-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathjson_to_dataset.py
91 lines (70 loc) · 3.21 KB
/
json_to_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/python
# -*- coding: UTF-8 -*-
#!H:\Anaconda3\envs\new_labelme\python.exe
import argparse
import json
import os
import os.path as osp
import base64
import warnings
import PIL.Image
import yaml
from labelme import utils
import cv2
import numpy as np
from skimage import img_as_ubyte
# from sys import argv
def main():
warnings.warn("This script is aimed to demonstrate how to convert the\n"
"JSON file to a single image dataset, and not to handle\n"
"multiple JSON files to generate a real-use dataset.")
parser = argparse.ArgumentParser()
parser.add_argument('json_file')
parser.add_argument('-o', '--out', default=None)
args = parser.parse_args()
json_file = args.json_file
#freedom
list_path = os.listdir(json_file)
print('freedom =', json_file)
for i in range(0,len(list_path)):
path = os.path.join(json_file,list_path[i])
if os.path.isfile(path):
data = json.load(open(path))
img = utils.img_b64_to_arr(data['imageData'])
lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes'])
captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]
lbl_viz = utils.draw_label(lbl, img, captions)
out_dir = osp.basename(path).replace('.', '_')
save_file_name = out_dir
out_dir = osp.join(osp.dirname(path), out_dir)
if not osp.exists(json_file + '\\' + 'labelme_json'):
os.mkdir(json_file + '\\' + 'labelme_json')
labelme_json = json_file + '\\' + 'labelme_json'
out_dir1 = labelme_json + '\\' + save_file_name
if not osp.exists(out_dir1):
os.mkdir(out_dir1)
PIL.Image.fromarray(img).save(out_dir1+'\\'+save_file_name+'_img.png')
PIL.Image.fromarray(lbl).save(out_dir1+'\\'+save_file_name+'_label.png')
PIL.Image.fromarray(lbl_viz).save(out_dir1+'\\'+save_file_name+
'_label_viz.png')
if not osp.exists(json_file + '\\' + 'mask_png'):
os.mkdir(json_file + '\\' + 'mask_png')
mask_save2png_path = json_file + '\\' + 'mask_png'
################################
#mask_pic = cv2.imread(out_dir1+'\\'+save_file_name+'_label.png',)
#print('pic1_deep:',mask_pic.dtype)
mask_dst = img_as_ubyte(lbl) #mask_pic
print('pic2_deep:',mask_dst.dtype)
cv2.imwrite(mask_save2png_path+'\\'+save_file_name+'_label.png',mask_dst)
##################################
with open(osp.join(out_dir1, 'label_names.txt'), 'w') as f:
for lbl_name in lbl_names:
f.write(lbl_name + '\n')
warnings.warn('info.yaml is being replaced by label_names.txt')
info = dict(label_names=lbl_names)
with open(osp.join(out_dir1, 'info.yaml'), 'w') as f:
yaml.safe_dump(info, f, default_flow_style=False)
print('Saved to: %s' % out_dir1)
if __name__ == '__main__':
#base64path = argv[1]
main()