-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathkeptest.cpp
173 lines (144 loc) · 5.41 KB
/
keptest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* keptest.cpp: test code for Kepler-solving functions
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define THRESH 1.e-8
#define PI 3.141592653589793238462643383279502884197169399375105
#define CUBE_ROOT( X) (exp( log( X) / 3.))
/* 'asinh' = 'arc-hyperbolic sine.' Most compilers now implement this. */
#ifdef _MSC_VER
static double asinh( const double z)
{
return( log( z + sqrt( z * z + 1.)));
}
#endif
/* If the eccentricity is very close to parabolic, and the eccentric
anomaly is quite low, you can get an unfortunate situation where
roundoff error keeps you from converging. Consider the just-barely-
elliptical case, where in Kepler's equation,
M = E - e sin( E)
E and e sin( E) can be almost identical quantities. To
around this, near_parabolic( ) computes E - e sin( E) by expanding
the sine function as a power series:
E - e sin( E) = E - e( E - E^3/3! + E^5/5! - ...)
= (1-e)E + e( -E^3/3! + E^5/5! - ...)
It's a little bit expensive to do this, and you only need do it
quite rarely. (I only encountered the problem because I had orbits
that were supposed to be 'pure parabolic', but due to roundoff,
they had e = 1+/- epsilon, with epsilon _very_ small.) So 'near_parabolic'
is only called if we've gone seven iterations without converging. */
static double near_parabolic( const double ecc_anom, const double e)
{
const double anom2 = (e > 1. ? ecc_anom * ecc_anom : -ecc_anom * ecc_anom);
double term = e * anom2 * ecc_anom / 6.;
double rval = (1. - e) * ecc_anom - term;
int n = 4;
while( fabs( term) > 1e-15)
{
term *= anom2 / (double)(n * (n + 1));
rval -= term;
n += 2;
}
return( rval);
}
/* For a full description of this function, see KEPLER.HTM on the Guide
Web site, http://www.projectpluto.com. There was a long thread about
solutions to Kepler's equation on sci.astro.amateur, and I decided to
go into excruciating detail as to how it's done below. */
#define MAX_ITERATIONS 7
static double kepler( const double ecc, double mean_anom)
{
double curr, err, thresh, offset = 0., delta_curr = 1.;
int is_negative = 0, n_iter = 0;
if( !mean_anom)
return( 0.);
if( ecc < .3) /* low-eccentricity formula from Meeus, p. 195 */
{
curr = atan2( sin( mean_anom), cos( mean_anom) - ecc);
/* two correction steps, and we're done */
for( n_iter = 2; n_iter; n_iter--)
{
err = curr - ecc * sin( curr) - mean_anom;
curr -= err / (1. - ecc * cos( curr));
}
return( curr);
}
if( ecc < 1.)
if( mean_anom < -PI || mean_anom > PI)
{
double tmod = fmod( mean_anom, PI * 2.);
if( tmod > PI) /* bring mean anom within -pi to +pi */
tmod -= 2. * PI;
else if( tmod < -PI)
tmod += 2. * PI;
offset = mean_anom - tmod;
mean_anom = tmod;
}
if( mean_anom < 0.)
{
mean_anom = -mean_anom;
is_negative = 1;
}
curr = mean_anom;
thresh = THRESH * fabs( 1. - ecc);
if( thresh < 1e-15)
thresh = 1e-15;
if( ecc > .8 && mean_anom < PI / 3. || ecc > 1.) /* up to 60 degrees */
{
double trial = mean_anom / fabs( 1. - ecc);
if( trial * trial > 6. * fabs(1. - ecc)) /* cubic term is dominant */
{
if( mean_anom < PI)
trial = CUBE_ROOT( 6. * mean_anom);
else /* hyperbolic w/ 5th & higher-order terms predominant */
trial = asinh( mean_anom / ecc);
}
curr = trial;
}
if( ecc > 1. && mean_anom > 4.) /* hyperbolic, large-mean-anomaly case */
curr = log( mean_anom);
if( ecc < 1.)
while( fabs( delta_curr) > thresh)
{
if( n_iter++ > MAX_ITERATIONS)
err = near_parabolic( curr, ecc) - mean_anom;
else
err = curr - ecc * sin( curr) - mean_anom;
delta_curr = -err / (1. - ecc * cos( curr));
curr += delta_curr;
printf( "Iter %d: %.16lf %.16lf %.16lf\n",
n_iter, curr, err, delta_curr);
}
else
while( fabs( delta_curr) > thresh)
{
if( n_iter++ > MAX_ITERATIONS)
err = -near_parabolic( curr, ecc) - mean_anom;
else
err = ecc * sinh( curr) - curr - mean_anom;
delta_curr = -err / (ecc * cosh( curr) - 1.);
curr += delta_curr;
printf( "Iter %d: %.16lf %.16lf %.16lf\n",
n_iter, curr, err, delta_curr);
}
return( is_negative ? offset - curr : offset + curr);
}
void main( int argc, char **argv)
{
double ecc = atof( argv[1]);
double mean_anom = atof( argv[2]);
printf( "E=%lf\n", kepler( ecc, mean_anom));
}