-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeras_models.py
249 lines (220 loc) · 8.23 KB
/
keras_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import numpy as np, sys, math, os
import copy
import time
import keras
from keras import backend as K
from keras import layers
from keras.layers import Input
from keras.layers import Dense
from keras.layers import Activation
from keras.layers import Embedding
from keras.layers import Flatten
from keras.layers import Lambda
from keras.layers import Reshape
from keras.layers import BatchNormalization
from keras.layers import Dropout
from keras.layers import TimeDistributed
from keras.layers import LSTM, GRU
from keras.layers import Bidirectional
from keras.layers import concatenate
from keras.layers import add
from keras.layers import multiply
from keras.models import Model
from keras import regularizers
from keras import optimizers
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.sequence import pad_sequences
from collections import OrderedDict
import logger
from logger import log, _timer
import util
import AttLayers
import MyLayers
from evaluate import Eva
import dataset
class BasicModel:
_fields = ['data', 'run_times', 'maxlen', 'early_stop', 'max_epochs', 'dim_k', 'batch_size', 'batch_steps', 'gpu']
def __init__(self, *args, **kwargs):
self.name = type(self).__name__
if len(args) > len(self._fields):
raise TypeError('Expected {} arguments'.format(len(self._fields)))
for name, value in zip(self._fields, args):
setattr(self, name, value)
for name in self._fields[len(args):]:
setattr(self, name, kwargs.pop(name))
if kwargs:
raise TypeError('Invalid argument(s): {}'.format(','.join(kwargs)))
if self.batch_steps < 0:
self.batch_steps = math.ceil(len(self.data.train.y) / self.batch_size)
self.early_stop *= math.ceil(len(self.data.train.y) / (self.batch_size * self.batch_steps))
log('early_stop: {}'.format(self.early_stop))
n = len(self.data.train.y)
self.epp = math.ceil(n / (self.batch_size * self.batch_steps))
log('#train_data: {}\nbatch_size: {}\nsteps: {}\nall data need {} epochs'.format(n, self.batch_size, self.batch_steps, self.epp))
self.att_values = []
self.model = None
def fit(self, model_args):
seeds = [171204,402711,711270,201714,141702]
ve, te = [], []
for _ in range(self.run_times):
log('run_times#{}/{}, seed: {}'.format(_ + 1, self.run_times, seeds[_]))
np.random.seed(seeds[_])
self.init_model_args(model_args)
self.model = self.make_model()
_ve, _te = self._fit()
ve.append(_ve)
te.append(_te)
msg = 'vali: {}, test: {}'.format(_ve, _te)
log(msg)
return Eva.mean(ve), Eva.mean(te)
def predict(self, x):
return self.model.predict(x)
def evaluate(self, x, y = None):
if y is None:
if type(x) == str:
x = eval('self.data.' + x)
x, y = x.x, x.y
return Eva(self.predict(x), y)
def init_model_args(self, model_args):
K.clear_session()
util.set_gpu_using(gpus = self.gpu)
self.un = util.UniqueName()
self.model_args = model_args
def get_l2(self, name):
all_l2 = self.model_args.get('all_l2')
if all_l2 is not None:
return regularizers.l2(all_l2)
return regularizers.l2(self.model_args['{}_l2'.format(name)])
def train_on_batch(self, data, batch_size, steps):
n = len(data.y)
idxs = util.gen_idxs(n, batch_size)
x, y = data.x, data.y
while True:
if self.epp > 1 or 1:
for i in range(steps):
idx = next(idxs)
self.model.train_on_batch([_x[idx] for _x in x], y[idx])
else:
self.model.fit(x, y, batch_size = batch_size, epochs = 1, verbose = 0)
yield 1
def _fit(self):
best_weights, best_e, brk = None, None, 0
training = self.train_on_batch(self.data.train, self.batch_size, self.batch_steps)
for i in range(self.max_epochs):
_timer.start()
next(training)
train_time = _timer.stop()
_timer.start()
e = self.evaluate('vali')
vali_time = _timer.stop()
if e.is_better_than(best_e):
best_e = e
best_w = self.model.get_weights()
brk = 0
else:
brk += 1
msg = '#{}/{}, vali: {}, time: {:.2f}s {:.2f}s'.format(i + 1, self.max_epochs, e, train_time, vali_time)
log(msg)
if self.early_stop > 0 and brk >= self.early_stop:
break
_timer.start()
self.model.set_weights(best_w)
test_e = self.evaluate('test')
_timer.stop()
return best_e, test_e
def single_embedding(self, x, n, name, dim_k = None):
if dim_k is None:
dim_k = self.dim_k
x = Embedding(
n,
dim_k,
name = self.un(name),
embeddings_regularizer = self.get_l2(name),
)(x)
x = Flatten()(x)
return x
def get_text_emb_layer(self, name = 'text'):
emb = Embedding(
self.data.nb_words + 1,
self.dim_k,
name = self.un(name),
embeddings_regularizer = self.get_l2(name),
mask_zero = True,
)
pos = MyLayers.PosAddW(l2 = self.get_l2('{}_pos'.format(name)))
return emb, pos
def text_embs(self, text = None, emb_layer = None, name = 'text'):
if text is None:
text = self.inp_text
if emb_layer is None:
emb_layer = self.get_text_emb_layer(name = name)
texts = emb_layer[0](text)
texts = emb_layer[1](texts)
return texts
def user_emb(self, name = 'user'):
return self.single_embedding(self.inp_user, self.data.nb_users, name)
def loc_emb(self, name = 'loc'):
return self.single_embedding(self.inp_loc, self.data.nb_locs, name)
def post_emb(self):
pass
def make_inputs(self):
self.inp_user = Input((1,), name = 'inp_user')
self.inp_loc = Input((1,), name = 'inp_loc')
self.inp_text = Input((self.maxlen,), name = 'inp_text')
self.inputs = [self.inp_user, self.inp_loc, self.inp_text]
def top_layers(self, x):
user = self.user_emb('bias_user')
loc = self.loc_emb('bias_loc')
x = concatenate([x, user, loc])
x = Dense(
512,
activation = 'relu',
kernel_regularizer = self.get_l2('dense'),
bias_regularizer = self.get_l2('dense_b')
)(x)
return x
def make_model(self):
self.make_inputs()
x = self.post_emb()
x = self.top_layers(x)
y = Dense(
1,
activation = 'relu',
kernel_regularizer = self.get_l2('dense'),
bias_regularizer = self.get_l2('dense_b')
)(x)
model = Model(inputs = self.inputs, outputs = y)
model.compile(
optimizer = 'adagrad',
loss = 'mse')
return model
class MemNN(BasicModel):
def mem(self, mem, att, u, l):
self.att_values = []
for i in range(self.model_args['nb_mem_layers']):
att_layer = AttLayers.Att()
o = att_layer([mem, att, u, l])
self.att_values.append(att_layer.att_value)
if i == self.model_args['nb_mem_layers'] - 1:
return add([o, u, l])
u = add([u, o])
l = add([l, o])
def post_emb(self):
user = self.user_emb('att_user')
loc = self.loc_emb('att_loc')
mem = self.text_embs(name = 'mem_text')
att = self.text_embs(name = 'att_text')
return self.mem(mem, att, user, loc)
class MOOD(MemNN):
def post_emb(self):
text = super().post_emb()
user = self.user_emb('pair_user')
loc = self.loc_emb('pair_loc')
ut = multiply([user, text])
lt = multiply([loc, text])
ul = multiply([user, loc])
return add([ut, lt, ul])
def main():
print('hello world')
if __name__ == '__main__':
main()