-
Notifications
You must be signed in to change notification settings - Fork 360
/
reference_impl.rs
374 lines (338 loc) · 12.7 KB
/
reference_impl.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//! This is the reference implementation of BLAKE3. It is used for testing and
//! as a readable example of the algorithms involved. Section 5.1 of [the BLAKE3
//! spec](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf)
//! discusses this implementation. You can render docs for this implementation
//! by running `cargo doc --open` in this directory.
//!
//! # Example
//!
//! ```
//! let mut hasher = reference_impl::Hasher::new();
//! hasher.update(b"abc");
//! hasher.update(b"def");
//! let mut hash = [0; 32];
//! hasher.finalize(&mut hash);
//! let mut extended_hash = [0; 500];
//! hasher.finalize(&mut extended_hash);
//! assert_eq!(hash, extended_hash[..32]);
//! ```
use core::cmp::min;
const OUT_LEN: usize = 32;
const KEY_LEN: usize = 32;
const BLOCK_LEN: usize = 64;
const CHUNK_LEN: usize = 1024;
const CHUNK_START: u32 = 1 << 0;
const CHUNK_END: u32 = 1 << 1;
const PARENT: u32 = 1 << 2;
const ROOT: u32 = 1 << 3;
const KEYED_HASH: u32 = 1 << 4;
const DERIVE_KEY_CONTEXT: u32 = 1 << 5;
const DERIVE_KEY_MATERIAL: u32 = 1 << 6;
const IV: [u32; 8] = [
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
];
const MSG_PERMUTATION: [usize; 16] = [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8];
// The mixing function, G, which mixes either a column or a diagonal.
fn g(state: &mut [u32; 16], a: usize, b: usize, c: usize, d: usize, mx: u32, my: u32) {
state[a] = state[a].wrapping_add(state[b]).wrapping_add(mx);
state[d] = (state[d] ^ state[a]).rotate_right(16);
state[c] = state[c].wrapping_add(state[d]);
state[b] = (state[b] ^ state[c]).rotate_right(12);
state[a] = state[a].wrapping_add(state[b]).wrapping_add(my);
state[d] = (state[d] ^ state[a]).rotate_right(8);
state[c] = state[c].wrapping_add(state[d]);
state[b] = (state[b] ^ state[c]).rotate_right(7);
}
fn round(state: &mut [u32; 16], m: &[u32; 16]) {
// Mix the columns.
g(state, 0, 4, 8, 12, m[0], m[1]);
g(state, 1, 5, 9, 13, m[2], m[3]);
g(state, 2, 6, 10, 14, m[4], m[5]);
g(state, 3, 7, 11, 15, m[6], m[7]);
// Mix the diagonals.
g(state, 0, 5, 10, 15, m[8], m[9]);
g(state, 1, 6, 11, 12, m[10], m[11]);
g(state, 2, 7, 8, 13, m[12], m[13]);
g(state, 3, 4, 9, 14, m[14], m[15]);
}
fn permute(m: &mut [u32; 16]) {
let mut permuted = [0; 16];
for i in 0..16 {
permuted[i] = m[MSG_PERMUTATION[i]];
}
*m = permuted;
}
fn compress(
chaining_value: &[u32; 8],
block_words: &[u32; 16],
counter: u64,
block_len: u32,
flags: u32,
) -> [u32; 16] {
let counter_low = counter as u32;
let counter_high = (counter >> 32) as u32;
#[rustfmt::skip]
let mut state = [
chaining_value[0], chaining_value[1], chaining_value[2], chaining_value[3],
chaining_value[4], chaining_value[5], chaining_value[6], chaining_value[7],
IV[0], IV[1], IV[2], IV[3],
counter_low, counter_high, block_len, flags,
];
let mut block = *block_words;
round(&mut state, &block); // round 1
permute(&mut block);
round(&mut state, &block); // round 2
permute(&mut block);
round(&mut state, &block); // round 3
permute(&mut block);
round(&mut state, &block); // round 4
permute(&mut block);
round(&mut state, &block); // round 5
permute(&mut block);
round(&mut state, &block); // round 6
permute(&mut block);
round(&mut state, &block); // round 7
for i in 0..8 {
state[i] ^= state[i + 8];
state[i + 8] ^= chaining_value[i];
}
state
}
fn first_8_words(compression_output: [u32; 16]) -> [u32; 8] {
compression_output[0..8].try_into().unwrap()
}
fn words_from_little_endian_bytes(bytes: &[u8], words: &mut [u32]) {
debug_assert_eq!(bytes.len(), 4 * words.len());
for (four_bytes, word) in bytes.chunks_exact(4).zip(words) {
*word = u32::from_le_bytes(four_bytes.try_into().unwrap());
}
}
// Each chunk or parent node can produce either an 8-word chaining value or, by
// setting the ROOT flag, any number of final output bytes. The Output struct
// captures the state just prior to choosing between those two possibilities.
struct Output {
input_chaining_value: [u32; 8],
block_words: [u32; 16],
counter: u64,
block_len: u32,
flags: u32,
}
impl Output {
fn chaining_value(&self) -> [u32; 8] {
first_8_words(compress(
&self.input_chaining_value,
&self.block_words,
self.counter,
self.block_len,
self.flags,
))
}
fn root_output_bytes(&self, out_slice: &mut [u8]) {
let mut output_block_counter = 0;
for out_block in out_slice.chunks_mut(2 * OUT_LEN) {
let words = compress(
&self.input_chaining_value,
&self.block_words,
output_block_counter,
self.block_len,
self.flags | ROOT,
);
// The output length might not be a multiple of 4.
for (word, out_word) in words.iter().zip(out_block.chunks_mut(4)) {
out_word.copy_from_slice(&word.to_le_bytes()[..out_word.len()]);
}
output_block_counter += 1;
}
}
}
struct ChunkState {
chaining_value: [u32; 8],
chunk_counter: u64,
block: [u8; BLOCK_LEN],
block_len: u8,
blocks_compressed: u8,
flags: u32,
}
impl ChunkState {
fn new(key_words: [u32; 8], chunk_counter: u64, flags: u32) -> Self {
Self {
chaining_value: key_words,
chunk_counter,
block: [0; BLOCK_LEN],
block_len: 0,
blocks_compressed: 0,
flags,
}
}
fn len(&self) -> usize {
BLOCK_LEN * self.blocks_compressed as usize + self.block_len as usize
}
fn start_flag(&self) -> u32 {
if self.blocks_compressed == 0 {
CHUNK_START
} else {
0
}
}
fn update(&mut self, mut input: &[u8]) {
while !input.is_empty() {
// If the block buffer is full, compress it and clear it. More
// input is coming, so this compression is not CHUNK_END.
if self.block_len as usize == BLOCK_LEN {
let mut block_words = [0; 16];
words_from_little_endian_bytes(&self.block, &mut block_words);
self.chaining_value = first_8_words(compress(
&self.chaining_value,
&block_words,
self.chunk_counter,
BLOCK_LEN as u32,
self.flags | self.start_flag(),
));
self.blocks_compressed += 1;
self.block = [0; BLOCK_LEN];
self.block_len = 0;
}
// Copy input bytes into the block buffer.
let want = BLOCK_LEN - self.block_len as usize;
let take = min(want, input.len());
self.block[self.block_len as usize..][..take].copy_from_slice(&input[..take]);
self.block_len += take as u8;
input = &input[take..];
}
}
fn output(&self) -> Output {
let mut block_words = [0; 16];
words_from_little_endian_bytes(&self.block, &mut block_words);
Output {
input_chaining_value: self.chaining_value,
block_words,
counter: self.chunk_counter,
block_len: self.block_len as u32,
flags: self.flags | self.start_flag() | CHUNK_END,
}
}
}
fn parent_output(
left_child_cv: [u32; 8],
right_child_cv: [u32; 8],
key_words: [u32; 8],
flags: u32,
) -> Output {
let mut block_words = [0; 16];
block_words[..8].copy_from_slice(&left_child_cv);
block_words[8..].copy_from_slice(&right_child_cv);
Output {
input_chaining_value: key_words,
block_words,
counter: 0, // Always 0 for parent nodes.
block_len: BLOCK_LEN as u32, // Always BLOCK_LEN (64) for parent nodes.
flags: PARENT | flags,
}
}
fn parent_cv(
left_child_cv: [u32; 8],
right_child_cv: [u32; 8],
key_words: [u32; 8],
flags: u32,
) -> [u32; 8] {
parent_output(left_child_cv, right_child_cv, key_words, flags).chaining_value()
}
/// An incremental hasher that can accept any number of writes.
pub struct Hasher {
chunk_state: ChunkState,
key_words: [u32; 8],
cv_stack: [[u32; 8]; 54], // Space for 54 subtree chaining values:
cv_stack_len: u8, // 2^54 * CHUNK_LEN = 2^64
flags: u32,
}
impl Hasher {
fn new_internal(key_words: [u32; 8], flags: u32) -> Self {
Self {
chunk_state: ChunkState::new(key_words, 0, flags),
key_words,
cv_stack: [[0; 8]; 54],
cv_stack_len: 0,
flags,
}
}
/// Construct a new `Hasher` for the regular hash function.
pub fn new() -> Self {
Self::new_internal(IV, 0)
}
/// Construct a new `Hasher` for the keyed hash function.
pub fn new_keyed(key: &[u8; KEY_LEN]) -> Self {
let mut key_words = [0; 8];
words_from_little_endian_bytes(key, &mut key_words);
Self::new_internal(key_words, KEYED_HASH)
}
/// Construct a new `Hasher` for the key derivation function. The context
/// string should be hardcoded, globally unique, and application-specific.
pub fn new_derive_key(context: &str) -> Self {
let mut context_hasher = Self::new_internal(IV, DERIVE_KEY_CONTEXT);
context_hasher.update(context.as_bytes());
let mut context_key = [0; KEY_LEN];
context_hasher.finalize(&mut context_key);
let mut context_key_words = [0; 8];
words_from_little_endian_bytes(&context_key, &mut context_key_words);
Self::new_internal(context_key_words, DERIVE_KEY_MATERIAL)
}
fn push_stack(&mut self, cv: [u32; 8]) {
self.cv_stack[self.cv_stack_len as usize] = cv;
self.cv_stack_len += 1;
}
fn pop_stack(&mut self) -> [u32; 8] {
self.cv_stack_len -= 1;
self.cv_stack[self.cv_stack_len as usize]
}
// Section 5.1.2 of the BLAKE3 spec explains this algorithm in more detail.
fn add_chunk_chaining_value(&mut self, mut new_cv: [u32; 8], mut total_chunks: u64) {
// This chunk might complete some subtrees. For each completed subtree,
// its left child will be the current top entry in the CV stack, and
// its right child will be the current value of `new_cv`. Pop each left
// child off the stack, merge it with `new_cv`, and overwrite `new_cv`
// with the result. After all these merges, push the final value of
// `new_cv` onto the stack. The number of completed subtrees is given
// by the number of trailing 0-bits in the new total number of chunks.
while total_chunks & 1 == 0 {
new_cv = parent_cv(self.pop_stack(), new_cv, self.key_words, self.flags);
total_chunks >>= 1;
}
self.push_stack(new_cv);
}
/// Add input to the hash state. This can be called any number of times.
pub fn update(&mut self, mut input: &[u8]) {
while !input.is_empty() {
// If the current chunk is complete, finalize it and reset the
// chunk state. More input is coming, so this chunk is not ROOT.
if self.chunk_state.len() == CHUNK_LEN {
let chunk_cv = self.chunk_state.output().chaining_value();
let total_chunks = self.chunk_state.chunk_counter + 1;
self.add_chunk_chaining_value(chunk_cv, total_chunks);
self.chunk_state = ChunkState::new(self.key_words, total_chunks, self.flags);
}
// Compress input bytes into the current chunk state.
let want = CHUNK_LEN - self.chunk_state.len();
let take = min(want, input.len());
self.chunk_state.update(&input[..take]);
input = &input[take..];
}
}
/// Finalize the hash and write any number of output bytes.
pub fn finalize(&self, out_slice: &mut [u8]) {
// Starting with the Output from the current chunk, compute all the
// parent chaining values along the right edge of the tree, until we
// have the root Output.
let mut output = self.chunk_state.output();
let mut parent_nodes_remaining = self.cv_stack_len as usize;
while parent_nodes_remaining > 0 {
parent_nodes_remaining -= 1;
output = parent_output(
self.cv_stack[parent_nodes_remaining],
output.chaining_value(),
self.key_words,
self.flags,
);
}
output.root_output_bytes(out_slice);
}
}