-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathconftest.py
366 lines (279 loc) · 11.8 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# ---------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
import numpy as np
import pandas as pd
import pyspark
import pytest
from inference_schema.parameter_types.numpy_parameter_type import NumpyParameterType
from inference_schema.parameter_types.pandas_parameter_type import PandasParameterType
from inference_schema.parameter_types.spark_parameter_type import SparkParameterType
from inference_schema.parameter_types.standard_py_parameter_type import StandardPythonParameterType
from inference_schema.schema_decorators import input_schema, output_schema
from pyspark.sql.session import SparkSession
@pytest.fixture(scope="session")
def numpy_sample_input():
numpy_input_data = [('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))]
return np.array(numpy_input_data, dtype=np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))]))
@pytest.fixture(scope="session")
def numpy_sample_output():
numpy_output_data = [(8.0, 7.0), (6.0, 7.0)]
return np.array(numpy_output_data, dtype='float64, float64')
@pytest.fixture(scope="session")
def decorated_numpy_func(numpy_sample_input, numpy_sample_output):
@input_schema('param', NumpyParameterType(numpy_sample_input))
@output_schema(NumpyParameterType(numpy_sample_output))
def numpy_func(param):
"""
:param param:
:type param: np.ndarray
:return:
:rtype: np.ndarray
"""
assert type(param) is np.ndarray
return param['grades']
return numpy_func
@pytest.fixture(scope="session")
def pandas_sample_input():
pandas_input_data = {'name': ['Sarah', 'John'], 'state': ['WA', 'CA']}
return pd.DataFrame(data=pandas_input_data)
@pytest.fixture(scope="session")
def pandas_sample_output():
pandas_output_data = {'state': ['WA', 'CA']}
return pd.DataFrame(data=pandas_output_data)
@pytest.fixture(scope="session")
def pandas_sample_input_int_column_labels():
pandas_input_data = {0: ['Sarah', 'John'], 1: ['WA', 'CA']}
return pd.DataFrame(data=pandas_input_data)
@pytest.fixture(scope="session")
def pandas_sample_input_with_url():
pandas_input_data = {'state': ['WA'], 'website': ['http://wa.website.foo']}
return pd.DataFrame(data=pandas_input_data)
@pytest.fixture(scope="session")
def pandas_sample_input_for_params():
import json
pandas_input_data = {
"columns": [
"sentence1"
],
"data": [
["this is a string starting with"]
],
"index": [0]
}
return pd.read_json(json.dumps(pandas_input_data), orient='split')
@pytest.fixture(scope="session")
def sample_param_dict():
return {"num_beams": 1, "max_length": 2}
@pytest.fixture(scope="session")
def decorated_pandas_func(pandas_sample_input, pandas_sample_output):
@input_schema('param', PandasParameterType(pandas_sample_input))
@output_schema(PandasParameterType(pandas_sample_output))
def pandas_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is pd.DataFrame
return pd.DataFrame(param['state'])
return pandas_func
@pytest.fixture(scope="session")
def decorated_pandas_datetime_func():
pandas_sample_timestamp_input = pd.DataFrame(
{
'datetime': pd.Series(['2013-12-31T00:00:00.000'], dtype='datetime64[ns, UTC]'),
'days': pd.Series([pd.Timedelta(days=1)])
}
)
@input_schema('param', PandasParameterType(pandas_sample_timestamp_input))
def pandas_datetime_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is pd.DataFrame
return pd.DataFrame(param['datetime'])
return pandas_datetime_func
@pytest.fixture(scope="session")
def decorated_pandas_func_split_orient(pandas_sample_input, pandas_sample_output):
@input_schema('param', PandasParameterType(pandas_sample_input, orient='split'))
@output_schema(PandasParameterType(pandas_sample_output, orient='split'))
def pandas_split_orient_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is pd.DataFrame
return pd.DataFrame(param['state'])
return pandas_split_orient_func
@pytest.fixture(scope="session")
def decorated_pandas_func_int_column_labels(pandas_sample_input_int_column_labels):
@input_schema('param', PandasParameterType(pandas_sample_input_int_column_labels))
def pandas_int_column_labels_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert param[0] is not None
assert param[1] is not None
return param
return pandas_int_column_labels_func
@pytest.fixture(scope="session")
def decorated_pandas_uri_func(pandas_sample_input_with_url):
@input_schema('param', PandasParameterType(pandas_sample_input_with_url))
def pandas_url_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: string
"""
assert type(param) is pd.DataFrame
return param['website'][0]
return pandas_url_func
@pytest.fixture(scope="session")
def decorated_pandas_func_parameters(pandas_sample_input_for_params, sample_param_dict):
@input_schema('input_data', PandasParameterType(pandas_sample_input_for_params, orient='split'))
@input_schema('params', StandardPythonParameterType(sample_param_dict), optional=True)
def pandas_params_func(input_data, params=None):
assert type(input_data) is pd.DataFrame
if params is not None:
assert type(params) is dict
beams = params['num_beams'] if params is not None else 0
return input_data["sentence1"], beams
return pandas_params_func
@pytest.fixture(scope="session")
def pandas_sample_input_with_categorical():
pandas_input_data = {'state': ['characters'], 'cat': ['000']}
return pd.DataFrame(data=pandas_input_data)
@pytest.fixture(scope="session")
def decorated_pandas_categorical_func(pandas_sample_input_with_categorical):
@input_schema('param', PandasParameterType(pandas_sample_input_with_categorical))
def pandas_categorical_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: string
"""
assert type(param) is pd.DataFrame
return param['cat'][0]
return pandas_categorical_func
@pytest.fixture(scope="session")
def decorated_spark_func():
spark_session = SparkSession.builder.config('spark.driver.host', '127.0.0.1').getOrCreate()
spark_input_data = pd.DataFrame({'name': ['Sarah', 'John'], 'state': ['WA', 'CA']})
spark_sample_input = spark_session.createDataFrame(spark_input_data)
spark_output_data = pd.DataFrame({'state': ['WA', 'CA']})
spark_sample_output = spark_session.createDataFrame(spark_output_data)
@input_schema('param', SparkParameterType(spark_sample_input))
@output_schema(SparkParameterType(spark_sample_output))
def spark_func(param):
"""
:param param:
:type param: pyspark.sql.dataframe.DataFrame
:return:
:rtype: pyspark.sql.dataframe.DataFrame
"""
assert type(param) is pyspark.sql.dataframe.DataFrame
return param.select('state')
return spark_func
@pytest.fixture(scope="session")
def standard_sample_input():
return {'name': ['Sarah', 'John'], 'state': ['WA', 'CA']}
@pytest.fixture(scope="session")
def standard_sample_output():
return {'state': ['WA', 'CA']}
@pytest.fixture(scope="session")
def decorated_standard_func(standard_sample_input, standard_sample_output):
@input_schema('param', StandardPythonParameterType(standard_sample_input))
@output_schema(StandardPythonParameterType(standard_sample_output))
def standard_py_func(param):
assert type(param) is dict
return {'state': param['state']}
return standard_py_func
@pytest.fixture(scope="session")
def decorated_standard_func_parameters(standard_sample_input, sample_param_dict):
@input_schema('input_data', StandardPythonParameterType(standard_sample_input))
@input_schema('params', StandardPythonParameterType(sample_param_dict), optional=False)
def standard_params_func(input_data, params=None):
if params is not None:
assert type(params) is dict
beams = params['num_beams'] if params is not None else 0
return input_data["input_string"], beams
return standard_params_func
@pytest.fixture(scope="session")
def standard_sample_input_multitype_list():
return ['foo', 1]
@pytest.fixture(scope="session")
def standard_sample_output_multitype_list():
return 5
@pytest.fixture(scope="session")
def decorated_standard_func_multitype_list(standard_sample_input_multitype_list, standard_sample_output_multitype_list):
@input_schema('param', StandardPythonParameterType(standard_sample_input_multitype_list))
@output_schema(StandardPythonParameterType(standard_sample_output_multitype_list))
def standard_py_func_multitype_list(param):
assert type(param) is list
return param[1]
return standard_py_func_multitype_list
@pytest.fixture(scope="session")
def standard_sample_input_empty_list():
return []
@pytest.fixture(scope="session")
def decorated_standard_func_empty_list(standard_sample_input_empty_list, standard_sample_output_multitype_list):
@input_schema('param', StandardPythonParameterType(standard_sample_input_empty_list))
@output_schema(StandardPythonParameterType(standard_sample_output_multitype_list))
def standard_py_func_empty_list(param):
assert type(param) is list
return param
return standard_py_func_empty_list
@pytest.fixture(scope="session")
def decorated_float_func():
@input_schema('param', StandardPythonParameterType(1.0))
def standard_float_func(param):
return param
return standard_float_func
@pytest.fixture(scope="session")
def decorated_nested_func(standard_sample_input, numpy_sample_input, pandas_sample_input, standard_sample_output,
numpy_sample_output, pandas_sample_output):
# input0 are not wrapped by any ParameterTypes hence will be neglected
nested_sample_input = StandardPythonParameterType(
{'input1': PandasParameterType(pandas_sample_input),
'input2': NumpyParameterType(numpy_sample_input),
'input3': StandardPythonParameterType(standard_sample_input),
'input0': 0}
)
nested_sample_output = StandardPythonParameterType(
{'output1': PandasParameterType(pandas_sample_output),
'output2': NumpyParameterType(numpy_sample_output),
'output3': StandardPythonParameterType(standard_sample_output),
'output0': 0}
)
@input_schema('param', nested_sample_input)
@output_schema(nested_sample_output)
def nested_func(param):
"""
:param param:
:type param: pd.DataFrame
:return:
:rtype: pd.DataFrame
"""
assert type(param) is dict
assert 'input0' in param.keys()
assert 'input1' in param.keys() and type(param['input1']) is pd.DataFrame
assert 'input2' in param.keys() and type(param['input2']) is np.ndarray
assert 'input3' in param.keys() and type(param['input3']) is dict
output0 = param['input0']
output1 = pd.DataFrame(param['input1']['state'])
output2 = param['input2']['grades']
output3 = {'state': param['input3']['state']}
return {'output0': output0, 'output1': output1, 'output2': output2, 'output3': output3}
return nested_func