forked from SillyTavern/SillyTavern-Extras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
505 lines (405 loc) · 19.1 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
from functools import wraps
from flask import Flask, jsonify, request, render_template_string, abort
from flask_cors import CORS
import markdown
import argparse
from transformers import AutoTokenizer, AutoProcessor, pipeline
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM
from transformers import BlipForConditionalGeneration, GPT2Tokenizer
import unicodedata
import torch
import time
from PIL import Image
import base64
from io import BytesIO
from random import randint
import webuiapi
from colorama import Fore, Style, init as colorama_init
colorama_init()
# Constants
# Also try: 'Qiliang/bart-large-cnn-samsum-ElectrifAi_v10'
DEFAULT_SUMMARIZATION_MODEL = 'Qiliang/bart-large-cnn-samsum-ChatGPT_v3'
# Also try: 'joeddav/distilbert-base-uncased-go-emotions-student'
DEFAULT_CLASSIFICATION_MODEL = 'bhadresh-savani/distilbert-base-uncased-emotion'
# Also try: 'Salesforce/blip-image-captioning-base'
DEFAULT_CAPTIONING_MODEL = 'Salesforce/blip-image-captioning-large'
DEFAULT_KEYPHRASE_MODEL = 'ml6team/keyphrase-extraction-distilbert-inspec'
DEFAULT_PROMPT_MODEL = 'FredZhang7/anime-anything-promptgen-v2'
DEFAULT_SD_MODEL = "ckpt/anything-v4.5-vae-swapped"
DEFAULT_REMOTE_SD_HOST = "127.0.0.1"
DEFAULT_REMOTE_SD_PORT = 7860
#ALL_MODULES = ['caption', 'summarize', 'classify', 'keywords', 'prompt', 'sd']
DEFAULT_SUMMARIZE_PARAMS = {
'temperature': 1.0,
'repetition_penalty': 1.0,
'max_length': 500,
'min_length': 200,
'length_penalty': 1.5,
'bad_words': ["\n", '"', "*", "[", "]", "{", "}", ":", "(", ")", "<", ">", "Â"]
}
class SplitArgs(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, values.replace('"', '').replace("'", '').split(','))
# Script arguments
parser = argparse.ArgumentParser(
prog='TavernAI Extras', description='Web API for transformers models')
parser.add_argument('--port', type=int,
help="Specify the port on which the application is hosted")
parser.add_argument('--listen', action='store_true',
help="Host the app on the local network")
parser.add_argument('--share', action='store_true',
help="Share the app on CloudFlare tunnel")
parser.add_argument('--cpu', action='store_true',
help="Run the models on the CPU")
parser.add_argument('--summarization-model',
help="Load a custom summarization model")
parser.add_argument('--classification-model',
help="Load a custom text classification model")
parser.add_argument('--captioning-model',
help="Load a custom captioning model")
parser.add_argument('--keyphrase-model',
help="Load a custom keyphrase extraction model")
parser.add_argument('--prompt-model',
help="Load a custom prompt generation model")
sd_group = parser.add_mutually_exclusive_group()
local_sd = sd_group.add_argument_group('sd-local')
local_sd.add_argument('--sd-model',
help="Load a custom SD image generation model")
local_sd.add_argument('--sd-cpu',
help="Force the SD pipeline to run on the CPU")
remote_sd = sd_group.add_argument_group('sd-remote')
remote_sd.add_argument('--sd-remote', action='store_true',
help="Use a remote backend for SD")
remote_sd.add_argument('--sd-remote-host', type=str,
help="Specify the host of the remote SD backend")
remote_sd.add_argument('--sd-remote-port', type=int,
help="Specify the port of the remote SD backend")
remote_sd.add_argument('--sd-remote-ssl', action='store_true',
help="Use SSL for the remote SD backend")
remote_sd.add_argument('--sd-remote-auth', type=str,
help="Specify the username:password for the remote SD backend (if required)")
parser.add_argument('--enable-modules', action=SplitArgs, default=[],
help="Override a list of enabled modules")
args = parser.parse_args()
port = args.port if args.port else 5100
host = '0.0.0.0' if args.listen else 'localhost'
summarization_model = args.summarization_model if args.summarization_model else DEFAULT_SUMMARIZATION_MODEL
classification_model = args.classification_model if args.classification_model else DEFAULT_CLASSIFICATION_MODEL
captioning_model = args.captioning_model if args.captioning_model else DEFAULT_CAPTIONING_MODEL
keyphrase_model = args.keyphrase_model if args.keyphrase_model else DEFAULT_KEYPHRASE_MODEL
prompt_model = args.prompt_model if args.prompt_model else DEFAULT_PROMPT_MODEL
sd_use_remote = False if args.sd_model else True
sd_model = args.sd_model if args.sd_model else DEFAULT_SD_MODEL
sd_remote_host = args.sd_remote_host if args.sd_remote_host else DEFAULT_REMOTE_SD_HOST
sd_remote_port = args.sd_remote_port if args.sd_remote_port else DEFAULT_REMOTE_SD_PORT
sd_remote_ssl = args.sd_remote_ssl
sd_remote_auth = args.sd_remote_auth
modules = args.enable_modules if args.enable_modules and len(args.enable_modules) > 0 else []
if len(modules) == 0:
print(f'{Fore.RED}{Style.BRIGHT}You did not select any modules to run! Choose them by adding an --enable-modules option')
print(f'Example: --enable-modules=caption,summarize{Style.RESET_ALL}')
# Models init
device_string = "cuda:0" if torch.cuda.is_available() and not args.cpu else "cpu"
device = torch.device(device_string)
torch_dtype = torch.float32 if device_string == "cpu" else torch.float16
if 'caption' in modules:
print('Initializing an image captioning model...')
captioning_processor = AutoProcessor.from_pretrained(captioning_model)
if 'blip' in captioning_model:
captioning_transformer = BlipForConditionalGeneration.from_pretrained(captioning_model, torch_dtype=torch_dtype).to(device)
else:
captioning_transformer = AutoModelForCausalLM.from_pretrained(captioning_model, torch_dtype=torch_dtype).to(device)
if 'summarize' in modules:
print('Initializing a text summarization model...')
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(summarization_model, torch_dtype=torch_dtype).to(device)
if 'classify' in modules:
print('Initializing a sentiment classification pipeline...')
classification_pipe = pipeline("text-classification", model=classification_model, top_k=None, device=device, torch_dtype=torch_dtype)
if 'keywords' in modules:
print('Initializing a keyword extraction pipeline...')
import pipelines as pipelines
keyphrase_pipe = pipelines.KeyphraseExtractionPipeline(keyphrase_model)
if 'prompt' in modules:
print('Initializing a prompt generator')
gpt_tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
gpt_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
gpt_model = AutoModelForCausalLM.from_pretrained(prompt_model)
prompt_generator = pipeline('text-generation', model=gpt_model, tokenizer=gpt_tokenizer)
if 'sd' in modules and not sd_use_remote:
from diffusers import StableDiffusionPipeline
from diffusers import EulerAncestralDiscreteScheduler
print('Initializing Stable Diffusion pipeline')
sd_device_string = "cuda" if torch.cuda.is_available() and not args.sd_cpu else "cpu"
sd_device = torch.device(sd_device_string)
sd_torch_dtype = torch.float32 if sd_device_string == "cpu" else torch.float16
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model, custom_pipeline="lpw_stable_diffusion", torch_dtype=sd_torch_dtype).to(sd_device)
sd_pipe.safety_checker = lambda images, clip_input: (images, False)
sd_pipe.enable_attention_slicing()
# pipe.scheduler = KarrasVeScheduler.from_config(pipe.scheduler.config)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
elif 'sd' in modules and sd_use_remote:
print('Initializing Stable Diffusion connection')
try:
sd_remote = webuiapi.WebUIApi(host=sd_remote_host, port=sd_remote_port, use_https=sd_remote_ssl)
if sd_remote_auth:
username, password = sd_remote_auth.split(':')
sd_remote.set_auth(username, password)
sd_remote.util_wait_for_ready()
except Exception as e:
# remote sd from modules
print(f"{Fore.RED}{Style.BRIGHT}Could not connect to remote SD backend at http{'s' if sd_remote_ssl else ''}://{sd_remote_host}:{sd_remote_port}! Disabling SD module...{Style.RESET_ALL}")
modules.remove('sd')
prompt_prefix = "best quality, absurdres, "
neg_prompt = """lowres, bad anatomy, error body, error hair, error arm,
error hands, bad hands, error fingers, bad fingers, missing fingers
error legs, bad legs, multiple legs, missing legs, error lighting,
error shadow, error reflection, text, error, extra digit, fewer digits,
cropped, worst quality, low quality, normal quality, jpeg artifacts,
signature, watermark, username, blurry"""
# list of key phrases to be looking for in text (unused for now)
indicator_list = ['female', 'girl', 'male', 'boy', 'woman', 'man', 'hair', 'eyes', 'skin', 'wears',
'appearance', 'costume', 'clothes', 'body', 'tall', 'short', 'chubby', 'thin',
'expression', 'angry', 'sad', 'blush', 'smile', 'happy', 'depressed', 'long',
'cold', 'breasts', 'chest', 'tail', 'ears', 'fur', 'race', 'species', 'wearing',
'shoes', 'boots', 'shirt', 'panties', 'bra', 'skirt', 'dress', 'kimono', 'wings', 'horns',
'pants', 'shorts', 'leggins', 'sandals', 'hat', 'glasses', 'sweater', 'hoodie', 'sweatshirt']
# Flask init
app = Flask(__name__)
CORS(app) # allow cross-domain requests
app.config['MAX_CONTENT_LENGTH'] = 100 * 1024 * 1024
def require_module(name):
def wrapper(fn):
@wraps(fn)
def decorated_view(*args, **kwargs):
if name not in modules:
abort(403, 'Module is disabled by config')
return fn(*args, **kwargs)
return decorated_view
return wrapper
# AI stuff
def classify_text(text: str) -> list:
output = classification_pipe(text)[0]
return sorted(output, key=lambda x: x['score'], reverse=True)
def caption_image(raw_image: Image, max_new_tokens: int = 20) -> str:
inputs = captioning_processor(raw_image.convert('RGB'), return_tensors="pt").to(device, torch_dtype)
outputs = captioning_transformer.generate(**inputs, max_new_tokens=max_new_tokens)
caption = captioning_processor.decode(outputs[0], skip_special_tokens=True)
return caption
def summarize(text: str, params: dict) -> str:
# Tokenize input
inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
token_count = len(inputs[0])
bad_words_ids = [
summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
for bad_word in params['bad_words']
]
summary_ids = summarization_transformer.generate(
inputs["input_ids"],
num_beams=2,
min_length=min(token_count, int(params['min_length'])),
max_length=max(token_count, int(params['max_length'])),
repetition_penalty=float(params['repetition_penalty']),
temperature=float(params['temperature']),
length_penalty=float(params['length_penalty']),
bad_words_ids=bad_words_ids,
)
summary = summarization_tokenizer.batch_decode(
summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
summary = normalize_string(summary)
return summary
def normalize_string(input: str) -> str:
output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
return output
def extract_keywords(text: str) -> list:
punctuation = '(){}[]\n\r<>'
trans = str.maketrans(punctuation, ' '*len(punctuation))
text = text.translate(trans)
text = normalize_string(text)
return list(keyphrase_pipe(text))
def generate_prompt(keywords: list, length: int = 100, num: int = 4) -> str:
prompt = ', '.join(keywords)
outs = prompt_generator(prompt, max_length=length, num_return_sequences=num, do_sample=True,
repetition_penalty=1.2, temperature=0.7, top_k=4, early_stopping=True)
return [out['generated_text'] for out in outs]
def generate_image(input: str, steps: int = 30, scale: int = 6, sampler: str = 'DDIM', model: str = None) -> Image:
prompt = normalize_string(f'{prompt_prefix}{input}')
print(prompt)
if sd_use_remote:
if model is not None and model != sd_remote.util_get_current_model():
sd_remote.util_set_model(model, find_closest=False)
sd_remote.util_wait_for_ready()
image = sd_remote.txt2img(
prompt=prompt,
negative_prompt=neg_prompt,
sampler_name=sampler,
steps=steps,
cfg_scale=scale,
).image
else:
image = sd_pipe(
prompt=prompt,
negative_prompt=neg_prompt,
num_inference_steps=steps,
guidance_scale=scale,
).images[0]
image.save("./debug.png")
return image
def image_to_base64(image: Image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
@app.before_request
# Request time measuring
def before_request():
request.start_time = time.time()
@app.after_request
def after_request(response):
duration = time.time() - request.start_time
response.headers['X-Request-Duration'] = str(duration)
return response
@app.route('/', methods=['GET'])
def index():
with open('./README.md', 'r', encoding='utf8') as f:
content = f.read()
return render_template_string(markdown.markdown(content, extensions=['tables']))
@app.route('/api/extensions', methods=['GET'])
def get_extensions():
extensions = dict({
'extensions': [
{
'name': 'not-supported',
'metadata': {
"display_name": """<span style="white-space:break-spaces;">Extensions serving using Extensions API is no longer supported. Please update the mod from: <a href="https://github.com/SillyLossy/TavernAI">https://github.com/SillyLossy/TavernAI</a></span>""",
"requires": [],
"assets": []
}
}
]
})
return jsonify(extensions)
@app.route('/api/caption', methods=['POST'])
@require_module('caption')
def api_caption():
data = request.get_json()
if 'image' not in data or not isinstance(data['image'], str):
abort(400, '"image" is required')
image = Image.open(BytesIO(base64.b64decode(data['image'])))
caption = caption_image(image)
return jsonify({'caption': caption})
@app.route('/api/summarize', methods=['POST'])
@require_module('summarize')
def api_summarize():
data = request.get_json()
if 'text' not in data or not isinstance(data['text'], str):
abort(400, '"text" is required')
params = DEFAULT_SUMMARIZE_PARAMS.copy()
if 'params' in data and isinstance(data['params'], dict):
params.update(data['params'])
summary = summarize(data['text'], params)
return jsonify({'summary': summary})
@app.route('/api/classify', methods=['POST'])
@require_module('classify')
def api_classify():
data = request.get_json()
if 'text' not in data or not isinstance(data['text'], str):
abort(400, '"text" is required')
classification = classify_text(data['text'])
return jsonify({'classification': classification})
@app.route('/api/classify/labels', methods=['GET'])
@require_module('classify')
def api_classify_labels():
classification = classify_text('')
labels = [x['label'] for x in classification]
return jsonify({'labels': labels})
@app.route('/api/keywords', methods=['POST'])
@require_module('keywords')
def api_keywords():
data = request.get_json()
if 'text' not in data or not isinstance(data['text'], str):
abort(400, '"text" is required')
keywords = extract_keywords(data['text'])
return jsonify({'keywords': keywords})
@app.route('/api/prompt', methods=['POST'])
@require_module('prompt')
def api_prompt():
data = request.get_json()
if 'text' not in data or not isinstance(data['text'], str):
abort(400, '"text" is required')
keywords = extract_keywords(data['text'])
if 'name' in data and isinstance(data['name'], str):
keywords.insert(0, data['name'])
prompts = generate_prompt(keywords)
return jsonify({'prompts': prompts})
@app.route('/api/image', methods=['POST'])
@require_module('sd')
def api_image():
data = request.get_json()
if 'prompt' not in data or not isinstance(data['prompt'], str):
abort(400, '"prompt" is required')
if 'steps' not in data or not isinstance(data['steps'], int):
data['steps'] = 30
if 'scale' not in data or not isinstance(data['scale'], int):
data['scale'] = 6
if 'sampler' not in data or not isinstance(data['sampler'], str):
data['sampler'] = 'DDIM'
if 'model' not in data or not isinstance(data['model'], str):
data['model'] = None
try:
image = generate_image(data['prompt'], data['steps'], data['scale'], data['sampler'], data['model'])
base64image = image_to_base64(image)
return jsonify({'image': base64image})
except RuntimeError as e:
abort(400, str(e))
@app.route('/api/image/model', methods=['POST'])
@require_module('sd')
def api_image_model_set():
data = request.get_json()
if not sd_use_remote:
abort(400, 'Changing model for local sd is not supported.')
if 'model' not in data or not isinstance(data['model'], str):
abort(400, '"model" is required')
old_model = sd_remote.util_get_current_model()
sd_remote.util_set_model(data['model'], find_closest=False)
#sd_remote.util_set_model(data['model'])
sd_remote.util_wait_for_ready()
new_model = sd_remote.util_get_current_model()
return jsonify({'previous_model': old_model, 'current_model': new_model})
@app.route('/api/image/model', methods=['GET'])
@require_module('sd')
def api_image_model_get():
model = sd_model
if sd_use_remote:
model = sd_remote.util_get_current_model()
return jsonify({'model': model})
@app.route('/api/image/models', methods=['GET'])
@require_module('sd')
def api_image_models():
models = [sd_model]
if sd_use_remote:
models = sd_remote.util_get_model_names()
return jsonify({'models': models})
@app.route('/api/image/samplers', methods=['GET'])
@require_module('sd')
def api_image_samplers():
samplers = ['Euler a']
if sd_use_remote:
samplers = [sampler['name'] for sampler in sd_remote.get_samplers()]
return jsonify({'samplers': samplers})
@app.route('/api/modules', methods=['GET'])
def get_modules():
return jsonify({'modules': modules})
if args.share:
from flask_cloudflared import _run_cloudflared
import inspect
sig = inspect.signature(_run_cloudflared)
sum = sum(1 for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD)
if sum > 1:
metrics_port = randint(8100, 9000)
cloudflare = _run_cloudflared(port, metrics_port)
else:
cloudflare = _run_cloudflared(port)
print("Running on", cloudflare)
app.run(host=host, port=port)