-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimgui-glitch-shader.hlsl
110 lines (83 loc) · 3.25 KB
/
imgui-glitch-shader.hlsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
//ported from https://www.shadertoy.com/view/XtK3W3
sampler texSampler : register(s0);
const float2 iResolution : register(c0);
const float iTime : register(c1);
float3 fmod289(float3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
float2 fmod289(float2 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
float3 permute(float3 x) {
return fmod289(((x*34.0)+1.0)*x);
}
float snoise(float2 v)
{
const float4 C = float4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First corner
float2 i = floor(v + dot(v, C.yy) );
float2 x0 = v - i + dot(i, C.xx);
// Other corners
float2 i1;
//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
//i1.y = 1.0 - i1.x;
i1 = (x0.x > x0.y) ? float2(1.0, 0.0) : float2(0.0, 1.0);
// x0 = x0 - 0.0 + 0.0 * C.xx ;
// x1 = x0 - i1 + 1.0 * C.xx ;
// x2 = x0 - 1.0 + 2.0 * C.xx ;
float4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = fmod289(i); // Avoid truncation effects in permutation
float3 p = permute( permute( i.y + float3(0.0, i1.y, 1.0 ))
+ i.x + float3(0.0, i1.x, 1.0 ));
float3 m = max(0.5 - float3(dot(x0,x0), dot(x12.xy,x12.xy), dot(x12.zw,x12.zw)), 0.0);
m = m*m ;
m = m*m ;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
float3 x = 2.0 * frac(p * C.www) - 1.0;
float3 h = abs(x) - 0.5;
float3 ox = floor(x + 0.5);
float3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
// Compute final noise value at P
float3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}
float rand(float2 co)
{
return frac(sin(dot(co.xy,float2(12.9898,78.233))) * 43758.5453);
}
float4 main(float2 fragCoord : TEXCOORD0) : COLOR0
{
float4 fragColor = tex2D(texSampler, fragCoord);
float2 uv = fragCoord.xy / iResolution.xy;
float time = iTime * 2.0;
// Create large, incidental noise waves
float noise = max(0.0, snoise(float2(time, uv.y * 0.3)) - 0.3) * (1.0 / 0.7);
// Offset by smaller, constant noise waves
noise = noise + (snoise(float2(time*10.0, uv.y * 2.4)) - 0.5) * 0.15;
// Apply the noise as x displacement for every line
float xpos = uv.x - noise * noise * 0.25;
fragColor = tex2D(texSampler, float2(xpos, uv.y));
// lerp in some random interference for lines
float randtest = rand(float2(uv.y * time, uv.y * time));
fragColor.rgb = lerp(fragColor.rgb, float3(randtest, randtest, randtest), noise * 0.3).rgb;
// Apply a line pattern every 4 pixels
if (floor(fmod(fragCoord.y * 0.25, 2.0)) == 0.0)
{
fragColor.rgb *= 1.0 - (0.15 * noise);
}
// Shift green/blue channels (using the red channel)
fragColor.g = lerp(fragColor.r, tex2D(texSampler, float2(xpos + noise * 0.05, uv.y)).g, 0.25);
fragColor.b = lerp(fragColor.r, tex2D(texSampler, float2(xpos - noise * 0.05, uv.y)).b, 0.25);
return fragColor;
}