (_a0_**3)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return (_a0_**3)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return _a0_**(-S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S2 + _a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S2 + _a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S2 + _a0_)**_a0_\n",
+ " 1%|▏ | 22/1500 [00:01<01:06, 22.25it/s]:2: RuntimeWarning: divide by zero encountered in scalar power\n",
+ " return fac(_a0_)**_a0_\n",
+ ":2: RuntimeWarning: divide by zero encountered in scalar power\n",
+ " return fac(_a0_)**_a0_\n",
+ ":2: RuntimeWarning: divide by zero encountered in scalar power\n",
+ " return fac(_a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S1 + _a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S1 + _a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S1 + _a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S2 + _a0_)**S1\n",
+ " 2%|▏ | 25/1500 [00:01<01:11, 20.69it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2*_a0_**sin(S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return _a0_**(-S1)*sig(_a0_/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return _a0_**(-S1)*sig(_a0_/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return _a0_**(-S1)*sig(_a0_/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return tan(S2)**(_a0_/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return tan(S2)**(_a0_/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return tan(S2)**(_a0_/S1)\n",
+ " 2%|▏ | 28/1500 [00:01<01:11, 20.71it/s]:2: RuntimeWarning: overflow encountered in power\n",
+ " return S1**(S2**S2)\n",
+ "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/pandas/core/arraylike.py:402: RuntimeWarning: overflow encountered in square\n",
+ " result = getattr(ufunc, method)(*inputs, **kwargs)\n",
+ ":2: RuntimeWarning: overflow encountered in power\n",
+ " return S1**(S2**S2)\n",
+ ":2: RuntimeWarning: overflow encountered in power\n",
+ " return S1**(S2**S2)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return -_a0_*_a0_**(-S1)\n",
+ " 2%|▏ | 34/1500 [00:01<01:13, 20.01it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(_a0_**S1)/S1\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(_a0_**S1)/S1\n",
+ " 3%|▎ | 40/1500 [00:01<01:15, 19.45it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2*_a0_**(-S2)\n",
+ " 3%|▎ | 42/1500 [00:02<01:16, 19.18it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return S2*_a0_**(-S2 - _a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return S1**3 + sig(_a0_**S1)**S1\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(cos(S1))\n",
+ " 3%|▎ | 44/1500 [00:02<01:19, 18.29it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return sin(S1)**((1/2)*_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return sin(S1)**((1/2)*_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return -_a0_**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return -_a0_**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return -_a0_**_a0_\n",
+ " 3%|▎ | 46/1500 [00:02<01:25, 17.02it/s]:2: RuntimeWarning: overflow encountered in exp\n",
+ " return exp(S2**S2)\n",
+ ":2: RuntimeWarning: overflow encountered in exp\n",
+ " return exp(S2**S2)\n",
+ ":2: RuntimeWarning: overflow encountered in exp\n",
+ " return exp(S2**S2)\n",
+ " 3%|▎ | 48/1500 [00:02<01:29, 16.20it/s]:2: RuntimeWarning: invalid value encountered in log\n",
+ " return relu(log(_a0_))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return relu(log(_a0_))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return relu(log(_a0_))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(log(_a0_)/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(log(_a0_)/S1)\n",
+ " 3%|▎ | 52/1500 [00:02<01:28, 16.33it/s]:2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(cos(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return sig(_a0_**S1)/S1\n",
+ " 4%|▎ | 56/1500 [00:02<01:29, 16.12it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return cos(S1)**((1/2)*_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return cos(S1)**((1/2)*_a0_)\n",
+ " 4%|▍ | 58/1500 [00:03<01:27, 16.48it/s]:2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return relu(_a0_**_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in scalar power\n",
+ " return relu(_a0_**_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(sin(S2))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(sin(S2))\n",
+ ":2: RuntimeWarning: invalid value encountered in log\n",
+ " return log(sin(S2))\n",
+ ":2: RuntimeWarning: overflow encountered in power\n",
+ " return S2*_a0_**(S2**S2)\n",
+ "/Users/jholla10/Library/Caches/pypoetry/virtualenvs/autora-17yK3Jyq-py3.8/lib/python3.8/site-packages/scipy/optimize/_minpack_py.py:862: RuntimeWarning: overflow encountered in square\n",
+ " cost = np.sum(infodict['fvec'] ** 2)\n",
+ ":2: RuntimeWarning: overflow encountered in power\n",
+ " return S2*_a0_**(S2**S2)\n",
+ ":2: RuntimeWarning: overflow encountered in power\n",
+ " return S2*_a0_**(S2**S2)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(-S1 - _a0_*(S1 + S2))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(-S1 - _a0_*(S1 + S2))\n",
+ " 4%|▍ | 60/1500 [00:03<01:26, 16.62it/s]:2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(S1)**((1/2)*sqrt(_a0_))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(S1)**((1/2)*sqrt(_a0_))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(S1)**((1/2)*sqrt(_a0_))\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return (S2*(S1*S2)**(1/4)/_a0_)**_a0_\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(_a0_)/sqrt(sin(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(_a0_)/sqrt(sin(S1))\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return relu(_a0_)/sqrt(sin(S1))\n",
+ " 4%|▍ | 62/1500 [00:03<01:24, 17.07it/s]:2: RuntimeWarning: invalid value encountered in power\n",
+ " return relu((_a0_**S1)**_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return relu((_a0_**S1)**_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in power\n",
+ " return relu((_a0_**S1)**_a0_)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(log(S2)/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(log(S2)/S1)\n",
+ ":2: RuntimeWarning: invalid value encountered in sqrt\n",
+ " return sqrt(log(S2)/S1)\n",
+ " 4%|▍ | 64/1500 [00:03<01:22, 17.31it/s]