-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_main.py
117 lines (98 loc) · 5.13 KB
/
my_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import torch
from my_config import My_config
from model_loader import Model_loader
from tensorboardX import SummaryWriter
from my_utils import sample_train_val
from model_evaluater import Model_evaluater
from fusion_attacker import FusionAttacker
from patch_converter import Patch_converter
import options
def eval_main(model_name, patch_area, attack_timestamp, object_ids, args):
model_loader = Model_loader()
target_model, target_dataloader, target_cfg = model_loader.load_model(model_name)
trans_evaluater = Model_evaluater(model_name, target_model, target_dataloader, target_cfg)
best_patch = torch.load(os.path.join(My_config.log_dir, "bevfusion_patch_latest.pt"))
# best_patch = torch.load(os.path.join(My_config.log_dir, "bevfusion_patch.pt"))
mask = torch.load(os.path.join(My_config.log_dir, "bevfusion_mask.pt"))
os.makedirs(os.path.join(My_config.log_dir, 'ben_imgs'), exist_ok=True)
os.makedirs(os.path.join(My_config.log_dir, 'ben_lidar'), exist_ok=True)
os.makedirs(os.path.join(My_config.log_dir, 'adv_imgs'), exist_ok=True)
os.makedirs(os.path.join(My_config.log_dir, 'adv_lidar'), exist_ok=True)
trans_evaluater.eval_patch(best_patch, mask, attack_timestamp, patch_area, args,\
object_ids=object_ids)
def fusion_attack_main(model_names, patch_area, attack_timestamp, object_ids, args):
fusion_attacker = FusionAttacker(model_names)
fusion_attacker.attack(attack_timestamp, patch_area, object_ids, args)
# save patch and mask
torch.save(fusion_attacker.best_patch, os.path.join(My_config.log_dir, "bevfusion_patch.pt"))
torch.save(fusion_attacker.mask, os.path.join(My_config.log_dir, "bevfusion_mask.pt"))
if __name__ == "__main__":
args = options.parse()
print(args)
pc = Patch_converter()
My_config.proj_scale = args['patch_fid']
if args['score_tres'] is not None:
My_config.score_thres = args['score_tres']
print(f"log bbox threshold: {My_config.score_thres}")
# choose attack scene
atk_target = My_config.attack_targets[args['patch_cfg']]
patch_area = atk_target['patch_area'] # top_loc, left_loc, H, W
args['replace'] = atk_target['replace'] if 'replace' in atk_target.keys() else None
if 'area_ref' in atk_target.keys():
area_ref = atk_target['area_ref']
else:
area_ref = 'bevfusion'
if area_ref != 'physical':
patch_area = pc.convert_patch_area(patch_area, target='bevfusion', source=area_ref)
target_object_ids = atk_target['object_ids'] if 'object_ids' in atk_target.keys() else None
attack_timestamp = atk_target['timestamp']
if type(attack_timestamp) is list:
if args['run_type'] == 'train':
attack_timestamp, target_object_ids = sample_train_val(attack_timestamp, target_object_ids)[:2]
elif args['run_type'] == 'eval':
attack_timestamp, target_object_ids = sample_train_val(attack_timestamp, target_object_ids)[2:]
elif args['run_type'] == 'eval_all' or args['run_type'] == 'train_all':
attack_timestamp, target_object_ids = attack_timestamp, target_object_ids
front_object_ids = None
else:
if attack_timestamp in My_config.all_objects_front.keys():
front_object_ids = My_config.all_objects_front[attack_timestamp]
else:
front_object_ids = None
if args['obj_type'] == 'None':
train_object_ids = None
elif args['obj_type'] == 'Targeted':
train_object_ids = target_object_ids
elif args['obj_type'] == 'Front':
train_object_ids = front_object_ids
print(f"timestamp: {attack_timestamp}, train object_ids: {train_object_ids}, replace dict: {args['replace']}")
# prepare log_dir and logger
patch_type = args['patch_type']
if patch_type == 'whole' or patch_type == 'dynamic':
postfix = '{}-b{}'.format(patch_type, 'front_GT' if train_object_ids is not None else 'None')
elif patch_type == 'rec':
postfix = "{}-{}-{}-{}-b{}".format(
patch_area[0],
patch_area[1],
patch_area[2],
patch_area[3],
str(train_object_ids) if train_object_ids is None or type(train_object_ids[0]) is int else 'Targeted'
)
if args['run_type'][:4] == 'eval':
test_name = args['test_name']
else:
test_name = "{}-{}-{}".format(
args['test_name'],
attack_timestamp if type(attack_timestamp) is int else f"mycfg_{args['patch_cfg']}",
postfix
)
My_config.log_dir = os.path.join(My_config.log_dir, test_name)
os.makedirs(My_config.log_dir, exist_ok=True)
My_config.tb_logger = SummaryWriter(My_config.log_dir)
print("The log dir: " + My_config.log_dir)
My_config.tb_logger.add_text('CLI_args', str(args), 0)
if args['run_type'][:5] == 'train' or args['run_type'] == 'both' :
fusion_attack_main([args['model_name']], patch_area, attack_timestamp, train_object_ids, args)
elif args['run_type'][:4] == 'eval' or args['run_type'] == 'both':
eval_main(args['model_name'], patch_area, attack_timestamp, train_object_ids, args)