forked from 26F-Studio/Zenitha
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmathExtend.lua
370 lines (337 loc) · 8.28 KB
/
mathExtend.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
local MATH={}
for k,v in next,math do MATH[k]=v end
MATH.tau=2*math.pi
MATH.phi=(1+math.sqrt(5))/2
MATH.inf=1/0
MATH.nan=0/0
local floor,ceil=math.floor,math.ceil
local sin,cos=math.sin,math.cos
local max,min=math.max,math.min
local rnd=math.random
local exp,log=math.exp,math.log
local abs=math.abs
local tau=MATH.tau
---Check if a number is NaN
---@param n number
---@return boolean
function MATH.isnan(n)
return n~=n
end
---Get a number's sign
---@param a number
---@return -1|0|1
function MATH.sign(a)
return a>0 and 1 or a<0 and -1 or 0
end
---Round a number with specified unit
---@param n number
---@param u number
---@return number
function MATH.roundUnit(n,u)
return floor(n/u+.5)*u
end
---Round a number with specified unit
---@param x number
---@param base number
---@return number
function MATH.roundLog(x,base)
return floor(log(x,base)+.5)
end
---Get a random boolean with specified chance, 50% if not given
---@param chance? number 0~1
---@return boolean
function MATH.roll(chance)
return rnd()<(chance or .5)
end
---Select random one between a and b (50% - 50%)
---@param a any
---@param b any
---@return any
function MATH.coin(a,b)
if rnd()<.5 then
return a
else
return b
end
end
---Get a random real number in [a, b)
---@param a number
---@param b number
---@return number
function MATH.rand(a,b)
return a+rnd()*(b-a)
end
---Get a random value from a table
---@param map table
---@return integer
function MATH.randFrom(map)
local count=0
for _ in next,map do
count=count+1
end
local r=rnd()*count
for _,v in next,map do
r=r-1
if r<=0 then return v end
end
error("WTF")
end
---Get a random integer with specified frequency list
---@param fList number[] positive numbers
---@return integer
function MATH.randFreq(fList)
local sum=TABLE.sum(fList)
local r=rnd()*sum
for i=1,#fList do
r=r-fList[i]
if r<0 then return i end
end
error("MATH.randFreq(fList): Need simple positive number list")
end
---Get a random key with specified frequency table
---@param fList Map<number> positive numbers
---@return integer
function MATH.randFreqAll(fList)
local sum=TABLE.sumAll(fList)
local r=rnd()*sum
for k,v in next,fList do
r=r-v
if r<0 then return k end
end
error("MATH.randFreqAll(fList): Need simple positive number list")
end
---Get a random numbers in gaussian distribution (Box-Muller algorithm + stream buffer)
---@return number
local randNormBF
function MATH.randNorm()
if randNormBF then
local res=randNormBF
randNormBF=nil
return res
else
local r=rnd()*tau
local d=(-2*log(1-rnd())*tau)^.5
randNormBF=sin(r)*d
return cos(r)*d
end
end
---Restrict a number in a range
---@param v number
---@param low number
---@param high number
---@return number
function MATH.clamp(v,low,high)
if v<=low then
return low
elseif v>=high then
return high
else
return v
end
end
---Check if a number is in a range
---@param v number
---@param low number
---@param high number
---@return boolean
function MATH.between(v,low,high)
return v>=low and v<=high
end
---Get mix value (linear) of two numbers with a ratio (not clamped)
---@param v1 number
---@param v2 number
---@param t number 0~1 at most time
---@return number
function MATH.lerp(v1,v2,t)
return v1+(v2-v1)*t
end
---Inverse function of MATH.lerp (not clamped)
---@param v1 number
---@param v2 number
---@param value number
---@return number
function MATH.iLerp(v1,v2,value)
return (value-v1)/(v2-v1)
end
---Similar to MATH.lerp (clamped)
---@param v1 number
---@param v2 number
---@param t number 0~1 at most time
---@return number
function MATH.cLerp(v1,v2,t)
return
t<=0 and v1 or
t>=1 and v2 or
v1+(v2-v1)*t
end
---Inverse function of MATH.cLerp (clamped)
---@param v1 number
---@param v2 number
---@param value number
---@return number
function MATH.icLerp(v1,v2,value)
return
value<=v1 and 0 or
value>=v2 and 1 or
(value-v1)/(v2-v1)
end
local clamp,lerp=MATH.clamp,MATH.lerp
---Get mix value (linear) of a list of numbers with a ratio (clampped in [0,1])
---@param list number[]
---@param t number
---@return number
function MATH.lLerp(list,t)
local index=(#list-1)*clamp(t,0,1)+1
return lerp(list[floor(index)],list[ceil(index)],index%1)
end
---Inverse function of MATH.lLerp
---@param list number[] need #list>2 and ascending, or result is undefined
---@param value number
---@return number
function MATH.ilLerp(list,value)
local i,j=1,#list
if value<=list[1] then return 0 end
if value>=list[j] then return 1 end
while j-i>1 do
local mid=floor((i+j)/2)
if value<list[mid] then
j=mid
else
i=mid
end
end
return MATH.iLerp(list[i],list[j],value)
end
---Specify a line pass (x1,y1) and (x2,y2), got the y value when x=t
---
---Same to the combination of MATH.iLerp and MATH.lerp
---@param x1 number
---@param y1 number
---@param x2 number
---@param y2 number
---@param t number
---@return number
function MATH.interpolate(x1,y1,x2,y2,t)
return y1+(t-x1)*(y2-y1)/(x2-x1)
end
---Get a closer value from a to b with difference d
---
---Automatically choose +d or -d, then clamped at b
---@param a number
---@param b number
---@param d number
---@return number
function MATH.linearApproach(a,b,d)
return b>a and min(a+d,b) or max(a-d,b)
end
---Get a closer value from a to b with "exponential speed" k
---
---Can be called multiple times, you'll get same result for same sum of k
---@param a number
---@param b number
---@param k number
---@return number
function MATH.expApproach(a,b,k)
return b+(a-b)*exp(-k)
end
---Get distance between two points
---@param x1 number
---@param y1 number
---@param x2 number
---@param y2 number
---@return number
function MATH.distance(x1,y1,x2,y2)
return ((x1-x2)^2+(y1-y2)^2)^.5
end
---Get Minkowski distance between two 2D points
---@param p 0|number 0 for Chebyshev distance
---@param x1 number
---@param y1 number
---@param x2 number
---@param y2 number
function MATH.mDist2(p,x1,y1,x2,y2)
return
p==0 and max(abs(x1-x2),abs(y1-y2)) or
p==1 and abs(x1-x2)+abs(y1-y2) or
p==2 and ((x1-x2)^2+(y1-y2)^2)^.5 or
(abs(x1-x2)^p+abs(y1-y2)^p)^(1/p)
end
---Get Minkowski distance between two 3D points
---@param p 0|number 0 for Chebyshev distance
---@param x1 number
---@param y1 number
---@param z1 number
---@param x2 number
---@param y2 number
---@param z2 number
function MATH.mDist3(p,x1,y1,z1,x2,y2,z2)
return
p==0 and max(abs(x1-x2),abs(y1-y2),abs(z1-z2)) or
p==1 and abs(x1-x2)+abs(y1-y2)+abs(z1-z2) or
p==2 and ((x1-x2)^2+(y1-y2)^2+(z1-z2)^2)^.5 or
(abs(x1-x2)^p+abs(y1-y2)^p+abs(z1-z2)^p)^(1/p)
end
---Get Minkowski distance between two vectors
---@param p 0|number 0 for Chebyshev distance
---@param v1 number[]
---@param v2 number[]
function MATH.mDistV(p,v1,v2)
assert(#v1==#v2,"MATH.mDistV(p,v1,v2): Need #v1==#v2")
if p==0 then
local maxD=0
for i=1,#v1 do
maxD=max(maxD,abs(v1[i]-v2[i]))
end
return maxD
else
local sum=0
for i=1,#v1 do
sum=sum+abs(v1[i]-v2[i])^p
end
return sum^(1/p)
end
end
---Check if a point is in a polygon
---
---By Pedro Gimeno, donated to the public domain
---@param x number
---@param y number
---@param poly number[] {x1,y1,x2,y2,...}
---@param evenOddRule boolean
---@return boolean
function MATH.pointInPolygon(x,y,poly,evenOddRule)
local x1,y1,x2,y2
local len=#poly
x2,y2=poly[len-1],poly[len]
local wn=0
for idx=1,len,2 do
x1,y1=x2,y2
x2,y2=poly[idx],poly[idx+1]
if y1>y then
if y2<=y and (x1-x)*(y2-y)<(x2-x)*(y1-y) then
wn=wn+1
end
else
if y2>y and (x1-x)*(y2-y)>(x2-x)*(y1-y) then
wn=wn-1
end
end
end
if evenOddRule then
return wn%2~=0
else -- non-zero winding rule
return wn~=0
end
end
---Get the greatest common divisor of two positive integers
---@param a number
---@param b number
---@return number
function MATH.gcd(a,b)
repeat
a=a%b
a,b=b,a
until b<1
return a
end
return MATH